Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетамид определение

    Количественный анализ сероокиси углерода в природном газе методом газо-жидкостной хроматографии. (НФ N, N-ди-н-бутил-ацетамид, определение до 0,0025—1,0%, с точностью +0,0015%.) [c.11]

    Для этого пользуются гидролитическим разложением гексаметилентетрамина. Применение органических беззоль-ных буферных смесей [245, 969, ИЗО] на основе анилина [245, 1229, 1232], диметил- и диэтиланилина, пиридина [155, 156], хинолина [1790], пиперидина и гидразина [245] и многих других аминов [508, 797, 969, 1461] приводит непосредственно к установлению определенной кислотности. Более сильные амины, особенно алифатические производные, осаждают р. з. э. так же хорошо, как и торий. Ацетамид [1461], семикарбазид [1366] или мочевина [508, 1461] недостаточно основны для осаждения тория. Однако медленное разложение мочевины на аммиак и двуокись углерода при нагревании раствора дает возможность установить pH, нужное для отделения тория от р. 3. э. [939]. В последнее время при анализе монацита часто пользуются гидролизом мочевины в присутствии муравьиной кислоты [2088]. [c.96]


    Многие первичные и вторичные амины реагируют, часто в мягких условиях, с уксусным ангидридом, образуя замещенные ацетамиды. Количественное образование производных большинства вторичных аминов можно обеспечить при повышенных температурах. В определении первичных аминов уксусный ангидрид часто [c.312]

    Диметилформамид. Проводят испытание, как описано в разделе Газовая хроматография (т. 1, с. 105). Готовят внутренний стандарт, состоящий из смеси 20 мкл ди метил ацетамид а Р и 100 мл воды. Вводят следующие 3 раствора (1) смесь 2 мкл диметилформамида Р и 10 мл воды, содержащую 10 мл раствора внутреннего стандарта (2) для определения времени удерживания испытуемого вещества растворяют 1,0 г его в 10 мл воды, добавляют, помешивая 10 мл соляной кислоты (0,5 моль/л) ТР, оставляют на 15 мин, центрифугируют и в 5 мл надосадочной жидкости растворяют 0,10 г тринатрия ортофосфата Р (3) растворяют 1,0 г испытуемого вещества в 10 мл раствора внутреннего стандарта, добавляют, помешивая, 10 мл соляной кислоты (0,5 моль/л) ТР, оставляют на 15 мин, центрифугируют и затем в 5 мл надосадочной жидкости растворяют 0,10 г тринатрия ортофосфата Р. [c.157]

    В предварительных опытах реакцию с гидроксиламином проводили при различных значениях pH. Для ацетамида и никотин-амида скорость реакции возрастала с увеличением pH, однако при pH > 13 гидролиз под действием ионов ОН становится более быстрым, чем взаимодействие с гидроксиламином. Поэтому во всех определениях применяли стандартную смесь при pH 13. [c.177]

    Определение коэффициентов распределения антрацена и карбазола в системе ацетамид — керосиновая фракция [c.101]

    Аллен приводит постоянные квадрупольного взаимодействия для ряда хлорзамещенных уксусных кислот и ацетамидов [29, 28] и обсуждает результаты исследования твердого НС1. Хотя очевидно, что Аллен предвидел существование и направление соответствующих эффектов, его данные не позволяют с определенностью установить влияние Н-связи. [c.146]

    Попытка замены а,у-дибромида на а,у-дихлорид в препаративных методах приготовления циклопропана или его производных постоянно оканчивалась неудачей до работы Хасса, Мак-Би и др. [591, опубликованной в 1936 г. По их методу 1,3-дихлорид обрабатывался цинком в расплавленном ацетамиде (при 130—140 ) в присутствии иодистого натрия и карбоната натрия. Успех этой реакция зависит от обмена галоида между дихлоридом и иодистым натрием. Чтобы реакция проходила лишь с каталитическими количествами иодистого натрия, необходимо регенерировать ион иода из анионизированного иодистого цинка, образовавшегося при реакции циклизации. Эта задача выполняется аце-тамидом и карбонатом натрия, первоначально образующими комплекс и затем вступающими в реакцию обмена. Смит, Поль и Никодемус [29] усовершенствовали метод Хасса-Мак-Би, изменяв реакционную среду па формамид, метилацетамид, бутилбутират, пиридин и изогексановую кислоту все испытанные вещества оказались пригодными. Выходы продуктов были хорошими, и чистота порядка 99%. Особенно удобным оказался формамид, который имеет низкую температуру плавления (2°), что позволяет проводить реакцию при 15—20°. Чтобы предсказать исход синтеза данного циклопроцана из определенного а,у-дибромида, необходимо знать природу дибромиДа. [c.432]


