Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

элементарного отделение

    Продукт Я образуется по элементарной необратимой реакции (с константой скорости к) между веществами Л и В в проточном реакторе идеального смешения. Учитывая большой избыток вещества В, можно считать, что реакция имеет первый порядок по отношению к веществу Л. Продукт Я может быть полностью отделен от смеси, выходящей из реактора после выделения вещества Я смесь уничтожают. Оборудование для разделения характеризуется большим запасом мощности. [c.161]


    Отделение ионов сурьмы от ионов олова. Осадок 1 обрабатывают при нагревании 2 н. раствором хлористоводородной кислоты и прибавляют кусочек железной проволоки. В случае присутствия ЗЬ образуются черные хлопья элементарной сурьмы. [c.89]

Фиг. 12.4. Отделение частиц от газа в элементарной секции инерционного, воздушного фильтра, изображенного на фиг. 12.3 [25]. Фиг. 12.4. <a href="/info/1456449">Отделение частиц</a> от газа в элементарной секции инерционного, <a href="/info/844431">воздушного фильтра</a>, изображенного на фиг. 12.3 [25].
    Пиридин применяется для осаждения в виде гидроокисей Ре, А1, Сг и других элементов и отделения их от Мп, Со и N1. Используется для определения 2п, Си, Сё, Hg, N1, Со и других металлов, образующих с пиридином в присутствии роданидных и других анионов малорастворимые соли. Применяется для отделения от К и На. Используется при фотометрическом определении Си и 5Ь, а также для обнаружения элементарной серы. [c.116]

    Если время пребывания при указанной температуре сократить до 0,3—0,5 сек., то количество смол-гудронов увеличивается до 100 Г нмР СН4. Вероятность элементарного распада увеличивается, если кварцевую трубку заменить железной, поскольку железо оказывает каталитическое действие. Образование смол-гудронов приводит к появлению более крупных углеродистых частиц, являющихся продуктом дальнейшего разложения смол, сопровождаемого отделением водорода. [c.189]

    II) и других металлов, образующих с пиридином в присутствии тиоцианата и других анионов малорастворимые соли для отделения лития от калия и натрия при фотометрическом определении меди (II) и сурьмы (III), а также для обнаружения элементарной серы. [c.249]

    После отделения элементарной серы раствор упаривают до 700 г/л роданида. В растворе такой концентрации ])астворимость сульфата невелика и он кристаллизуется. [c.231]

    Для качественного определения галоидов к части фильтрата, подкисленной разбавленной азотной кислотой, прибавляют раствор азотнокислого серебра (примечание 6). Бели испытание дает положительный результат, заключающийся в выделении осадка галоидного серебра, устанавливают природу галоида на основании обычных качественных реакций. Для открытия иода к части фильтрата, полученного после сплавления вещества с натрием и подкисленной серной кислотой, прибавляют раствор азотистокислого натрия. Если при этом выделяется элементарный иод, его экстрагируют сероуглеродом или хлороформом. К водному слою после отделения иода прибавляют немного хлор- [c.519]


    Раствор после удаления серебра, который подается в катодное отделение электролизера для электровыделения элементарного селена, имеет следующий примерный состав  [c.110]

    Отделенный и нейтрализованный раствор, полученный при выщелачивании, содержит 2 % свинца, <5 мг/л теллура и <70 мг/л меди. Его подкисляют серной кислотой до получения кислотности 100 г/л при температуре 50—60 °С. При этом дополнительно осаждается сульфат свинца, который отделяют от раствора. Установлено, что для получения удовлетворительных скоростей и степени превращения селената в элементарный селен содержание серной кислоты в растворе должно быть не менее 100 г/л. [c.307]

