Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия массы покоя

    Масса (энергия) частиц, будучи специфической определенной для данного вида частиц в свободном, нормальном (невозбужденном) состоянии и в относительном покое, может изменяться при тех или иных переменах состояния частиц. Так, масса (энергия) частицы растет при увеличении скорости ее поступательного движения, и этот прирост, равный затраченной извне энергии (массе), обычно называют кинетической энергией поступательного движения (или кинетической массой ). [c.198]


    Например, при пористости 40% скорость псевдоожижения составляет только 7,6% от скорости свободного падения. Возможное объяснение такого поведения заключается в следующем. Подвергающиеся псевдоожижению слои всегда содержат некоторое количество более мелких частиц, которые имеют скорости падения, значительно меньшие, чем общая скорость газового потока при псевдоожижении. Эти мелкие частицы могут быть подняты газом и могут упасть, передав свою кинетическую энергию большим частицам, затем опять могут быть подняты и т. д., пока в конце концов вся масса не придет в движение. [c.254]

    Высвобождение из комплекса при его дроблении некоторой части входящих В него молекул также подтверждает физическую природу комплексообразования. Некоторые исследователи [5, 15] считают, что взаимодействие карбамида с н-алканами аналогично взаимодействию их с цеолитами. Однако точка зрения на структуру комплекса как на физическое явление не подтверждается величиной энергии связи углеводорода с карбамидом, приходящейся на каждую группу СН2. Установлено [I, 15], что она равна 6,7 - 11,76 кДж, в то время как силы Ван-дер-Ваальса равны всего 4,19 кДж на каждую СН2. Другие исследователи [25, 2б] относят кристаллические комплексы углеводородов и их производных с карбамидом к чисто химическим соединениям, поскольку реакция комплексообразования подчиняется общим законам течения химических реакций, в частности закону действующих масс. Изменение условий комплексообразования оказывает влияние на равновесие, скорость образования комплекса, эффективность разделения и на другие пока- [c.36]

    Действительно, факт, что температура материала в процессе сушки практически >е изменяется до тех пор, пока влага испаряется с поверхности материала, вытекает из баланса энергии и массы в стационарном состоянии. Поэтому общее выражение для определения температуры влажного термометра может быть получено из основных законов тепло- и массопереноса. Этот вывод представлен ниже. [c.139]

    На разработку практически действующих топливных элементов затрачиваются большие исследовательские усилия. Одной из возникающих при этом проблем является высокая температура, при которой работает большинство подобных элементов, что не только способствует рассеянию энергии, но и ускоряет коррозию частей гальванического элемента. Разработан низкотемпературный топливный элемент, в котором используется Н2, но пока что этот топливный элемент слишком дорог для широкого потребления. Однако он находит применение в особых случаях, например в космических аппаратах. Так, топливный элемент на основе Н2—О 2 служил в качестве главного источника электрической энергии на космических кораблях Апполон , летавших на Луну. Масса топливного элемента, обеспечивавшего корабль энергией в течение 11-дневного полета, составляла приблизительно 250 кг. Если бы для такой цели использовался обычный генератор электрической энергии, его масса должна была бы составлять несколько тонн. [c.220]


    Согласно классической кинетической теории, темпе )атура абсолютного нуля характеризуется тем, что при ней прекращается всякое движение частиц, т. е. наступает полный покой. Однако абсолютный покой мыслим лишь там, где нет материи (Энгельс). В настоящее время установлено, что частицы вещества сохраняют некоторую колебательную энергию даже при абсолютном нуле. Эта нулевая энергия тем больше, чем меньше массы частиц и чем сильнее они взаимодействуют друг с другом. Общая нулевая энергия многоатомных молекул может достигать значительных величин. [c.45]

    Можно предположить, что первоначальная масса образовавшейся в нашем участке Галактики звезды превышала критическую (равную 1,44 массы Солнца), она оказалась неустойчивой. Под действием гравитационного притяжения протозвезда сжималась, ее температура повышалась, обеспечивая первые этапы ядерного синтеза. Выделяющаяся при этом энергия оказалась слишком велика, и поэтому через некоторое время происходил взрыв в виде Сверхновой, во время которого образовывались ядра самых тяжелых элементов масса звезды уменьшалась за счет выброса вещества. Весь этот процесс мог повторяться неоднократно до tex пор, пока масса центральной массивной звезды не опустилась ниже критического предела. Такая система должна иметь время жизни порядка 5 млрд лет, что соответствует возрасту Солнца и обеспечивает интервал времени, достаточный для химической, геологической и биологической эволюции, достигших современного уровня. [c.9]