    Аминосоединенжя можно дифференцировать в соответствии со степенью их замещенности, проводя три титрования хлорной кислотой в уксуснокислой среде титруя исходный образец (определение суммы оснований) и аликвотные части образца после их обработки фталевым (перевод первичных аминов в нейтральные фталимиды и определение суммы вторичных и третичных аминов) или уксусным ангидридом (перевод первичных и вторичных аминов в ацетамиды и определение третичных аминов) [184, 195]. Такой подход в сочетании с восстановлением LiAlH использован для группового анализа нефтяных амидов и нитрилов карбоновых кислот [196], при этом амиды, в зависимости от их строения, восстанавливаются в первичные, вторичные или третичные, а нитрилы — только в первичные амины [197, 198). [c.25]

    III. Определение молярной теплоты сгорания ацетамида А//сг — теплота, полученная при сгорании ацетамида (0,712/59,1) АЯсг, кДж  [c.220]

    Рассмотрим сначала особенности силового поля пептидной группы. Для его определения нами были рассчитаны колебательные спектры свободных молекул формамида и всех его метильных производных, включая их О-изотопозамещенные ацетамида, Ы-метилформамида, Ы-метилацет-амида, Ы-диметилформамида и Ы-диметилацетамида [27]. Простейшие амиды содержат структурные элементы, упругие свойства которых были детально изучены нами ранее на более простых молекулах. Так, в расчетах первичных, вторичных и третичных метиламинов [28] и М-метилметиленимина [29] определены силовые постоянные метильной группы при азоте, постоянные а-связей Ы-С разных гибридных типов и постоянная тс-связи М=С. Таким образом, до расчета колебательных спектров амидов был известен интервал возможных изменений силовой постоянной связи Ы-С при вариации ее тс-порядка от О до 1. Полученные данные также показали малое влияние гибридизации атома N и порядка смежной связи на силовое поле группы Ы-СНз. В предварительно вьшол-ненных расчетах колебательных спектров альдегидов и кетонов [30, 31] были найдены силовые постоянные метильной группы при карбониле, постоянные (О)С-СНз и С=0. Обнаружено, что метилирование карбонильной группы вызывает заметное ослабление ее упругих свойств. [c.142]

    Специальными опытами было показано, что оптимальные условия проведения реакции заключаются в кипячении с обратным холодильником смеси цианистого калия с 30%-ным избытком эфира в 70%-ном спирте в течение 12—16 час. Выход 61 %> в расчете на цианистый калий. Выход определен по данным гидролиза этилового эфира 4-цианмасляной кислоты до глутаровой кислоты (см. синтез этилового эфира 2-ацетамидо-2-карб-этокси-5-циан-С -валериановой кислоты). [c.348]

    В отсутствие полярных групп эфиры легко количественно определить методом ГХ. В этих анализах ншроко применяют полиэфирные жидкие фазы, которые позволяют получать симметричные хроматографические пики для простых эфиров и, кроме того, обеспечивают разделение в зависимости от числа ненасыщенных связей. Симметричные пики и хорошие количественные данные можно получить и на неполярных жидких фазах, но они не позволяют разделять насыщенные и ненасыщенные эфиры. Колонки с неполярными фазами можно использовать только для грубого разделения эфиров по их молекулярным весам (например, отделить эфиры H- i6 от эфиров я- is), а колонки с полиэфирами — для дополнительного разделения по числу ненасыщенных связей (О, 1, 2 или большее число двойных связей). Эфиры с высоким молекулярным весом или их нелетучие комплексы (например, фосфолипид) обычно превращают в более летучие производные (по кислотной или спиртовой группе или по обеим этим группам) путем переэтерификации, алкоголиза или омыления с последующим превращением в простые или сложные эфиры. Если эфиры содержат полярные группы, то на одном из этапов определения получают производные по этим группам. Так, например, ацетилирование моно- и диглицеридов обеспечивало полное элюирование этих эфиров в ГХ-анализе в то же время без ацетилирования элюирование может оказаться неполным [41, 42]. Моноглицериды (Сг— is) и диглицериды (С4—Сзб) определяли также и путем превращения их по свободным оксигруппам в триметилсилильные эфиры под действием бис- (триметилсилил) ацетамида [43]. [c.140]

