Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пептиды твердофазный

    В настоящее время автоматические приборы для синтеза пептидов твердофазным методом выпущены в продажу несколькими фирмами, — Прим. ред. [c.11]

    Твердофазный синтез олигонуклеотидов не достиг такого же высокого уровня, как твердофазный синтез пептидов. Оказалось сложным подобрать подходящую нерастворимую матрицу и прео- [c.180]

    Дж. Стюарт и др. Твердофазный синтез пептидов., М., Мнр, 971. 176 с, [c.428]


    Взаимодействие твердых в-в под Д. резко усиливается, если реагенты подвергаются пластич. деформации сдвига. В этих условиях реализуются многие твердофазные хим. процессы полимеризация, нуклеоф. присоединение аммиака, воды, карбоксильной группы к связи С—С, синтез амидов и пептидов, разложение пероксидов, карбонилов и оксидов металлов, неорганич. солей, р-ции этерификации и др. Ароматич. соед. при деформации под Д. нередко претерпевают превращения, сопровождающиеся разрывом цикла  [c.621]

    Однако отщепление пептида от носителя в этом случае возможно только с помощью НР. Что касается повышения выхода при твердофазном синтезе пептидов, то оказалось, что более длинные группировки между С-концевой аминокислотой и полимерным носителем оказывают положительное влияние, например [417]  [c.184]

    Если проанализировать все проведенные синтезы Меррифилда (табл. 2-9), то станет ясно, что это в основном работы в период между 1968 и 1972 гг. В это время во многих новых лабораториях — а их количество в США со времени опубликования концепции Меррифилда увеличилось в десять раз — начали проводить синтезы пептидов на носителях, чему в значительной степени способствовала коммерческая доступность синтезаторов. Очевидно, разочаровывающие результаты при попытках синтеза белков привели к реалистической оценке возможностей метода. Попытка синтеза лизо-цима привела, например, к смеси полипептидов, которая обладала 0,5—1% специфической активности [455]. Гораздо успешнее был синтез рибонуклеазы А [449], хотя и в этом случае выход составлял всего 16%. На этом ферменте с помощью твердофазной техники проведено интересное изучение взаимосвязи строения и активности [467]. Несомненно, что биологическая активность не является критерием гладкого течения твердофазного синтеза. Синтез белка, состоящего из 188 аминокислот, который сначала считали гормоном роста человека, дал смесь белков с заметной биологической активностью. Несколько позднее было, однако, показано, что положенная в основу синтеза первичная структура не подтвердилась [453, 468]. Синтез длинноцепочечных пептидов и белков по методу Меррифилда в настоящее время и в обозримом будущем уже не может отвечать тем высоким требованиям, которые предъявляются к синтезу биологически активных соединений. [c.193]

    Аминоацилирование является одной из стадий твердофазного синтеза пептидов (реакция МЕРРИФИЛДА) 5 [c.33]

    В настоящее время грег-бутилоксикарбонильная группа является стандартной защитной группировкой для а-аминогрупп при твердофазном пептидном синтезе (см. рис. 2). грег-Бутилоксикарбонильную группу можно удалять как безводным хлористым водородом в органическом растворителе, так и безводной трифторуксусной кислотой. Ни один из этих реагентов не расщепляет бензиловые эфиры. Таким образом, здесь имеется необходимое для успеха синтеза различие между устойчивостью связи пептида с полимерным носителем и связи защитной группировки с а-аминогруппой. В качестве носителя можно использовать ненитрованный сополимер стирола с дивинилбензолом, а конечный пептид можно отщеплять от полимера безводным бромистым водородом в трифтор уксусной кислоте или безводным фтористым водородом. Установлено, что оба метода отщепления дают удовлетворительные результаты и позволяют избежать осложнений, присущих отщеплению омылением. Имеются защитные группы, которые обеспечивают маскирование функциональных групп боковых радикалов аминокислот и в то же время совместимы с трет-бу тилоксикарбонильной группой. В настоящее время осуществлен синтез многих пептидов твердофазным методом при использовании этих групп. [c.43]