    Осуществляется с помощью ультрацентрифуг, снабженных полым ротором. Полости роторов бывают замкнутыми и проточными. Различают скоростное и равновесное У. В первом случае частицы движутся по радиусу ротора соотв. своим коэф. седиментации 5, к-рые в первом приближении пропорциональны массе частицы т, разности плотностей частицы Рр и жидкости ра. При Ри > Ро частицы перемещаются от оси вращения ротора к периферии (седиментируют), при Рр < Ро — в сторону оси вращения (флотируют) при Рр = Ро движение частиц по радиусу не происходит. При равновесном У. перенос частиц по радиусу длится до тех пор, пока сумма хим. потенциала и молярной потенц. энергии в каждой точке системы не станет пост, величиной, после чего распределение частиц перестает изменяться. [c.605]

    Когда плоская вертикальная поверхность, помещенная в неограниченную покоящуюся среду, внезапно нагревается, причем тепловой поток в дальнейшем становится постоянным, начинается нестационарный перенос, продолжающийся до тех пор, пока не будет достигнуто стационарное состояние. Этот переходный процесс часто распадается на отчетливо различающиеся стадии в зависимости от особенностей нагрева и от свойств окружающей жидкости. Уравнения сохранения массы, количества движения и энергии после использования приближений пограничного слоя и Буссинеска записываются следующим образом  [c.435]

    Общим для первых четырех групп процессов является то, что их протекание связано с переносом субстанций-количества движения (импульса), энергии или массы. Механические процессы в программу курса Процессы и аппараты химической технологии не входят, так как этот раздел включен в курс Прикладная механика . (Механические процессы переработки синтетических материалов в изделия - прессование, литье и т. д.-рассматриваются в специальных курсах.) Пока не входит в программу курса Процессы и аппараты химической технологии также раздел Химические процессы , который изучают обычно в курсе Общая химическая технология или в спецкурсах. [c.13]

    Одна из первых работ в этой области была посвящена синтезу регулярно построенных сетчатых полиуретанов различной химической природы и разной степени сшивания, полученных на основе сложных полиэфиров и толуилендиизоцианатов, и исследованию их физикохимических и механических свойств Синтезированные полиуретаны представляли собою эластомерные продукты. Для исследования термодинамики набухания более частых и жестких сеток были использованы сополимеры стирола с дивинилбензолом, различающиеся содержанием последнего. Показано, что густота сетки не влияет на сорбционную способность, свободную энергию и энтропию смешения пространственных полимеров до тех пор, пока молекулярная масса отрезка цепи между узлами сетки (Мс) много больше величины термодинамического сегмента. Если эти величины соизмеримы, то свободная энергия и энтропия смешения уменьшаются с увеличением частоты сетки. [c.106]

    Энергетические затраты на раскручивание барабана центрифуги. Пусть (рис. 5.10,а) тело массой т, первоначально находящееся в покое, разгоняют до скорости и . Тогда работа на его разгон будет равна приобретенной им кинетической энергии Ь = /яи /2. В случае вращательного движения в качестве скорости w выступает окружная скорость и = сог. При массе барабана /Иб работа на раскручивание барабана = т и /2 = т аР-г /2. [c.400]


    Сложные физиологические процессы в почечной ткани протекают с постоянным потреблением большого количества энергии, выделяемой при метаболических реакциях. Не менее 8-10% всего поглощаемого человеком в покое кислорода используется на окислительные процессы в почках. Потребление энергии на единицу массы в почках больше, чем в любом другом органе. [c.615]

    Подача энергии к образцу продолжается до тех пор, пока шихта полностью не расплавится, за исключением тонкой оболочки вблизи контакта с холодным тиглем. Для того чтобы кристаллы росли, мощность высокочастотного нагревателя медленно снижают. Затвердевание начинается снизу, хотя в начальные стадии образуется твердая корка и в верхней части расплава. После охлаждения расплава до комнатной температуры из затвердевшей массы можно выделить столбчатые кристаллы до 2 см в диаметре и такой же высоты. Можно получить кристаллы желтого, красного, сиреневого, коричневого и, вероятно, других цветов, но все же наиболее популярны бесцветные, похожие на алмаз кристаллы со слегка желтоватым оттенком. [c.102]