    С помощью различных реагентов амины и соответствующие исходные соединения легко превратить в амиды, которые можно без труда определить методом ГХ. При этом применяют как полярные, так и неполярные жидкие фазы. Амиды, образуемые из различных соединений, и соответствующие реагенты приведены в табл. 11.17. (Как правило, эти реагенты взаимодействуют также с группой ОН и другими группами, содержащими активный водород.) Ацетамиды и пропиоамиды получали до ГХ-анализа и во время него. Во втором из этих методов после ввода пробы или вместе с ней в колонку вводят ангидридный реагент и при повышенных температурах ГХ-колонки в ней почти мгновенно образуется соответствующее производное. При реакции амина с ангидридом или хлорангидридом легко образуется тригалогенацетамид. В отличие от трифторацетатов трифторацетамиды проявляют лишь слабые электронно-захватные свойства [32]. Поэтому высокая чувствительность электронно-захватного детектора при определении производных пирокатехинаминов обусловлена скорее 0-трифторацетильными, чем Ы-трифторацетильными группами. В анализе диаминов и аз-аминокислот, полученных из гомо- и сополимеров полиамидных смол, применяли трифторацетильные и триметилсилильные производные. Удобны и гептафторбутироамиды эти производные достаточно стабильны, проявляют хорошие электронно-захватные свойства и удобны для ГХ-анализа. [c.293]


    Для гликозаминогликанов характерно наличие определенных повторяющихся дисахаридных звеньев [5]. Простейшим по строению представителем гликозаминогликанов является гиалуроновая кислота ее повторяющееся звено (39) состоит из остатков D-глюкуроновой кислоты и 2-ацетамидо-2-дезокси-0-глюкозы, связанных р-( 1- 3)-связью, т. е. остаток уроновой кислоты, имеющий р-кон-фигурацию, связан по С-1 гликозидной связью с С-3 остатка 2-ацетамидо-2-дезокси-0-глюкозы. Между остатками 2-ацетамидо-2-дезокси-0-глюкозы и D-глюкуроновон кислоты осуидествляется р-( 1- 4)-связь. Хондроитин также является природным несуль-фатированным гликозаминогликаном и изомерен гиалуроновой кислоте. Его повторяющееся звено (40) состоит из остатка D-глюкуроновой кислоты, присоединенного посредством р-(1->3)-связи к остатку 2-ацетамидо-2-дезокси-0-галактозы, который в свою очередь присоединен посредством Р-(1- 4)-связи к следующему остатку D-глюкуроновой кислоты. Единственное различие между гиалуроновой кислотой и хондроитином заключается в ориентации одной гидроксильной группы в каждом втором моносахаридном остатке полисахаридной цепи. [c.259]

    Формальдегид может быть определен количественно полярографическим методом в производстве фенолоформальдегидных смол и других системах. Так, Доманский и Бергер [188] описали метод определения формальдегида в фенолоформальдегидных конденсатах. Крейв и Линч [281] применили полярографический метод при изучении реакции конденсации формальдегида с мочевиной, ацетамидом и бензамидом и показали возможность оценки кинетических характеристик этих реакций [c.133]

    Для определения возможности ферментных систем дезацети-лировать ацетамид его внутрибрюшинно вводили мышам и крысам [235]. Обнаружено, что экспериментальные животные способны дезацетилировать ацетамид. Характерно, что в печени мышей исходное соединение превращается в амин в первые минуты после введения, а в организме крыс — через 15 мин. Интенсивность дезацетилирования у мышей значительно выше, чем у крыс. Сопоставление данных содержания амина и ацетамида в тканях белых крыс свидетельствует о том, что в их организме процессы ацетилирования преобладают над дезацетилированием. [c.207]

    Метод флуориметрического определения хлордиазепоксида и его лактамного метаболита основан на щелочном гидролизе пробы с последующим облучением светом в течение 1 ч [2951. Нитразепам и ацетамид обычно превращают в амин, а затем гидролизуют до 2,6-ди-аминобензофенона. В результате дальнейшего взаимодействия бен-зофенона с о-фтальальдегидом образуется флуоресцирующий продукт, для которого Я ако возбуждения равно 348, а излучения — 480 нм [221]. [c.228]