    Вследствие хорошо известной неустойчивости триптофана в кислых средах к синтезу триптофансодержащих пептидов твердофазным методом сначала подходили очень осторожно. Однако оказалось, что трип- тофан можно удовлетворительно вводить в пептидные цепи при твердофазном синтезе, осуществив небольшие изменения в обычной схеме. Для остатков триптофана в процессе синтеза представляют потенциальный риск два момента — это стадия отщепления БОК-групп и отделение конечного продукта от полимера-носителя. [c.111]

    По нашим оценкам твердофазным методом синтезировано до сих пор не мепее 200 различных пептидов. Мэррифилд опубликовал полный список [76] всех пептидов, твердофазный синтез которых описан в литературе до февраля 1967 г. В этом списке указаны полимер-носитель, защитные группы, конденсирующие агенты, реагенты для деблокирования, метод отщепления, способы очистки веществ, а также выходы полеченных соединений. Приложение Г иллюстрирует только возможности применения метода и суммирует некоторые последние достижения. [c.158]

    Эти данные были использованы для ступенчатого последовательного гидролиза и анализа пептидов с N-конца, что сравнимо с действием аминонептидазы. Для большинства аминокислот выход реакции гидролиза составляет 30—50%. Для иовышения выхода предложен другой подход с использованием твердофазного носителя. В щелочном буфере при 60°С только N-концевой остаток остается связанным с твердофазным носителем, а остальные ненрореагировавшие вещества могут быть отмыты и использованы вновь [230]. [c.358]

    В 1963 г. Р. Меррифилд [722] разработал важный метод, который с тех пор применяется для синтеза многих пептидов [723]. Этот метод называется твердофазным синтезом, или синтезом на полимерных подложках [724]. Здесь используются те же реакции, что и в обычном синтезе, но один из реагентов закреплен на твердом полимере. Например, если желательно соединить две аминокислоты (получить дипептид), то в качестве полимера может выступать полистирол, содержащий боковые группы H2 I (рис. 10.1, 99). Одну из аминокислот, защищенную трет-бутоксикарбонильной группой (Вое), закрепляют на боковых группах (стадия А). Нет необходимости, чтобы все боковые группы вступили в реакцию достаточно, чтобы это произошло с некоторыми из них. Затем гидролизом в присутствии трифтороуксусной кислоты в дихлорометане снимают защитную группу Вое (стадия Б) и к иммобилизированной аминокислоте присоединяют другую аминокислоту, используя ДЦК или другой агент сочетания (стадия В). После этого удаляют вторую защитную группу Вое (стадия Г), что дает дипептид, все еще закрепленный на полимере. Если этот дипептид и есть желаемый продукт, его можно снять с полимера действием HF (стадия Д). Если необходимо получить пептид с более длинной цепью, прибавляют другие аминокислоты, повторяя стадии В и Г. [c.156]

    Хотя твердофазный синтез был первоначально разработан для пептидов и с тех пор широко использовался для этой цели, он также нашел применение для синтеза полисахаридов и полинуклеотидов. Реже эта методика применяется в реакциях, где необходимо соединить лишь две молекулы (неповторяго-щиеся синтезы), но тем не менее в литературе приводится большое число примеров (обзор см. [726]). [c.158]

    Этот пример из синтеза пептидов возвращает нас к проблеме важности окружающей среды модели. Для того чтобы получить сравнение, имеющее смысл, мы тщательно выбрали линейный и конвергентный синтезы одной и той же молекулы, проведенные одной и той же исследовательской группой, использовавшей одинаковые методы проведения реакций в растворах. Если бы использовался твердофазный метод (который является линейным), то он, несомненно, оказался бы наиболее эффективным. Например, синтез ок-ситоцина по твердофазному методу [36] намного эффективнее, чем конвергентный или линейный синтезы, осуществляемые в растворах. Твердофазный метод расценивается как прогресс в современном развитии синтеза пептидов, аналогичного которому среди методов конвергентного синтеза нет. [c.256]

