Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Течение градиентное

    Окисление СО в нестационарном режиме на нанесенном платиновом катализаторе изучалось также в работе [21]. На вход без-градиентного изотермического реактора подавали реакционную смесь, состав которой периодически изменялся — в течение первой половины периода подавали смесь оксида углерода с аргоном, в течение второй — смесь кислорода с аргоном. Процесс проводили при температуре 60°С, концентрации СО — О—2%, Оа — О—3%. Максимальная длительность цикла 3 мин. Оказалось, что при нестационарном способе ведения процесса может быть достигнуто 20-кратное увеличение скорости реакции по сравнению со стационарными условиями. Максимальный выигрыш имел место при длительности цикла 1 мин. Результаты экспериментов объясняются так. Предполагая, что образование СОа определяется главным образом скоростью взаимодействия адсорбированных СО и Оа, можно сделать вывод, что эта скорость максимальна в случае примерного равенства концентраций поверхностных форм [ OZ] и [0Z]. Тогда значительное увеличение наблюдаемой скорости образования СОа в нестационарном режиме можно объяснить тем, что в этом случае поверхностные покрытия сохраняли свои значения вблизи этих оптимальных величин. В то же время при стационарном способе ведения процесса степени покрытия [ OZ] и [0Z], как показывают независимые стационарные эксперименты, значительно отличаются по величине, и их произведение мало. [c.37]


    Струйно-закрученное течение газа, содержащего аэрозольные частицы, обязательно сопровождается и процессом градиентной коагуляции. Радиальный градиент скорости в струе означает наличие поперечного ускорения и смещение частицы по радиусу весьма значительно, что обусловливает ее столкновение с другими частицами и их коагуляцию. Таким образом, в высокоскоростном закрученном парогазовом потоке, движущемся в форме устойчивой струи, протекают одновременно процессы испарения и коагуляции. [c.284]

    Обработку нефтей водными растворами реагентов проводили по следующей методике 50 мл отбензиненной нефти и 50 мл водного раствора реагента перемешивали в течение 24 ч при комнатной температуре. Затем воду отделяли и определяли групповой химический состав нефтей методом жидкостной адсорбционной хроматографии с градиентны.м элюированием [102]. Этот метод позволяет определять групповой химический состав тяжелых нефтепродуктов с одновременным определением асфальтенов. Полученные экспериментальные данные приведены в табл.34-35. [c.129]

    Напротив, градиентная зависимость (если не учитывать разбавленные растворы, где наличие градиента приводит к деформации макромолекул) при постоянном и малом Р связана с миграцией стрелки действия (связанное с ней время обратно 7) вдоль всего релаксационного спектра. При очень малых у вязкое течение должно проявляться Практически в чистом виде с увеличением у все большую роль приобретает высокоэластическая деформация. [c.182]

    Особенности структурообразования золей гидроокисей А1 и Ре, проявляющиеся в формировании крупных хлопьев, способствуют и достаточно быстрой коагуляции. Поглощение частиц загрязнений крупными хлопьями протекает значительно быстрее, чем без последних. Этому способствует режим перемешивания, приводящий к так называемой градиентной коагуляции, скорость которой пропорциональна кубу размеров хлопьев и градиенту скорости течения. [c.341]

    Наиболее распространен элюентный режим хроматографирования, позволяющий получать в чистом виде все компоненты пробы. В жидкостной хроматографии применяют также изократический и градиентный режимы подачи элюента. В изократическом режиме состав элюента в течение анализа не изменяется, в градиентном режиме состав элюента меняется по определенной программе. [c.582]

    Влиянием преград объясняется и существенное нарушение кинематики воздушных течений. В градиентных измерениях скорости ветра получены значения, которые в большинстве случаев плохо или вообще не подчиняются законам приземного слоя воздуха. Следовательно, они не могут быть использованы в формулах полуэмпирической теории турбулентной диффузии для расчетного определения возможного уровня загазованности. В этих опытах стойка с анемометрами была установлена с подветренной стороны в пределах аэродинамической тени эстакады. [c.180]


