Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Акцептор квантов

    Катионы К"+ связываются в растворе с гидратирующими их молекулами воды донорно-акцепторной связью донором являются атомы кислорода, имеющие две свободные электронные пары, акцептором — катионы, имеющие свободные квантовые ячейки, Чем больше заряд иона и чем меньще его размер, тем значительнее будет поляризующее действие К"+ на Н2О. [c.265]

    Триплет — триплетный перенос энергии может быть использован для определения квантового выхода триплетных молекул. При этом используются один акцептор энергии и два донора, один из которых является стандартом с известным квантовым выходом триплетного состояния. Концентрацию триплетных молекул акцептора [Аг] можно выразить через концентрацию триплетных молекул донора [Ог] и эффективность переноса энергии а  [c.163]


    В этом разделе мы рассмотрим причины реакционной способности электронно-возбужденных состояний, связанные с особенностями распределения электронов в возбужденных частицах. Как мы уже видели в разд. 5.2, столкновительная передача энергии может быть эффективной только в адиабатических процессах, протекающих по непрерывной потенциальной поверхности, которая связывает реагенты с продуктами. Говорят, что в этом случае реагенты и продукты коррелируют. Наиболее важны правила корреляции электронного спина. Так как квантовое число S является достаточным для описания систем, то общий электронный спин сохраняется. Такое утверждение не согласуется с представлениями о том, что триплетное состояние сенсибилизатора, подобного бензофенону, возбуждает триплет акцептора, хотя энергетика системы также может определять преимущественное образование триплета по сравнению с синглетом (см. разд. 5.6). Аналогичные доводы применимы к сохранению спина в таких реакциях, как присоединение, отщепление или обмен, в которых происходят химические изменения. По этому правилу нельзя сказать, будет ли протекать реакция, а только можно сказать, пе запрещена ли она законами квантовой механики. Адиабатической реакции могут препятствовать другие факторы, такие, как высокая энергия активации или чрезмерные геометрические искажения. При дальнейшем изложении материала в этом разделе всегда будут иметься в виду правила, разрешающие реакцию, но не определяющие ее вероятность [c.155]

    Важный вид мол. комплексов-комплексы с переносом заряда. В их основном квантовом состоянии перенос электронного заряда не более, чем при обычных видах М. в., однако при возбуждении происходит значит, перенос заряда от одной молекулы (донора) к другой (акцептору) в спектре поглощения появляется дополнит, полоса в ближней УФ области. Пример-мол. комплексы иода (акцептор) с аминами ККз. ИК спектры комплексов с переносом заряда сходны со спектрами комплексов с водородной связью. [c.14]

    Если А - акцептор, а В - донор электрона, то с и а, Ь я 0 в случае одинаковых молекул ая Ь (или а = Ь), а. с, 1 0. Мультиплетность квантового состояния Э. зависит от характера возбуждения отд. частиц как правило, имеют дело с Э. в синглетном или триплетном состоянии. [c.410]

    С точки зрения квантовой химии всякое кислотно-основное взаимодействие представляет суперпозицию волновых функций /о и /,, характеризующих систему без передачи заряда (электростатические, дипольные и другие взаимодействия) и после переноса электрона от донора к акцептору соответственно  [c.41]


    В соответствии с приведенными в разделе 3.1.1 и работах [47, 95] данными молекулу мочевины можно рассматривать как единый квантово-механический комплекс, в котором имеют место взаимодействия смежных карбонильной и аминогрупп, а также последних между собой. Это вызвано влиянием (за счет отрицательного индукционного эффекта) электроноакцепторных атомов водорода групп ЫНг на С=0 и л-л-электронным сопряжением последней с атомом азота, увеличивающим электронодонорную способность карбонильного кислорода. По указанной причине мочевина является более эффективным акцептором, чем донором Н(В)-связей, т.е. гидрофильность пептидной связи обусловлена, главным образом, карбонильным атомом кислорода. [c.134]

    Фосфид галлия. Наибольшей эффективностью обладают светодиоды из фосфида галлия, полученные при жидкофазном выращивании. Освоено производство светодиодов типа GaP—ZnO с красным свечением с внешней квантовой эффективностью 3% рекордные величины эффективности (7—15%) были получены в лабораторных условиях [92]. Однако эти диоды были изготовлены при низкой концентрации акцептора-цинка, за счет чего уменьшился коэффициент внутреннего поглощения света, но появилось более раннее насыщение яркости от плотности тока — ниже 1,0А-см . Диоды с 3%-ной эффективностью насыщаются при 10А-см . Внутренняя квантовая эффективность по расчетам достигает 10—20%, и в дальнейшем можно ожидать как снижения стоимости, так и усовершенствования технологии, но не повышения эффективности. Диоды на основе GaP с зеленым цветом свечения находятся в стадии разработки. Эффективность промышленных светодиодов не выше 0,1% при плотности возбуждения 10А -см 2. Максимально достигнутые величины эффективности — 0,2% при ЗЗА-см 2 и 0,7% при 200 А-см 2 [93]. Следует отметить, что эффективность 0,1% может быть получена также и у диодов, изготовленных методом газофазной эпитаксии. [c.149]