    Твердофазная техника приводила к существенной экономии труда и времени, необходимых для пептидного синтеза. Так, например, ценой значительных усилий Хиршмен с 22 сотрудниками [5f] завершили вьщающийся синтез фермента рибонуклеазы (124 аминокислотных остатка) с помошью традиционных жидкофазных методов. Почти одновременно тот же белок был получен путем автоматизированного твердофазного синтеза [5g], Во втором случае синтез, включающий 369 химических реакций и 11 931 операцию, был вьшолнен двумя участниками (Гатте и Меррифилд) всего за несколько месяцев (в среднем до шести аминокислотных остатков в день присоединялись к растущей полипептидной цепи — фантастический темп ). Последующие усовершенствования позволили построить полностью автоматический синтезатор. Таким образом, дерзновенная и волнующая проблема пептидного синтеза, решение которой ранее требовало огромных затрат труда и времени, теперь может считаться практически решенной (по крайней мере, для не слишком сложных пептидов). [c.302]


    Твердофазный метод успешно используют для последовательного построения промежуточных фрагментов. Затем эти фрагменты до связывания можно очистить и довести до ипдивргдуальпого состояния с помощью обычных методов. Поскольку производится очистка индивидуальных фрагментов, такой способ в меньшей степени ведет к образованию смесей близких по строению, но неидентичных пептидов. [c.420]

    Сделаны попытки применения твердофазных методов, разработанных 8 химии белка, для сщпеза олигонуклеотидов [38]. Однако обеспечить высокие выходы на каждой стадии соединения нуклеотидов труднее, чем при соединении пептидов, поэтому длина ц.епй, которую можно надежно синтезировать с помощьй твердофйЗиых методов, очень ограничена. [c.427]

    Для анализа коротких I пептидов более эффективен подход, заключающийся в их ковалентном присоединении к нерастворимому носителю. Этот принцип положен в основу твердофазного секвенатора, где реакц. сосудом служит хроматографич. колонка, с носителем к-рой ковалентно связан исследуемый пептид. Через колонку последовательно пропускают реагенты и р-рители. Носителями чаще всего служат полистирол и пористое стекло. В кач-ве функц. группы, реагирующей с пептидом, обычно использует- [c.252]

    Пиридил-4-метиловый эфир [135] благодаря основным свойствам позволяет обратимо фиксировать пептиды на катионообменниках после каждой ступени синтеза. Таким путем можно отделять пептиды от побочных продуктов. Преимущество этого метода состоит в том, что в противоположность твердофазному синтезу здесь все реакции протекают в гомогенной фазе. Похожий метод с применением 4-диметиламинобензилового эфира описан в работе [146]. [c.120]

    Нерастворимые полимерные эфиры являются чрезвычайно интересным классом карбоксизащитных групп, из которых полимерный беизиловый эфир является прототипом разработанного Меррифилдом твердофазного синтеза пептидов. Проблема синтеза на полимерных носителях излагается (разд. 2.2.7). [c.120]

    Хотя производные М -тозилгистид1ша до сих пор применялись главным образом в твердофазном синтезе пептидов, интерес к этой защитной группе растет и при осуществлении синтезов в растворе. Нуклеофильные соединения (1-гидроксибензотриазол, аммиак и др.) способны вызывать от- [c.128]

    Этот мягкий метод отщепления, который дает пептиды с С-концевыми амидными группами, приводит к высоким выходам также в случае пептидов со стерически затрудненными концевыми аминокислотными остатками. Фотолиз а-метилфенациловых эфиров был перенесен и на твердофазный синтез [419]. Фотолитические методы отщепления позволяют проводить синтез защищенных пептидных фрагментов. [c.185]

    При синтезе пентапептида А—В—С—О—Е в случае неполной конденсации можно получить четыре неполные и три ошибочные последовательности. Последние получаются, если неполные последовательности ацилируются с пропуском одного или нескольких остатков аминокислот. Наряду с этим об ошибочных пептидах говорят и в случае, когда при правильной последовательности аминокислот происходит ацилирование по функциям боковых цепей (при частичном доблокировании третьей функции) или при других изменениях у третьих функций. Отделение этих загрязняющих пеп-. тидов после окончания твердофазного синтеза крайне затруднительно. Поэтому нужно использовать все возможности, чтобы реакции в гетерогенной фазе проходили количественно. Для этого вводят большие избытки ацилирующего средства, которые в случае стерически затрудненных аминокислот часто составляют 6 г-экв. В других случаях работают с 3—4 г-экв. и повторяют реакш1ю конденсации один-два раза. В таких условиях амино-ацилирование проходит с высоким выходом [432]. [c.189]