    Для предотвращения усадки геля рекомендуется следующий способ замены растворителя колонку, содержащую растворитель А, присоединяют к насосу, устанавливают скорость потока растворителя А 0,3-0,5 мл/мин, проводят градиентное изменение состава элюента от О до 100% растворителя В со скоростью 1 %/мин и промывают с той же скоростью растворителем В в течение 1,5-2ч. Резкое изменение полярности растворителя почти всегда приводит к ухудшению характеристик колонки, и его лучше вообще избегать. Если такая замена все же необходима, то следует использовать промежуточный растворитель. Так, толуол сначала заменяют на тетрагидрофуран и через 1-2 дня — на диметилформамид. Падение эффективности при этом будет меньше, чем при одностадийной замене растворителя. В любом случае замена подвижной фазы в высоко- [c.47]

    Энергию, накопленную на дне солнечного пруда, можно использовать для работы электростанции. Интересен вопрос о том, нельзя ли поверхностный слой пруда, температура которого близка к температуре окружающей среды, использовать для сброса тепла с электростанции. Это позволило бы отказаться от дополнительного водоема для сброса тепловой энергии. Однако, если осуществить эту идею, циркуляционное течение, используемое для сброса тепла, будет вызывать повышение температуры поверхностного слоя. Это может привести к возмущению стабилизирующей градиентной зоны и неблагоприятно повлиять на эффективность работы солнечного пруда. Указанная проблема исследовалась аналитически и экспериментально в работе [46]. Было установлено, что градиентная зона весьма устойчива. Она испытывает лишь слабые возмущения при создании течения, если источник и сток расположены вблизи поверхности. При другом расположении этих устройств или других условиях втекания необходима большая осторожность, чтобы избежать возникновения существенных возмущений в градиентной зоне. [c.427]

    Плотность. При использовании плотности как параметра идентификации полиамидов для сохранения требуемой точности необходимо достоверное определение третьего знака. Наиболее подходяш,им методом является использование метода градиентных труб. В трубку заливают два смешивающихся растворителя (один тяжелый, другой легкий), и при постоянном уровне заполнения в трубке устанавливается равномерное распределение плотности по высоте. При помещении трубки в термостат конвективное смешение по вертикали сводится к минимуму, и в течение нескольких месяцев в трубке сохраняется стабильный градиент плотности. Исследуемые образцы при помещении в трубку занимают равновесное положение на уровне, соответствующем их плотности. Для калибровки трубок используют материалы с известной плотностью. По результатам таких определений строится калибровочная кривая. Способ получения определенного градиента плотности в трубках описан в британском стандарте В5 3715. Четыреххлористый углерод и ксилол используют для получения плотности в интервале от 1,10 до 1,60 г/мл, который достаточен для определения плотности большинства ненаполненных полиамидов. [c.246]

    Выбрав подходящую колонку, проводят градиентное элюирование в таком режиме, чтобы концентрация сильного растворителя изменялась линейно от О до 1001%, а объем растворителя в 10—15 раз превышал Ут- Если все пики выходят в течение не более чем 25% продолжительности градиента, вполне вероятно, что для данной смеси можно подобрать условия изократического элюирования. В противном случае градиентное элюирование необходимо, и дальнейшее улучшение режима производят на основании анализа распределения пиков по хроматограмме  [c.121]

    Если в статье указаны методики градиентной хроматографии, то необходима специальная система насосов, позволяющая поставлять подвижную фазу с постоянно меняющимся составом. Изменение состава подвижной фазы от начального до конечного должно произойти за определенный промежуток времени, указанный в статье. Когда состав подвижной фазы изменяется линейно, методика называется линейной градиентной хроматографией. В этом случае проводят контрольное определение с введением растворителя, используемого для приготовления испытательного раствора. Это делают для того, чтобы удостовериться в том, что базовая линия на протяжении всего градиента находится в нужном интервале и что на хроматограмме нет ложных пиков. После повторного ведения подвижной фазы в начальном составе для следующей инъекции дают системе восстановить равновесие в течение достаточного времени. [c.423]