    Впервые высказал мнение о том, что лишь до некоторой предельной степени дисперсности можно считать свойства вещества неизменными,, при высоких же степенях нельзя свойства больших масс переносить на диспергированные частицы. На примере измерения удельной поверхностной энергии системы, равной Ло= он доказал, что с увеличением дисперсности величина Л вначале увеличивается, пока поверхностное натяжение постоянно возрастает, затем, когда дисперсность приближается к молекулярной,— резко снижается. Им установлена зависимость, что удельная поверхностная энергия достигает максимума в коллоидных системах, что очень характерно для этих систем . Проблема дисперсности А. В. Думанским освещена в книгах О коллоидных растворах (1913 г.), Методы определения дисперсности золей, эмульсий и суспензий (1928 г.), Дисперсность и коллоидное состояние вещества (1932 и 1934 гг.) и др. [c.5]

    На рис. 3.5 показано изменение энергии активации процесса снижения молекулярной массы эфиров целлюлозы в зависимости от обратной величины диэлектрической постоянной Из рис 3.5. видно, что. очевидно, существует приличная корреляция мел<ду е и энергией активации процесса снижения молекулярной массы полимера Можно пока предполагать, что [лавным фактором, влияющим на понижение энергии активации служит диэлектрическая проницаемость среды Е. [c.77]

    В вычислительных системах, основанных на использовании молекулярных систем и их ансамблей, находящихся в стационарных, далеких от равновесия состояниях, которые могут существовать только за счет обмена энергией (массой) с окружающей средой, возникают и распространяются автоволны (волны возбуждения в активных средах), сохраняющие свои характеристики постоянными за счет распределенного в среде источника энергии. Автоволновые процессы описываются математическим аппаратом, использующимся для анализа сугубо нелинейных задач, к которому сводится целый ряд практически важных проблем — образование кристаллических структур, кинетика химических и биотехнологических процессов, биологический морфогенез, эволюция биологических популяций и т. д. При исследовании этого класса задач на традиционных ЭВМ приходится прибегать к настолько трудоемким численным методам, что пока нельзя надеяться на возможность решения реальных задач, встречающихся на практике, даже с учетом перспективного роста быстродействия современных цифровых ЭВМ. Физической реализацией био-вычислительного устройства являются квазидвумерные кристаллизованные пленки белков и ферментов, которые в определенных условиях ведут себя как актив- [c.43]

    Таким образом, неупругий обмен энергии для не слишком медленных столкновений зависит только от средней относительной поступательной энергии и средней энергии осциллятора. Множитель, зависящий от массы,, в уравнении (VII.ИВ.9) симметричен относительно величин mjmn и mjmx и имеет максимальное значение, равное единице, при mJm-Q = mJm.B — = 1 + (причем он существенно не изменяется, пока отношения масс находятся в пределах от 1 до4 . Таким образом, мы снова видим, что неупругие столкновения наиболее эффективны, когда массы сталкивающихся систем приблизительно одинаковы. [c.153]

    Поканальные модели. В подходе, основанном на пока-нальной модели, общий поток разделен на ряд параллельных взаимодействующих потоков в каналах между стержнями. Уравнения сохранения массы, импульса и энергии решаются для получения радиальных и осевых изменений паросодержання (или энтальпии жидкости) и массового расхода. Между соседними каналами происходит обмен массой, теплотой и импульсом, описываемый уравнениями [c.393]

    Это соотношение было установлено Л. А. Вулис.ом ) и получило название условия обращения воздействия. Особенность этого соотношения состоит в том, что знак его левой части изменяется при переходе значения скорости через критическое. Поэтому характер влияния отдельных физических воздействий на газовое течение противоположен при дозвуковом и сверхзвуковом режимах. Воздействия, вызывающие ускорение в дозвуковом потоке (сужение канала, подвод дополнительной массы газа, совершение газом работы, трение и подвод тепла йР <0, йС> О, Ь > О, dQвliv > 0), приводят к замедлению сверхзвукового потока воздействия обратного знака (расширение канала, отсос газа, сообщение газу механической энергии и отвод тепла йР > О, йС < О, Ь < О, й нар < 0) приводят к замедлению дозвукового и ускорению сверхзвукового потоков. Отсюда следует важный вывод, что под влиянием одностороннего воздействия величину скорости газового потока можно довести только до критической, но нельзя перевести через нее. Например, путем подвода тепла можно ускорять дозвуковой поток, но только до тех пор, пока не получится М = 1. Для того, чтобы перевести дозвуковой поток в сверхзвуковой, нужно переменить знак воздействия, т. е. в зоне М = 1 начать отводить тепло. Таково обоснование описанного в предыдущем параграфе явления теплового кризиса в камере сгорания. Подогрев газа в сверхзвуковом течении вызывает торможение потока, но переход к дозвуковому течению и дальнейшее торможение станут возможными только в том случае, если, начиная с М = 1, мы переключимся на охлаждение газа. [c.203]