    Используя несомненные преимущества метода Меррифилда, уже сегодня можно сравнительно быстро синтезировать пептидные фрагменты, которые могут быть получены с высокой степенью чистоты при помощи имеющейся теперь техники фракциоиирювания. Конденсация таких фрагментов с помощью обычных методов, позволяющих проводить тщательную очистку и анализ после каждой стадии, указывает путь иа ближайшее будущее. Наряду с этим с помощью твердофазного синтеза следует получать короткие биологически активные пептиды и прежде всего многочисленные аналоги. Хотя трудно установить предел длины цепи, позволяющий использовать этот метод для успешного получения пептидов, но пептиды, включающие 10—15 аминокислот, — вот, по-видимому, предпочтительные объекты синтеза. Главные проблемы, решение которых позволит преодо- [c.194]

    Под стратегией понимают последовательность соединения аминокислотных составляющих в пептид. С введением твердофазного синтеза в 1962 г. появился дополнительный выбор методов, т. е. кроме традиционного синтеза в растворе можно получать пептиды на второй фазе. При этом синтез на второй фазе может протекать либо как гетерогенная реакция (твердофазный синтез), либо как гомогенная реакция при применении растворимых полимерных носителей (жидкофазнкй синтез), либо как одновременно гетерогенная, так и гомогенная реакция (чередующийся твердо-фазно-жидкофазный синтез). В связи с этнм подятие стратегии несколько изменилось. Теперь под стратегией понимается только тип соединения аминокислот, причем различают ступенчатое наращивание цепей и фрагментную конденсацию. Особенности этих путей синтеза обсуждаются ниже. [c.211]

    Ступенчатое наращивание пептида с применением второй фазы впервые проведено Меррифилдом на примере твердофазного пептидного синтеза (разд. 2.2.7.1). При реакциях в гетерогенной фазе вероятность встречи реагирующих партнеров гораздо ниже, чем в гомогенном растворе. Для получения высокой степени превращения требуется значительный избыток ацилирующего средства. Преимуществом этой стратегии является простота технических операций и связанная с этим возможность автоматизации. Трудные операции очистки промежуточных веществ традиционного синтеза заменяются простыми процессами фильтрования и промывания. Однако на этом пути однородный продукт синтеза получается только в том случае, если каждая реакция в гетерогенной фазе протекает практически количественно. Несмотря на большие избытки карбоксикомпонента, использование которых чревато опасностью N-ацилирования пептидной связи, полное превращение на каждой стадии в настоящее время недостижимо. На практике средний выход на одну стадию 95—99%, что недостаточно для синтеза длинных пептидов или белков. Средние выходы на одну стадию и полные выходы (в зависимости от длины цепи) приведены в табл. 2-10. Как показывает практика, короткоцепочечные пептиды или их аналоги длиной до -15 аминокислотных остатков могут быть получены твердофазным методом. Трудности при синтезе небольших белков наглядно демонстрируются данными табл. 2-10. Еще хуже сказывается накопление не- [c.214]

    В последние годы отмечается повыщенный интерес к кислотоустойчивым временным защитным группам, отщепляемым в слабощелочных условиях (разд. 2.2.4.1 и табл. 2-1). Такие группы можно использовать в комбинации с постоянными защитными группами mpem-бутильного типа. Комбинация этих защитных групп была с успехом применена при синтезе пептидов по Меррифилду (разд. 2.2.7). Эта так называемая ортогональная концепция защиты для твердофазного синтеза очень интересна с тактической точки зрения (с. 185). И наконец, следует обратить внимание на уже обсуждавшуюся возможность фотолитического отщепления защитных групп, а также упомянуть защитые группы, которые можно удалить лищь в особых условиях (например, с помощью протеаз). Значение ферментативного деблокирования [476, 552—555] в будущем может возрасти. [c.223]

    Кратко изложив стратегию и тактику пептидного синтеза, попробуем проанализировать его современное состояние. Методические возможности, которыми располагает исследователь, достаточны, чтобы осуществить синтез небольшого белка. Приведенные в табл. 2-9 данные пр твердофазному пептидному синтезу убедительно показывают, что относительно быстро можно построить длинные пептидные цепи. Но так как в результате получаются, как правило, только трудно или вообще неочищаемые продукты, этнм методом целесообразно синтезировать только короткие пептиды, а также аналоги и фрагменты с максимальным числом аминокислотных остатков от 10 до 15. [c.226]