    Процесс включает следующие стадии 1. Введение отработанной серной кислоты в расплав серы, имеющий температуру 250 °С, в результате чего образуется газовая смесь, состоящая из сернистого газа, паров элементарной серы и воды. 2. Охлаждение газовой смеси до температуры, превышающей температуру плавления серы, но ниже 160 °С, для конденсации элементарной серы, отделение сконденсировавшейся серы и возврат ее в резервуар с расплавленной серой. 3. Дальнейшее охлаждение газовой смеси для конденсации воды и отделение сконденсировавшейся воды. [c.355]

    Формирование споры начинается с того, что у одного из полюсов клетки происходит уплотнение цитоплазмы, которая вместе с генетическим материалом, представляющим собой одну или несколько полностью реплицированных хромосом, обособляется от остального клеточного содержимого с помощью перегородки. Последняя формируется впячиванием внутрь клетки ЦПМ. Мембрана нарастает от периферии к центру, где срастается, что приводит к образованию споровой перегородки. Эта стадия формирования споры напоминает клеточное деление путем образования поперечной перегородки (см. рис. 20, А). Следующий этап формирования споры — обрастание отсеченного участка клеточной цитоплазмы с ядерным материалом мембраной вегетативной клетки, конечным результатом которого является образование проспоры — структуры, расположенной внутри материнской клетки и полностью отделенной от нее двумя элементарными мембранами наружной и внутренней по отношению к проспоре. [c.70]

    Предварительное отделение на катионите позволяет определять 5 10 % Ga в элементарном селене [1290]. [c.161]

    Окислительные методы заключаются в проведении реакций каталитического окисления сероводорода до элементарной серы или каталитического окисления меркаптанов до дисульфидов восстановительные методы — в восстановлении сернистых соединений при взаимодействии их с водородом (гидрирование) или с водяным паром (гидролиз), а также в гидрировании диоксида углерода до метана. При восстановлении сернистых соединений все они превраш аются в сероводород. После проведения любых каталитических процессов очистки от сернистых соединений требуется последующее отделение продуктов каталитических превращений, например, после каталитического гидрирования газ направляют на очистку от сероводорода. [c.97]

    Из этого соотношения следует, что работа сил трения йА для выделенного элементарного объема системы превраш,ается в теплоту dQ, а кроме того, расходуется на увеличение внутренней энергии на химическое взаимодействие (%1с1п1г) и некоторые другие виды превращений. Указанные параметры тесно связаны между собой. Исходя из энергетической гипотезы, изнашивание (отделение) материала наступает тогда, когда внутренняя энергия 7 достигает критического значения. Однако в общем случае в присутствии химически активных компонентов износ определяется также глубиной химических превращений. В свою очередь, оба перечисленных фактора зависят от dQ. [c.250]

    Так как время является очень важным фактором в работе очистной установки, а определение коррозионности топлив способом медной пластинки длится от 20 мип, до 3 час., то естественно, что для контроля режима очистного отделения полезно иметь быстрый способ определения коррозионности. В качестве такого ускоренного способа рекомендуется пользоваться ртутной пробой. Ртуть является очень чувствительным реактивом на сероводород и элементарную серу и открывает такие количества этих соединений, которые не вызывают коррозионности но медной пл астинке. Как показали Ру и Эс-пейч [146], температура мало влияет на чувствительность этого испытания, поэтому его можно производить при любой температуре. [c.389]

    Вознесенской и Жердевой [154] детально и всесторонне были исследованы твердые парафины туймазинской нефти. Авторы выделили ряд фракций парафина с температурами плавления от 46 до 70° С из остатка туймазинской нефти (выше 350° С), применяя комплекс методов (нронановая деасфальтизация, молекулярная перегонка, дробное осаждение избирательно действующими растворителями). Особое внимание было обращено на полноту отделения твердых углеводородов от жидких (полнота обезмасливания). Фракции парафина были охарактеризованы по основным физическим свойствам, включая микрокристаллическую структуру, по элементарному составу, а также по отношению фракций к реакции нитрования по Коновалову, и сопоставлены с парафинами других нефтей (грозненской мидконтинентской) и индивидуальными парафинами с близкими температурами плавления и молекулярными весами. Основные характеристики выделенных фракций парафина приведены в табл. 22. [c.96]