    Несколько лучшее понимание природы этих испускаемых частиц, или лучей пришло с появлением магнитного метода исследования-Еще в 1899 г. было найдено, что бета-лучи отклоняются в магнитном поле, причем вид отклонения показывал, что они очень похожи на электроны с большой энергией. Одновременно первые исследования пока зали, что альфа-лучи, напротив, не чувствительны к магнитному полю. Однако, продолжая исследование излучений, Резерфорду удалось в 1903 г. показать, что в достаточно сильном магнитном поле отклоняются и альфа-частицы. Направление отклонения свидетельствовало о том, что альфа-частицы заряжены положительно, а расчет отнощения заряда к массе убедил в том, что они могут быть дважды ионизированными атомами гелия. Эта идея подтверждалась постоянным присутствием гелия в урановых рудах, а впоследствии была доказана постановкой следующего опыта. Радиоактивный образец запаивали в ампулу с достаточно тонкими стенками, сквозь которые могли проникать альфа-частицы, и ампулу помещали в ва-куумированный стеклянный сосуд. Через несколько дней в сосуде оказывалось достаточное для обнаружения спектральным методом количество гелия. [c.384]

    К разрешению этой дилеммы можно подойти двумя путями. Во-первых, можно предположить, что законы сохранения, такие, как, например закон сохранения количества движения, недействительны для микротел (для ядра). Во-вторых, можно предположить, что распад в действительности включает третью, пока еще не названную частицу, способную уносить оставшуюся энергию. Эта последняя идея была выдвинута в 1927 г. Паули и в дальнейшем использована Ферми в его формулировке теории бета-распада. Эта новая частица была названа нейтрино, и, для того чтобы удовлетворить известные законы сохранения и объяснить еще не исследованную природу частицы, необходимо было приписать ей отсутствие заряда, очень малый магнитный момент, очень близкую к нулю массу покоя, спин, равный половине, и соответствие статистике Ферми — Дирака. Вероятность взаимодействия с веществом частицы без заряда, магнитного момента или массы покоя практически равна нулю. Действительно, было подсчитано, что если единственной реакцией нейтрино является процесс [c.403]

    В современном естествознании никакая величина не считается определенной, пока не указан способ ее определения, измерения. Так, классический радиус электрона определяется как половина расстояния между двумя элементарными зарядами, на котором потенциальная энергия их электростатического взаимодействия становится равной собственной энергии электрона, определяемой фор(((улой Эйнштейна (4.10) этот радиус равен 1,4.10- А. Самым малым размером, характеризующим тело, мо.. кно назвать его гравитационный радиус, т. е. половину расстояния, на котором сила гравитации такова, что работа, требуемая для разведения двух одинаковых тел на бесконечное расстояние, равна собственной энергии тел тс при вычислении гравитационного радиуса предполагают, что масса тела сосредоточена в геометрической точке. Гравитационный радиус электрона равен 1,3. Ю А. (Для сравнения, гравитационный радиус Солнца равен приблизительно 3 км, Земли — 1 см.) [c.52]

    Подобным Же образом можно объяснить понижеяие частот поглощения а ряду групп О Н, N—Н. С—1 , S-H. а также различно в частотах О—Н, 0—0 илн С—Н, -D (табл. 2). Поскольку энергия возбуждения деформационных колебаний атомов, не слишком отличающихся по массе, гораздо меньше, чем Энергия, необходимая для смещения si омов по осн связи, то валентные колебания проявляются в VIK- H Kipax в более высокочастотной области, чем деформационные колебания. Это положение нллюстрнрз ет рис. 92, где пока. зано отнесение трех собственных колебаний молекулы воды (ср. также тябл. 12). [c.129]