    В полном соответствии с этим, по данным квантово-химических расчетов, в пятичленном цикле локализована избыточная электронная плотность, а в семичленном - дефицит электронной плотности. Одновременное присутствие в молекуле азулена и эффективного донора, и сильного акцептора объясняет необычно длинноволновое поглощение этого соединения в электронном спектре. Азулен имеет синий цвет. Сравните этот факт с тем, что нафталин бесцветен, несмотря на то, что также имеет в своей молекуле систему из пяти сопряженных С=С-связей (подробнее о природе света см. в разд. 7.5). [c.399]

    Первичную сольватацию ионов следует рассматривать как процесс комплексообразования. Взаимодействие ионов с молекулами происходит за счет образования молекулярных орбит. В гидратах донорами электронов являются атомы кислорода молекул воды, имеющие свободные непо-деленные пары электронов в состоянии п — 2 п—главное квантовое число). Акцепторами элекгронов являются элементарные ионы, представляющие-вакантные орбиты. За вакантные орбиты нужно принять свободные орбиты ионов, ближайшие по энергии к заполненным. Исходя из энергетической равноценности связей в сольватах, следует допустить гибридизацию вакантных орбит. Число вакантных орбит указывает на число сольватации. [c.207]

    Квантовый выход при разложении бромистого и хлористого серебра был предметом ряда исследований. При обычных условиях он значительно ниже единицы, что однако зависит от побочных причин добавочного поглощения света выделившимся серебром, если зерна имеют слишком большую толщину, и обратной реакции соединения образовавшихся атомов брома с атомами серебра. Оба осложнения можно устранить, применяя тонкую взвесь серебряной соли и прибавляя акцептор (например НаЫОг), связывающий атомы брома в момент их образования. В этих условиях квантовые выходы оказывались всегда равными единице в пределах точности измерений. Для пластинок из AgBr и без акцепторов квантовый выход равен единице, если при расчете сделать поправку на свет, поглощенный слоем желатина (табл. 149). [c.505]

    Снижение квантового выхода при введении акцепторов ионов указывает на вероятность передачи энергии олефину положительными ионами СвИТг, образующимися при поглощении молекулой олефина СбН12 светового кванта. В связи с этим становится понятным увеличение квантового выхода при введении акцепторов Электронов, так как они увеличивают время жизни положитель- [c.63]

    Асфальтены - уникальные доноры и акцепторы электронов, не тлеющие аналогов в природе, ПИ = 4,9-5,7 эВ, СЭ = 1,8-2,5 эВ. Все процессы в растворах и концентратах асфальтенов протекают через образование комплексов с переносом заряда. Это подтверждает установленный в 1985 г. эффект сверхакцепторной способности асфальтенов, который выражается в зависимости их растворимости от ПИ растворителя линейной структуры [49]. Подтверждены выводы квантовых и термодинамических расчетов [51,52]. СЭ асфальтенов в два раза выше расчетного значения. По-видимому, это связано с существованием стабильных свободных моно- и полшлакрорадикалов. Пока эффект имеет ограниченное приложение для определения ПИ неароматических молекул и прогнозирования растворителей и осадите-лей асфальтенов 53]. [c.12]


    Для понимания фундаментальных отличий органических полимеров от элементорганических и неорганических необходимо рассмотреть электронные структуры главных цеп й [24, т. 2, с. 363— 371 . 25, гл. II]. Как известно, углерод занимает в таблице Меиде-леев а особое положение, определяемое способностью к образованию чисто ковалентных связей за счет неспаренных электронов. На языке квантовой механики это означает чисто обменное взаимодействие между валентными электронами смежных С-атомов. Элементы слева от IV группы образуют донорно-акцепторные связи М -Ь за счет вакантных орбиталей атома М, а справа от IV группы—дативные связи М->Ь (за счет неподеленных пар атома М). При образовании подобных гетероатомных связей возникает выраженная их поляризация, т. е. смещение электронной плотности между донором и акцептором электрона или неподеленной пары. Строго говоря, поляризация возникает уже в гетероцепных органических полимерах и может быть усилена или ослаблена за счет боковых радикалов. [c.19]