    В процессе всегда образуется некоторое количество элементарного углерода (сажи), который удаляют, пропуская газы через коксовый фильтр, орошаемый водой. После этого разбавленный газ передают в отделение концентрирования и очистки. Промышленная форсунка имеет производительность 8 т1сутки ацетилена каждая форсунка снабжена собственным подогревателем, газовым холодильником и угольным фильтром. Дальнейшее концентрирование ацетилена обсуждается в разделе 4 (стр. 279). [c.278]

    При осаждении гидроокисью аммония необходимо, чтобы железо в растворе было в окисленной форме. Двухвалентное железо не осаждается количественно гидроокисью аммония кроме того, осадок Ре(0Н)2 очень плохо отделяется фильтрованием. Поэтому при анализе материалов, в которых может присутствовать элементарное железо или его закись, перед осаждением укелеза гидроокисью аммония его необходимо окислить. Иногда при анализе минералов и сплавов перед осаждением гидроокиси железа (или суммы полуторных окислов ) предварительно осаждают сероводородом катионы IV и V аналитических групп. Во время пропускания сероводорода через раствор железо восстанавливается до двухвалентного. Поэтому после отделения осадка сульфидов фильтрованием избыток сероводорода удаляют кипячением, а затем окисляют железо. В качестве окислителя удобнее всего применять перекись водорода или бромную воду. [c.153]

    С точки зрения комплексного подхода к системе сбора, подготовки нефти и переработки газа представляет интерес опыт эксплуатации нефтяного месторождения Рейнбоу-Лейк [41], расположенного на себеро-западе Канады в провинции Альберта. По климатическим условиям этот район Канады очень близок к условиям Западной Сибири. Месторождение расположено в труднодоступном таежном заболоченном месте, на территории которого построен газоперерабатывающий завод. Основное назначение завода — подготовка нефти и переработка нефтяного газа с целью получения обессоленной и обезвоженной стабильной нефти, сухого газа, широкой фракции легких углеводородов и элементарной серы. Связь с заводом осуществляется в основном с помощью авиации. Сбор нефти и газа на месторождении Рейнбоу-Лейк имеет много общего с лучевой системой сбора, описанной выше. Газонефтяная смесь прямо от скважины через замерные установки поступает на завод, где все потоки объединяются в одном коллекторе. Непосредственно на территории завода осуществляют сепарацию нефти в три ступени. Отделение газа в сепараторе первой ступени происходит при давлении 0,75 МПа и температуре 25°С. Нефть после сепаратора подогревают паром в теплообменнике до температуры 75—80°С и направляют сначала в сепаратор второй ступени с давлением 0,25 МПа, а затем в сепаратор третьей ступени с давлением 0,1 МПа. Далее нефть идет иа установку по обезвоживанию и обессоливанию. Доведенную до кондиции нефть перекачивают по нефтепроводу на НПЗ. Нефтяной газ, отделившийся на третьей и второй ступенях сепарации, самостоятельными потоками поступает на разные цилиндры компрессора, дожимается до давления 0,75 МПа и подается на смешение с газом первой ступени. Нефтяной газ месторождения Рейнбоу-Лейк содержит около 5% сероводорода. Поэтому, прежде чем поступать на блок переработки, этот газ подвергается очистке от НгЗ по абсорбционной схеме. Переработку газа осуществляют по схеме низкотемпературной конденсации при давлении 2,7 МПа и температуре — 18°С. Для осушки газа применяют 80%-ный раствор триэтиленгликоля (ТЭГ), который инжектируется в сырьевые теплообменники и в распределительную камеру пропанового холодильника. Точка росы осушенного газа достигает —34°С. Основную часть перерабо- [c.39]