    Химический синтез полимеров с заданной последовательностью мономерных звеньев может быть очень сильно облегчен присоединением одного конца растущей полимерной цепи к нерастворимой подложке. При этом очистка полимера после каждой стадии химической реакции может легко достигаться фильтрованием. Этот метод был очень популярен в области пептидов, при этом повторяющиеся стадии могут быть автоматизированы [88]. Твердофазный синтез полинуклеотидов не был столь успещен, как твердофазный синтез полипептидов, в основном из-за трудностей в достижении количественных выходов на последовательных стадиях синтеза. Наиболее полезными реагентами для создания межнуклеотидной связи являются аренсульфонилхлориды, хотя для достижения максимальных выходов необходимо обеспечение безводных условий. Полистирол и сщитые стирол-дивинилбензольные сополимеры, содержащие остатки 4-метокситритилхлорида, были использованы для присоединения первого нуклеозида, через его 5 -гидроксильную группу к твердой подложке схема (55) . [c.170]

    Идея использования твердофазной подложки в последовательном синтезе полимера с определенной последовательностью была развита Меррифильдом для работы с пептидами (см. гл. 23.6). Ранние попытки применить эту идею и сходную технологию для синтеза олигонуклеотидов были сравнительно безуспещны [1]-. Попросту говоря, растущий олигонуклеотид, по-видимому, образует клубок вблизи полимерной подложки, что делает его конец недоступным для дальнейщего удлинения выходы значительно снижаются прежде, чем количество нуклеотидов достигает двузначной цифры. Эта ситуация, по-видимому, была преодолена, когда обратились к новому типу полиамидной подложки, которая [c.183]

    Разработка твердофазного метода синтеза пептидов (см. гл. 23.6) привела к усовершенствованию некоторых стадий в процессе последовательной деградации. Так, стало чрезвычайно просто отделять 2-анилинотиазолиноны-5 от остального пептида или белка. После разработки автоматического секвинатора с использованием твердой фазы [20] появились промышленные приборы [c.267]

    Успешное введение аминокислотного остатка гистидина в синтетические пептиды по-прежнему представляет собой чрезвычайно сложную проблему. И это связано с крайне неудобными для синтеза химическими свойствами имидазольного цикла. Свободный имидазол — это эффективный катализатор гидролиза сложных эфиров и амидов, а также рацемизации. Сами же гистидиновые производные особенно склонны к рацемизации в процессе пептидного синтеза. Если имидазольный цикл оставить незащищенным, то он может подвергаться ацилированию активированными карбоксильными компонентами, причем получающиеся ацильные производные сами по себе достаточно реакционноспособны и могут затем вызывать перенос ацильной группировки в разных участках молекулы. По этой причине Л т-ацильные производные гистидина часто неудобны в качестве синтетических интермедиатов, если на ряде стадий нужно сохранить находящуюся в боковом радикале защитную группу. Для ступенчатого синтеза можно использовать защищенные уретановые производные, например Ма, Л 1т бис-грег-бут-оксикарбонилпроизводное (63), причем обе защитные группы удаляют непосредственно после введения аминокислотного остатка в пептидную цепь. Так, интермедиат (63) успешно используется в твердофазном синтезе [47]. [c.387]

    Если первоначально возникающая карбоксильная компонента находится в избытке, 0-ацилизомочевина (73) может предпочтительно реагировать с карбоновой кислотой или ее производным, что приводит к симметричному ангидриду (74) путь (б) на схеме (32) . Это вторичное активированное соединение способно в свою очередь реагировать с аминокомпонентой с образованием пептида и с регенерацией части карбоксильной компоненты, которая, таким образом, включается в цикл. Внолне вероятно, что образование пептидной связи в процессе твердофазного синтеза (см. разд. 23.6.4), при котором карбоксильная компонента обычно находится в большом избытке, в значительной мере протекает через промежуточный симметричный ангидрид. В отсутствие аминов карбодиимиды можно очень успешно применять для получения симметричных ангидридов. И, наконец, в отсутствии аминокомпоненты или когда реакции соединений (73) или (74) с амином протекают особенно вяло, может образоваться устойчивая Л -ацилмочевина (75). Это может произойти либо путем внутримолекулярной перегруппиров- [c.392]