    Клопманом была предпринята попытка при помощи квантовой механики рассчитать ж( ткость и мягкость ионов. Исходными данными для расчетов-. послужили энергии внешних электронных орбиталей. Для оснований в качестве внешней орбитали донорного атома была принята заселенная орбиталь, с наибольшей энергией, для кислот — незаселенная орбиталь атома-акцептора, с минимальной энергией. В том случае, если разность энергий этих орбита-лей достаточно велика, при образовании комплекса кислота — основание электронный переход не происходит, что соответствует случаю жесткая кислота — жесткое основание . Взаимодействие атомов осуществляется только, посредством взаимодействия их зарядов — возникает ионная связь. Наоборот,, если энергии внешних орбиталей примерно одного порядка, то становится возможным электронный обмен с образованием ковалентной связи, что соответствует комбинации мягкая кислота — мягкое основание. [c.401]

    Из этого примера видно, что ион водорода присоединяется к уже готовой электронной паре, принадлежащей до реакции только одному из соединяющихся элементов — азоту. Следовательно, химическая связь, осуществляемая за счет неподеленной пары электронов одного атома и свободной квантовой ячейки другого, называ-е 1ся координативной, или донорно-акцепторной. Атом или ион, предоста1Вляющий неподеленную электронную пару, называется донором, а присоединяющийся к этой электронной паре — акцептором. В ионе аммония МН4]+ донором является атом азота, а акцептором — ион водорода. Ион, образованный за счет координативной связи, называется комплексным ионом, а соединения, содержащие подобные ионы, — комплексными соединениями. [c.81]

    Говоря о методе валентных связей, подразумевают, с одной стороны, один из квантово-химических способов расчета электронной структуры молекулы, с другой—связанную с этим способом методику описания и анализа химических связей в системе. Согласно этой методике выделяют валентную группу атомных орбиталей (АО), охватывающую наивысшие по энергии занятые и наииизшие по энергии свободные АО. Образование химической связи рассматривают в духе концепции Льюиса за счет спаривания электронов соседних атомов по схеме А-- - В— -А В (ковалентная связь) или передачи электронной пары от донора к акцептору по схеме А +В—>А В. Таким образом, электронная пара соответствует валентному штриху в структурных формулах. [c.61]

    Практически можно считаться только с поляризующим действи< ем катионов и поляризуемостью анионов. Поляризующее действие катионов в первую очередь зависит от его электронной структуры, величины заряда (степени окисления) и радиуса. Чем меньше радиус и главное квантовое число внешних электронных орбиталей иона и больше его заряд, тем значительнее его поляризующее дей ствие. Отсюда сильным поляризующим действием обладают небольшие катионы первых рядов Периодической системы, особенно при передвижении слева направо. Поляризуемость анионов зависит от тех же факторов, что и поляризующее действие катионов. Анионы с большими радиусом (размером) и зарядом сильнее поляризуются. Чем больше главное квантовое число внешних электронных орбиталей аниона, тем выше его поляризуемость. При одинаковом главном квантовом числе р-электронные облака поляризуются в большей степени, чем s-облако. Поляризующее действие катиона сводится к оттягиванию на себя электронного облака от аниона. Этот процесс можно уподобить возникновению донорно-акцепторной связи, в котором катион выполняет роль акцептора, а <1ни0н — донора неподеленной электронной пары. В результате ионность химической связи уменьшается а степень гомеополярности растет, т. е. связь становится полярной ковалентной. Таким образом, поляризация ионов уменьшает степень ионности химической связи и по своему эффекту противоположна поляризации ко-валентной связи. [c.103]

    Подобным образом можно определить также квантовые выходы флуоресценции, интеркомбинационного перехода, сенсибилизации (отношение числа молекул продукта, образующихся из акцепторов энергии, к числу квантов, поглощаемых донорами энергии) и т. л. Специальная аппаратура для измерения квантовых выходов и скоростей фотохимических реакций описана в статье [18]. Наиболее широкое распространение получили указанные ниже актииометрические вещества. [c.374]

    Образование синглетных Э. проявляется прежде всего в тушении флуоресценции исходного в-ва в прнс)Т. донора или акцептора электрона и появлении в спектре флуоресценции р а новой полосы испускания, сдвинутой в длинноволновую о исть. Зависимость квантового выхода флуоресценции А (или D ) и Э. зависит от концентрации [А] (или [D]) и описывается ур-ниями типа Штерна-Фольмера (см. Люминесценция). 101нетика флуоресценции р-ра при обратимом образовании Э. в общем случае неэкспоненциальна. Образование триплетных Э. обнаруживается по изменению спектров поглощения триплетных состояний в присуг. доноров (или акцепторов) электронов. [c.410]