    Осаждают ниобиевую кислоту из раствора 8 М HNO3, содержащего NaBrOa и соответствующие носители — ниобий, цирконий и теллур Осадок растворяют в насыщенном растворе щавелевой кислоты, добавляют НС до 1 Л1 и осаждают некоторые радиоизотопы на носителе — сульфиде меди. За- тем производят отделение радиоактивного теллура с носителем после восстановления его до элементарного состояния под действием SO2 из 3 Л1 H I. Из фильтрата опять осаждают ниобиевую кислоту, осадок растворяют в концентрированном растворе H2SO4 в присутствии конц. НР. Из этого раствора производят экстракцию ниобия трибутилфосфатом. Органический слой обрабатывают концентрированным раствором гидроокиси аммония и петролейным эфиром для осаждения ниобиевой кислоты. Осадок высушивают, прокаливают до окиси ниобия при 800° С, затем взмучивают с водой, фильтруют, промывают этанолом и эфиром, высушивают в вакууме и взвешивают. Измерения активности производят через 7,5 дия "после отделения от материнского изотопа Zr . [c.416]

    Из этих данных следует важный для практической реализации процесса термического обессеривания вывод с целью упрощения системы утилизации ввделяемых цри термолизе сернистых коксов сернистых соединений, процесс необходимо проводить в две ступени. На первой наиболее полно удалить летучие вещества, например путем нагрева кокса в печи огневого нахрева цри температурах 1000-1350°С. Чем выше температура нагрева на первой ступени, тем выше концентрация серы в газах, наделяющихся на второй ступени термического обессеривания. Ввделение серы из кокса преимущественно (на 90 ) в элементарном виде позволяет использовать простейшую технологию его отделения от [c.176]

    Из водных растворов лантаноиды и актиноиды катодно либо не осаждаются совсем, что используется для их отделения от примесей либо осаждаются в форме преимущественно аморфных гидроксидов [702, 414, 641, 387, 385]. Многочисленные попытки осадить РЗЭ и актиноиды из неводных растворов в элементарном виде также пока безуспешны. В лучщем случае катодные осадки состоят приблизительно из 50 % металла и 50 % органических продуктов. Утверждения о катодном выделении данных металлов в отдельных работах недостаточно обоснованы. Например, в работе [1077] предположение об электроосаждении металлического лантана основывается лишь на факте взаимодействия термически обработанного катодного осадка с водой и кислотами. Дифракционные линии Х-лучей, соответствующие лантану, в этом осадке не обнаружены. Необоснованы сведения также о выделении металлического урана [800]. Электролизом спиртовых растворов солей РЗЭ с ртутным катодом удается получить амальгамы редких земель [702, 414, 464]. Максимальная концентрация РЗЭ в этих амальгамах составляет 3 %, их разложением получают металл. [c.155]

    Автоклавное окислительное выщелачивание мед1Ю Никелевых пирротиновых концентратов. В связи с неэффективностью плавки медно-никелевых пирротиновых концентратов на штейн для их переработки предложена технология химического обогащения, основанная на окислении пирротина кислородом в водной пульпе (в автоклаве) с последующим отделением гидратированного оксида железа, элементарной серы и получением богатого сульфидного медно-никелевого концентрата. На полупромышленной установке с непрерывным и замкнутым циклом были получены сульфидные концентраты высокого качества из концентратов механического обогащения, содержащих (%) N1 2,7—5,7 Си 1,3—4,1 Ре 44—53 8 24—32. Химическое обогащение решало задачи комплексного использования руд и охраны воздушного бассейна. Поэтому метод был детально изучен применительно к концентратам, получаемым при обогащении медно-никелевых руд новых месторождений Норильского района, в которых никель представлен пеитландитом и частично изоморфной примесью в пирротине, медь — халькопиритом и кубанитом, железо—в основном пирротином, содержание которого в концентрате составляет 43—60 /о- Крупность концентрата 70—95 % класса —0,044 мм. [c.143]