    Пептидный синтез становится трудоемкой и длительной операцией в том случае, когда целевой пептид велик. Образование каждой пептидной связи требует должным образом защищенной аминокислоты, проведения конденсации и снятия защитных групп. Несмотря на то, что больщое число последовательных стадий может быть модифицировано путем изменения общего плана синтеза (см. разд. 23.6.5), общее число дискретных химических операций в синтезе больших пептидных гормонов и небольших белков остается весьма значительным. Пептидный синтез предъявляет также значительные технические требования. Условия реакции требуют тщательного исследования и строгой оптимизации для того, чтобы обеспечить приемлемый выход и избежать побочных реакций. Выделение лабильных и труднодоступных продуктов реакции требует опыта и искусства экспериментатора. По этой причине в целом ряде схем Цредлагаются ускоренные синтетические методики, которые упрощают также многие обычные операции. Среди этих схем широкое распространение нашла методика твердофазного синтеза, разработанная Меррифилдом [106, 107]. [c.405]

    При планировании синтеза пептидов значительного размера нужно уделить особое внимание как разработке общего или стратегического плана, так и тактике, с помощью которой этот план может быть эффективно выполнен [110]. Основной стратегический замысел состоит в способе, которым может быть достигнуто построение определенной последовательности остатков аминокислот, т. е. либо ступенчатым способом по одному остатку за одну ступень, начиная с концевой амино- или карбоксигруппы, либо путем объединения нескольких частей с определенной последовательностью (конденсация фрагментов), проводя синтез либо в растворе, либо твердофазным способом и т. д. Тактические соображения включают выбор подходящего сочетания защитных групп для концевых амино- и карбоксильных групп для различных боковых радикалов аминокислот. Некоторые из этих защитных групп постоянны , т. е. сохраняются до конца синтеза, другие — временны , т. е. подлежат отщеплению на промежуточных стадиях синтеза, что дает возможность создания определенного типа пептидной связи или это производится для того, чтобы нужным образом изменить растворимость и т. д. Условия для снятия защитных групп должны быть выбраны с учетом аминокислотного состава пептида. Другую часть тактики составляет выбор методики создат ния пептидной связи, выбор растворителя, особенно в связи с опас ностью рацемизации. [c.408]

    Как показано выше, сущность топохимического контроля твердофазных органических реакций сводится к обеспечению правильного взаимного расположения молекул, обеспечивающего возможность прохождения данной реакции между ними. Один нз вариантов топохимического контроля реакций осуществляется с использованием неорганических сотоистых соединепий (таких, как силикаты или халькогениды переходных металлов). Органические молекулы, внедряясь между неорганическими слоями, принимают там определенную ориентацию, благодаря чему реакции с их участием становятся высокоселективными. Используя в качестве матрицы глигшстый мииерал момтморило-нит (слоистый силикат), удалось синтезировать пептиды из аминокислот и осуществить перегруппировку бензидина. Этот прием регулирования реакций, пока еще не получивший широкого распространения, имеет большие потенциальные возможности в органическом синтезе и катализе. [c.278]


Смотреть страницы где упоминается термин Пептиды твердофазный: [c.25]    [c.278]    [c.153]    [c.14]    [c.142]    [c.406]    [c.407]    [c.420]    [c.241]    [c.372]    [c.268]    [c.400]    [c.408]    [c.409]    [c.654]   
Химия биологически активных природных соединений (1970) -- [ c.130 ]




ПОИСК





Смотрите так же термины и статьи:

Использование дегидроаминокислот в твердофазном синтезе пептидов

Карбодиимидный метод применение в твердофазном синтезе пептидов

Твердофазный анализ крупных пептидов и белков

Твердофазный анализ небольших пептидов

Твердофазный метод синтеза пептидов

Твердофазный синтез пептидов

Химия твердофазного синтеза пептидов



© 2025 chem21.info Реклама на сайте