    Кислотно-основное титрование применялось при определении ртути в органических соединениях [207, 923, 1201]. Отмечается [207], что ртуть может образовывать комплексы с некоторыми амидами и их производными, например с мочевиной, ацетамидом, что может быть использовано при ее определении в фармацевтических препаратах. [c.87]

    Наряду с образованием пиразинов при подщелачивании водных растворов 2-амино-2-дезоксисахаров происходит деструкция с образованием оксиметилфурфурола и моносахаридов с меньшим числом углеродных атомов Ы-Ацильные производные аминосахаров в отличие от аминосахаров со свободной аминогруппой при нагревании со щелочью не дезаминируются, а превращаются в производные аминофурана. Эта реакция лежит в основе количественного определения аминосахаров по методу Моргана — Эльсона (см. стр. 280), так как образующийся хромоген при взаимодействии с /г-диметиламинобензальдегидом дает интенсивное красное окрашинание. Природа хромогена, образующегося из Ы-аиилгексозаминов при нагревании со щелочью, выяснена сравнительно недавно Было показано, что в условиях реакции Моргана — Эльсона К -ацетилглюкозамин дает три хромогена при нагревании два из них пе реходят в третий. Этот хромоген является 3-ацетамидо-5-(Г,2 -диокси- [c.274]

    Электроосаждение из неводных сред металлов четвертой группы представляет интерес прежде всего для германия и подгруппы титана, поскольку эти металлы электролитически из водных растворов не осаждаются [484, 404]. Наилучшие результаты получены в случае германия. Из спиртовых растворов (преимуш ественно в двухатомных спиртах) галогенидов германия выделены тонкие катодные пленки металлического германия [702, 641, 1225, 482, 381, 292, 650, 291, 293]. Наряду с осаждением германия на катоде происходит выделение водорода, на последний процесс расходуется основная часть тока. Выход по току германия низкий (порядка 1—3 %) Большое влияние на процесс злектроосаждения оказывает природа металлической подложки. При определенных концентрациях галогенида германия, повышенных плотностях тока и температурах возможно катодное образование диоксида германия [482, 196]. Пример оптимальных условий получения металлического германия растворитель — этиленгликоль, концентрация ОеСи — 3—5 %, температура — комнатная, интервал плотности тока 5—50 А/дм . При этих условиях на подложках из меди, серебра, платины и алюминия осаждаются ровные, хорошо сцепленные с подложкой, компактные германиевые покрытия светло-серого цвета. В качестве анода использовали графит или германий, выход по току германия составляет 2 % [291, 293]. Возможно катодное получение пленок германия и из других неводных сред, например из низкотемпературных расплавов ацетамида [147]. Из растворов в ацетамиде с добавками хлорида аммония при температуре 90—130 °С двухвалентный германий восстанавливается, образуя тонкослойные (1—2 мк) осадки, прочно сцепленные с подложкой. Выход по току еще ниже, чем в спиртовых растворах (приблизительно 0,1—0,5 %) Из-за выделяющегося водорода осадок германия при этом достаточно наводорожен. [c.157]

    Из исследованных соединений, содержащих как активный водород, так и карбонильную группу, удается количественно этерифицировать лишь сахара. Замечено, что определению мешают ацетамид, изовалерамид, сукцинимид, д-гидроксибензойная кислота, З-гидрокси-2-иафтойная кислота, бензоин, ванилин, а-бензо-иноксим и а-фурилдиоксим. Хотя сахара можно определить количественно, в обоих кетосахарах — фруктозе и сорбозе — этерифицируются лишь четыре из пяти гидроксильных групп, в то время как в альдозах и дисахаридах они этерифицируются полностью. [c.39]