    Малоколлоидальные глины уже в покое сравнительно легко пептизируются, распадаясь на отдельные блоки. -Такие процессы наблюдаются при бурении в зонах, сложенных тощими сланцеватыми глинами, являясь причиной осыпей аргиллитов. В глиномешалках подобные самопроизвольно распавшиеся грубодисперсные массы легко суспендируются, но плохо поддаются дальнейшему диспергированию. Гидратация поверхности агрегатов приводит к тому, что даже при интенсивном перемешивании в полном объеме воды энергия столкновения частиц с мешалкой, стенками или между собой воспринимается их упруго-деформирующимися гидратными оболочками. При данной интенсивности перемешивания может быть установлена оптимальная длительность его, продление которой практически уже не ведет к дальнейшему диспергированию. Это является одной из причин низкого качества растворов из малогидрофильных глин, в особенности в случае приготовления их гидромониторными или инжекционными мешалками. [c.78]

    Классич. теория Д. позволяет рассчитать скорость и др. параметры детонац. волны с использованием только термодинамич. характеристик исходного в-ва и продуктов р-ции, на основе законов сохранения массы, импульса и энергии. Устойчивая стационарная Д., самопроизвольно распространяющаяся со скоростью, постоянной для данного в-ва, происходит при условии, если скорость детонац, волны относительно продуктов р-ции равна скорости звука с в них D — и = с. Если с помощью мощной ударной волны возбудить в среде Д. с большей скоростью, возникающая за ее фронтом (в продуктах р-ции) волна разрежения настигает фронт Д., снижает давление и скорость Д. до тех пор, пока они не примут значений, соответствующих условию D — и = с. [c.27]

    Значение АС для окисления кислородом 1 моль NADH (при давлении 1 атм) равно —219 кДж (табл. 3-7). В тканях давление Ог равно атм, и ДС составляет —213 кДж. Однако, когда эта реакция сопряжена с синтезом трех молекул АТР (АС = = -1-34,5 кДж-моль ), изменение свободной энергии в суммарной реакции становится равным —ПО кДж-моль . Величина по-прежнему остается сильно отрицательной. Однако мы должны помнить, что концентрации АТР, ADP и Pi могут быть далеки от соотношения 1 1 1, которое подразумевается при расчете изменений стандартной свободной энергии. Интересный эксперимент состоит в том, чтобы предоставить окислительному фосфорилированию возможность идти до тех пор, пока митохондрии не достигнут состояния 4, а затем измерить возникающее соотношение действующих масс [ATP]/[ADP] [Pi]. Выражаемая таким образом степень фосфорилирования ) (см. дополнение [c.406]

    Расчет энергетических затрат можно формально вести по выражению (4.23), только полный КПД т] здесь весьма низок (заметно менее 0,5). Дело в том, что для водокольцевого компрессора расход энергии на сжатие газа не является определяющим. Воад затрат энергии на подъем и поддержание центра масс жидкости соизмерим с затратами энергии на сжатие газа, а затраты энергии на перемещение жидкостного кольца лопатками превосходят затраты энергии на сжатие. Упомянутые дополнительные затраты пока что достоверной оценке не поддаются поэтому в основу кладут затраты энергии на сжагие газа, а вклад других составляющих учитывают низким КПД — по существу, поправочным "коэффициентом незнания . [c.359]

    К середине 70-х - начале 80-х годов на улицах многих городов мира появились различные ЭМ - легковые, микроавтобусы и грузовые [9 42 160 168], В США и Канаде в середине 70-х годов было около 3000 ЭМ. Несколько типов ЭМ создано во Франции, ФРГ, Италии и Японии [158 160 168], В Великобритании более 35 тыс. грузовых электромобилей развозят в городах молоко, школьные завтраки, мелкие товары и т.д. [120]. В СССР была принята программа по ЭМ, в результате реализации которой разработано и испытано несколько типов ЭМ [160]. В Москве в специальном парке работает 70 электромобилей, созданных на базе jnamnH УАЗ и РАФ грузоподъемностью 0,5 т, мощностью мотора постоянного тока 15 кВт. В ЭМ в основном пока используются свинцовые ЭА. Запас хода в зависимости от условий работы, местности и скорости движения может колебаться в широких пределах (30-160 км, см. рис. 4.14) и составляет в среднем 60-120 км [172], Расход энергии равен в среднем 0,4-0,6 кВт ч/(т км) [160]. Удельная мощность, отнесенная к массе [c.246]

    Молекулярная масса гликогена необычайно велика. Измере ния у гликогена, выделенного с предосторожностями во избежа ние расщепления макромолекулы, показали, что она равна 10 млн. Такой размер макромолекул содействует выполнению функ ции резервного углевода. Так, макромолекула гликогена из-з, большого размера не проходит через мембрану и остается внутр клетки, пока не возникнет потребность в энергии. [c.416]