    Имеющиеся в работе [22] данные об образовании мочевиной связей К-Н(0). . . 0=С свидетельствуют о том, что это кристаллическое вещество является более эффективным акцептором, чем донором протонов. Т.е. гидрофильность пептидной связи обусловлена, главным образом, электронными свойствами атома карбонильного кислорода, а не амидной ЫН-группой. Эти выводы находятся в согласии с результатами тензиметрических исследований [23] и квантово-механических расчетов [19, 24] взаимодействий в системах амид-вода. [c.117]

    Атом кремния в нормальном состоянии имеет электронную конфигурацию 1522522р 3523р2, а в возбужденном состоянии — 1522522р 35 3р , т. е. в возбужденном состоянии имеет 4 неспаренных электрона — один на 35- и три на Зр-орбиталях. При образовании связей для атома кремния характерна хр -гибридизация зтих орбиталей с образованием четырех равноценных гибридных 5рЗ-орбиталей, ориентированных в пространстве к четырем вершинам правильного тетраэдра под углом 109°28 друг к другу. Кроме того, следует отметить, что у атома кремния в третьем электронном слое (/2 = 3, максимальное число электронов 2п = 8) остаются вакантными (незанятыми электронами) все Зс -орбитали (пять квантовых ячеек). У атома кислорода энергетические уровни 25- и 2р-орбиталей близки друг к другу, что способствует их гибридизации, причем возможными вариантами для атома кислорода являются зр -, зр - и 5р- гибридизации орбиталей, а в образовании связей могут принимать участие все шесть электронов внещнего (второго) электронного слоя. В этом слое у атома кислорода находятся два неспаренных электрона, которые могут образовывать связь по обменному механизму, и две пары спаренных электронов. Последние могут образовывать связь по донорно-акцептор-ному механизму, однако для этого у атомов-партнеров по связи должны иметься свободные орбитали, способные принимать спаренные электроны атома кислорода. Такими орбиталями у атома кремния могут служить вакантные 3 -орбитали. [c.8]

    Большое значение как люминофоры имеют антрацен и его замещенные, интенсивно люминесцирующие в кристаллах и растворах на границе УФ и видимой областей спектра. Антрацен используют для получения сцинтилляционных монокристаллов [8], а 9,10-дифенилантрацен (IV), относящийся к числу наиболее эффективных люминофоров фиолетового свечения, наряду с применением в сцинтилляционной технике [9], в оптических квантовых генераторах [10], служит люминофором-акцептором в хами- и электрохемилюминесцент-ных композициях [11, 12], используется в бессеребряной фотографии [13]. [c.5]

    В экспериментах, проводящихся для изучения первичного фотохимического воздействия на один из альдегидов — ацетальдегид, последний облучалси в газовой фазе при 60° С светом с длиной волны 3130 А при различных давлениях паров иода. Иод представляет собой акцептор радикалов, и и его присутствии квантовый выход продукта падает. Квантовый выход окиси углерода уменьшается от 0,34 в отсутствие иода до 0,21 при давлении паров иода 1—3 мм рт. ст. Соответственно квантовый выход метаиа падает от [c.76]

    В частном случае, когда отсутствуют релаксационные про-цессь1 в доноре и акцепторе ( = г) =0), решения (104,17) сво-дяй сяк известному из квантовой механики результату [c.492]

    Тем не менее, простая корреляция с е г (или другими указанными выше величинами) часто не выполняется, потому что связь в комплексах не является чисто ионной. Как правило, допорно-акцептор-ная связь слабее ковалентной, но сильнее электростатической. Малликен [258—260] квантово-механически решил задачу о связи в комплексах с переносом заряда и показал, что такими комплексами могут быть, в частности, и донорно-акцепторные комплексы иона металла с электроотрицательными лигандами. Комплекс с переносом заряда может существовать в двух энергетических состояниях. В основном состоянии оба компонента — донор и акцептор — связан ион-дипольными, водородными и лондоновскими дисперсионными силами, а также в небольшой степени — электростатическими и ковалентными, благодаря переносу заряда от донора (лиганда) к акцептору (металлу). В возбужденном состоянии происходит почти полный перенос электрона от донора к акцептору. Степень [c.73]


Смотреть страницы где упоминается термин Акцептор квантов: [c.371]    [c.63]    [c.86]    [c.99]    [c.130]    [c.106]    [c.194]    [c.290]    [c.291]    [c.12]    [c.632]    [c.330]    [c.209]    [c.181]    [c.590]    [c.590]    [c.590]    [c.152]    [c.675]    [c.144]    [c.632]    [c.37]   
Биофизика (1983) -- [ c.56 ]




ПОИСК





Смотрите так же термины и статьи:

Акцептор



© 2024 chem21.info Реклама на сайте