    Прн вскрытии твердых образцов и переведении содержашлхся в них элементов в раствор могут преследоваться две цели, часто достигаемые одновременно первичное отделение от массы балластных примесей и растворение остающихся компонентов, т. е. переведение их в форму, удобную для дальнейших химических операций. Выполнение уже одной первой задачи, являющейся по существу концентрированием, бывает иногда достаточно для осуществления определений рзэ при помощи чувствительных специфических или, наоборот, универсальных способов, допускаюшлх анализ сложных смесей. Однако в силу того, что число таких способов ограничено и применение их возможно не во всех случаях, за начальной стадией анализа следует комплекс химических операций, который должен в зависимости от поставленной задачи обеспечить отделение смеси рзэ от мешающих элементов, достаточно эффективную очистку их от примесей или, наконец, полное разделение сумшл рзэ на индивидуальные элементы. В зависимости от применяемых способов анализа и от конкретного состава проб, определения тех или иных рзэ могут проводиться на всех фазах этой стадии, что очень затрудняет классификацию аналитических приемов в данной области. По-вндимому, целесообразно рассмотреть те же самые группы минеральных объектов, что и в предыдущем разделе, чтобы сохранить связь со специфическими приемами вскрытия, имея в виду также, что однотипный элементарный состав их будет определять и примерно одинаковые схемы и способы разделения. [c.221]

    Затем оксиды свинца и щелочных металлов селективно растворяют в подходящем флюсе, например расплавленном хлориде свинца, и флюс, содержащий оксиды, сгребают с поверхности образовавшегося сплава свинца с висмутом. В случае необходимости выделения элементарного висмута свинец, находящийся в сплаве, может быть отделен, например путем взаимодействия взвешенных капель или макрочастиц расплавленного сплава с lg, приводящего к образованию Pb lj. С той же целью можно применить метод электролиза или продувать расплавленный в тигле РЬ—Bi-сплав воздухом, в результате чего образуется глет, который может быть удален. Схема процесса показана на рис. 19. Воздухопроницаемый спек, содержащий висмутиды щелочных металлов, например висмутид кальция-магния aMgaBij и свинец, воспламеняют, нагревая до температуры воспламенения в открытом сосуде в присутствии воздуха обычно нагрев проводят до температуры = 450—490°С (в случае висмутида кальция-магния). Воспламенившийся спек сгорает с образованием порошкообразного остатка металлического висмута, металлического свинца, оксида свинца РЬО и оксидов щелочных металлов, например СаО и MgO. Природа висмутидного спека такова, что она позволяет воздуху проникать в его внутреннюю часть и поддерживать процесс горения до полного сгорания и образования порошкообразного остатка. [c.66]

    Если необходимо получить элементарный висмут, то его отделяют от свинца, содержащегося в сплаве, путем обработки газообразным хлором. В этом случае I2 подают в иижнюю часть закрытой камеры, а расплав РЬ—Bi сплава орошает проходящий газ обычным образом. Хлор селективно реагирует со свинцом, образуя Ph Ig, который образует отдельный слой на поверхности расплавленного висмута и удаляется путем сгребания. Свинец также может быть отделен от висмута путем электролиза или при продувании через расплав кислородсодержащего газа, обычно воздуха, в результате чего происходит селективное окисление свинца с образованием глета. Глет удаляют с поверхности расплавленного висмута путем сгребания. [c.67]

    После того как электролизер 1 заполняют отработанным фиксирующим фотографическим раствором, например тиосульфатом иатрия, аммония или калия или их смесью, к аноду 9 и катоду 12 подается постоянный электрический ток. В результате электролиза в катодном отделении 2 осаждается оксид серебра 5, а в анодном отделении 7 — эквивалентное количество элементарной серы 5. При проведении процесса в периодическом режиме предпочтительно загружать фиксирующий раствор в катодное отделение, а в анодное отделение заливать воду. Однако и в этом случае в оба отделения можно загружать фиксирующий раствор но следует учитывать, что при этом может происходить образование нежелательных побочных продуктов, таких как SOa или AgaS в анодном отделении. [c.327]