    Оппеделсиный интерес в последние годы вызывают так называемые биологические или биохимические методы варки, пока слабо разработанные. К этим способам относится, в частности,, воздействие на древесину микроорганизмами, способными дест-руктировать лигнин [593, 601, 641]. Микробиологическая или энзиматическая обработка может использоваться для снижения расхода энергии на разволокнение щеиы или размол массы, расхода химикатов на варку и отбелку, для повышения качества целлюлозы, а также для очистки стоков с помощью грибков. [c.280]

    Быстро развивается и показывает хорошие результаты рентгенофлуоресцентный метод, основанный на том, что падающее первичное излучение создает при взаимодействии с материалом покрытия характеристические электромагнитные волны [25], имеющие кванты определенных длин волн и интенсивности. Спектральный состав излучения зависит от того, какие элементы имеются в материалах контролируемого объекта, а интенсивность — от массы данного элемента. Подбирая фильтры, выделяющие необходимую спектральную линию, характерную для материала покрытия, анализируя интенсивность и энергию квантов вторичного излучения с помощью различных электронных дискриминаторов, можно определить толщину одного или нескольких не очень толстых покрытий. Используемые при рентгенофлуоресцентном методе эффекты более сложны в приборной реализации, поэтому аппаратура на базе этого метода пока не выпускается крупными сериями. Вместе с тем имеются примеры успешного внедрения таких приборов в практику неразрушающего контроля толщин покрытий при разных сочетаниях материалов хром, олово, цинк, алюминий, титан или серебро на стали, медь на алюминии, хром на цинке, кадмий на титане и др. Решающим фактором применимости рентгенофлуоресцентного метода является наличие достаточной интенсивности вторичного излучения в диапазоне, где его регистрация эффективна. Также его ценным качеством является возможность из гpeний толщины многослойных покрытий, причем, когда их толщины соизмеримы, можно проводить в ряде случаев раздельный контроль. Успешно производится измерение толщины серебра на фотобумаге и ферролаковом покрытии. [c.352]

    МС не реализовалась на практике до тех пор, пока Мёссбауэром не бьшо предложено простое и очень изящное решение. Он предложил использовать в качестве излучателя кристалл, в котором излучающие ядра прочно связаны с другими ядрами в кристаллическую решетку и, следовательно, имеют достаточно большую эффективную массу, по которой размазывается энергия отдачи. И источник излучения, и образец охлаждают до низких температур, что сводит к минимуму тепловое движение атомов решетки. При этом у -излучение радиоактивного кобальта (т. е. [c.384]

    Если носитель был силанизирован, почти никакой раство-зитель (даже углеводород) не может смочить его поверхность 72]. Его поверхностная энергия слишком мала по сравнению с поверхностным натяжением используемых неподвижных жидкостей. Даже сквалан не смачивает силанизированный носитель. Неподвижная фаза собирается в капельки на поверхности носителя, образуя сеть очень маленьких жидких сфер. Пленка растворителя на поверхности не образуется. При повышении температуры график зависимости lgУлr от Х/Т является линейным, с отрицательным наклоном до тех пор, пока не достигается температура плавления. Тогда наблюдается резкий скачок, основная масса жидкой фазы становится доступной для растворения сорбатов, которые при более низких температурах удерживаются только за счет адсорбции. Поверхность раздела газ — жидкость, по-видимому, имеет чрезвычайно малую площадь поверхности — менее м /г. Так как площадь поверхности границы раздела газ — жидкость настолько мала, то степень селективной адсорбции на этой поверхности раздела очень незначительна и мы не можем наблюдать никакого изменения удерживаемых объемов полярных сорбатов с увеличение.м степени пропитки, когда используем неполярную неподвижную фазу, нанесенную на силанизированный носитель, [72]. Это очень отличается от того, что происходит на несиланизирован-ном носителе (см. выше разд. А.Х). К сожалению, не всегда можно использовать несиланизированный носитель для анализа полярных сорбатов на жидких фазах слабой полярности. [c.96]


Смотреть страницы где упоминается термин Энергия массы покоя: [c.128]    [c.175]    [c.206]    [c.23]    [c.146]    [c.38]    [c.6]    [c.81]    [c.37]    [c.275]    [c.122]    [c.361]    [c.401]    [c.104]    [c.194]   
Радиационная химия (1974) -- [ c.7 ]




ПОИСК





Смотрите так же термины и статьи:

Масса покоя

Масса-энергия

Энергия покоя



© 2025 chem21.info Реклама на сайте