    В табл. 3.20 представлены результаты определения некоторых амидов путем перевода их в гидроксамовые кислоты. Во многих случаях удается связать скорость реакции с особенностями строения амида. Например, для формамида максимум интенсивности окраски достигается при 26 °С менее чем за 1 ч, тогда как для ацетамида — за 8 ч. Замещение амидного водорода значительно снижает скорость реакции. Для Ы-метилацетамида (см. рис. 3.17) интенсивность окраски достигает максимума через 7 ч (60 °С) или через 24 ч (26 °С) по сравнению соответственно с 2 и 8 ч для незамещенного ацетамида. Соответствующие значения для формамида— 10 и 40 мин, для диметилформамида — 40 и 300 мин. В соответствии с этими наблюдениями ацетилглицин и пептиды реагируют медленно и дают низкие колориметрические результаты. Подобные же закономерности найдены и для производных никотинамида. Для самого никотинамида окраска достигает максимального значения 52 единицы на 1 мкмоль/мл после 8-часового взаимодействия при 26 ""С, тогда как его Ы, Ы-диэтилпроизводное (ко-рамин) дает максимальное значение 6 единиц Клетта за 8 ч при [c.178]

    Амиды (ацетамид, мочевина, салициламид, никотинамид), имиды (фталимид и сукцинимид), основания Шиффа (М-п-хлор-бензилиденанилин и Ы-циннамилиденанизидин) и третичные амины (триэтиламин, пиридин, 7-пиколин, хинолин и изохинолин) не мешают определению даже в пятикратном избытке. Напротив, тиомочевина, тиосемикарбазид, тиоацетамид, фенилгидразин, ксантогенаты и органические изоцианаты влияют на результаты анализа аминов. [c.480]

    ТИОАЦЕТАМИД СНзСЗМНг, Гш, 115 "С раств. в воде, СП., плохо — в эф., бензоле. Получ. нагрев, ацетамида с Р2З5 взаимод. ацетонитрила с Н2З в присут. Si02 — АЬОз. Примен. заменитель НзЗ в аналит. химии реагент для гравиметрич. определения В1, РЬ, Зп, Hg и др. для фотометрич. определения РЬ, Си и др. стабилизатор для полисульфидных каучуков. [c.577]

    Из табл. 8 вытекает определенная последовательность реакций, оказавшаяря согласной с опытом в подавляющем большинстве исследованных реакций. С повышением температуры сначала идут более легкие реакции, а затем — более трудные. Как пример расчета рассмотрим разложение ацетамида на никеле. Сначала он после гидрогенизации двойной связи С=0 разлагается на этиламин и воду, затем образовавшийся этиламин дает этан и аммиак, а этан в свою очередь превращается в метан  [c.26]

    Появление С в карбонильной группе можно объяснить, например, перегруппировкой какого-нибудь промежуточного продукта, ведущей к перемещению кислорода, или же образованием из двух молекул ацетамида амида янтарной кислоты, который при гидролизе дает янтарную кислоту, декарбоксилирую-щуюся в определенных условиях в пропионовую кислоту. [c.337]

    Амперометрическое определение металлов тиоацетамидом. IV. Скорость образования сульфида TlaS в аммиачном растворе Т1(1) с использованием ацетамида. [c.63]

    Большое число работ посвяш ено полярографии формальдегида [30], который может быть количественно определен полярографическим методом в производстве фенолформальдегидных смол. Доманский и Бергер [31] описали метод определения формальдегида в фенолформальдегидных конденсатах. Кроу и Линч [32— 34] применили полярографический метод при изучении реакции конденсации формальдегида с мочевиной, ацетамидом и бензами-дом. Душек [35] изучал кинетику конденсации формальдегида с мочевиной, определяя формальдегид полярографическим методом. Для изучения кинетики поликонденсации формальдегида дииноном В. Кабаинов, М. Михайлов и Е. Димитрова [36] применили полярографический метод. [c.141]

    Определение мышьяковой кислоты и арсоновых кислот. Мышьяковая кислота титруется так же,, как и фосфорная кислота. Ее константы диссоциации / i = 5-10 , Л г = 8,3 10 . Найдено, что титрованием по тимолфталеину в присутствии достаточного количества хлорида натрия можно определить следующие арсоновые кислоты метил-, фенил-, /7-толуил-, л -ксилил-, 3-нитро-п-толуил-, бензо-, 3-нитробензо-4-ацетамидо-З-бензо, З-ацетамидо-4-бензо- и гиипурарсоновую кислоты, а также дисульфид фениларсояовой кислоты 2. [c.173]


Смотреть страницы где упоминается термин Ацетамид определение: [c.577]    [c.313]    [c.228]    [c.44]    [c.313]    [c.405]    [c.429]    [c.440]   
Методы органического анализа (1986) -- [ c.494 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетамид

ацетамидо



© 2025 chem21.info Реклама на сайте