    В неорганическом анализе дистилляционными методами отделяют мышьяк, сурьму и олово в виде галогенидов, хром — в виде Сг02СЬ, осмий и рутений — в виде тетраоксидов. При определении кремния в силикатах его отделяют в виде 51р4. Серу в форме сульфитных и сульфидных ионов обычно выделяют в виде ЗО2 и Н2З после подкисления анализируемого раствора. Галогены можно отогнать из водного раствора в виде свободных элементов (часто после селективного окисления) и галогеноводородов. Из трудно-плавящихся веществ примеси металлов можно выделить в элементарном виде нагреванием при высокой температуре. Наоборот, в легколетучих веществах, (например, кислотах) содержание металлов определяют после полного или частичного отделения основного вещества дистилляцией. Примером использования рассматриваемых методов для очистки веществ служит дистилляция воды — стандартная операция в практике аналитических лабораторий. Методом сублимации можно хорошо очистить иод или некоторые органические соединения (например, 8-гидроксихинолин). [c.80]

    Бактерии — сзгщества клеточной организации, у которых ядерный материал не отделен от цитоплазмы элементарными мембранами и не связан ( ) с какими-либо основными белками Цитоплазма в них с нерегулярно разбросанными рибосомами (705-типа) неподвижна, клетки не обладают способностями к эндо- и экзоцитозу В большинстве своем бактерии одноклеточны, наименьший диаметр их 0,2 — 10,0 мкм [c.27]

    При высоких температурах процесс реагирования нротекает с большой скоростью, не успевает проникнуть внутрь и сосредоточивается на внешней поверхности. Это дает возможность пренебречь влиянием внутриобъемного реагирования. Но процесс реагирования при более высоких температурах осложняется сильным влиянием диффузии и в связи с этим — скорости н гидродинамики потока газа, а также вторичных реакций. Поэтому при исследовании реакций при высоких температурах большое значение имеет отделение влияния физических факторов, в основном диффузии, от чисто химических. Для того, чтобы наиболее просто и правильно выявить взаимосвязь между диффузией и кинетикой, исследование гетерогенных реакций и в особенности процесса горения углерода и, сопутствующих ему вторичных реакций проводилось в определенных простейших геометрических формах шарик, обтекаемый реагирующим газом (так называемая внешняя задача), канал, стенки которого реагируют с протекающим внутри пего газом (так называемая внутренняя задача), слой из шариков, продуваемый реагирующим газом, и т. д. Применяя для описания процесса дифференциальные уравнения диффузии совместно с граничными условиями, выражающими прямую связь между количеством диффундирующего газа и скоростью реакции на поверхности шарика, канала и т. п. (см. гл. VI), удалось получить хорошее соответствие теории с многочисленными экснериментальными данными [59] и др. В особенности большой вклад в разработку диффузионно-кинетической теории гетерогенного горения внесли Нредводителев и его сотрудники [59], а также Чуханов, Франк-Каменецкий [87], Зельдович и другие советские ученые. Но следует заметить, что математическая обработка экспериментальных данных с помощью диффузионно-кинетической теории горения отнюдь не даст возможности судить об элементарных химических актах (адсорбции, собственно химической реакции и т. д). На основе ее мы можем получить только суммарные константы скорости реакций (включая адсорбцию и внутриобъемное реагирование) и соответствующие величины видимых энергий активаций й суммарного порядка реакции. [c.161]


Смотреть страницы где упоминается термин элементарного отделение: [c.79]    [c.442]    [c.447]    [c.524]    [c.104]    [c.166]    [c.46]    [c.46]    [c.152]    [c.101]    [c.67]    [c.180]    [c.143]    [c.236]    [c.327]    [c.91]    [c.100]    [c.188]    [c.31]    [c.154]   
Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.786 ]




ПОИСК







© 2025 chem21.info Реклама на сайте