Рис. 6.8. Схема течения смеси в зазоре между валками каландров а — градиентное течение б — течение с проскальзыванием. Рис. 6.8. <a href="/info/1322364">Схема течения</a> смеси в <a href="/info/615968">зазоре между валками каландров</a> а — градиентное течение б — течение с проскальзыванием.
    Движение смеси к разгрузочному отверстию при открытом выходе зависит от сил трения в канале червяка. Считают [22], что материал при этом ведет себя как эластичная пробка, которая полностью заполняет канал, так что градиентного перемещения (вязкое течение) соседних слоев материала не происходит. Эластичная пробка подвергается действию сил внешнего трения по [c.255]


    Полагают, что такой механизм движения эластомера в канале будет сохраняться до тех пор, пока из-за повышения его температуры не возникнет градиентное вязкое течение (с накапливаемой эластической деформацией, которая впоследствии будет главной причиной усадочных явлений) и не начнет действовать другой, гидромеханический процесс деформирования. [c.256]

    Подготовка системы для градиентного элюирования. В качестве смесителя используют колбу на 0,5 л со стартовым буферным раствором (0,02 М фосфатный буфер pH 8,0). Резервуар, образующий замкнутую систему со смесителем, представляет собой сосуд объемом 1 л, заполненный О,ЗМ буферным раствором. Непрерывную подачу буферного раствора на колонку осуществляют с помощью насоса. Открыв выходное отверстие, понижают уровень буферного раствора в колонке до уровня геля. Затем на ионообменник аккуратно, стараясь не взмутить верхний слой геля, наносят фракционируемую сыворотку, которую предварительно в течение суток диализуют против стартового буферного раствора. Нанесенный образец смывают тремя порциями стартового буферного раствора по 2 мл и приступают к хроматографии. Для фракционирования 3 мл сы- [c.216]

    Движение частиц в процессе гравитационной седиментации можно рассматривать как явление самодиффузии, если распределение частиц в суспензии однородно. Неоднородность в распределении частиц приводит к явлению градиентной или обычной диффузии. Эксперименты [72] показали, что флуктуации скорости частиц достигают их средней скорости движения, причем иногда частицы движутся даже против силы тяжести. Сильная анизотропия гидродинамической диффузии приводит к тому, что коэффициент самодиффузии в направлении д равен D = 8at/, а в поперечном направлении D = 2aU, где а — радиус частиц, U — средняя скорость стесненного осаждения частиц. Отмечено также, что эффект самодиффузии заметно уменьшается, когда концентрация частиц становится больше 30 %. Самодиффузия наблюдалась также при осаждении тяжелой частицы в суспензии легких частиц. Если учитывать только парные гидродинамические взаимодействия частиц, то при стоксовом течении горизонтальная составляющая гидродинамической самодиффузии оказывается равной нулю [73]. Этот факт свидетельствует о том, что поперечная составляющая самодиффузии в суспензии вызвана, по-видимому, не парными, а многочастичными гидродинамическими взаимодействиями. [c.240]

    Входящее в выражение для ядро коагуляции /С(со, V), называемое иногда константой коагуляции, обусловливает частоту столкновения капель объемами со и У и может быть определено в результате исследования относительного движения двух капель под действием различных сил взаимодействия — гравитационной, гидродинамической, молекулярной. Характер гидродинамической силы зависит от структуры потока. В ламинарном потоке относительное движение капель различного размера происходит за счет гравитационного осаждения и градиента скорости несущей среды. При этом /С(со, V) определяется сечением столкновения капель и находится в результате анализа траекторий движения одной капли относительно другой [см. раздел 13.1]. В турбулентном потоке сближение капель происходит за счет хаотических пульсаций, приводящих к большему по сравнению с ламинарным потоком числу актов столкновения в единицу времени. Существуют три основных механизма, обусловливающих сближение и коагуляцию капель в турбулентном потоке инерционный, за счет различных скоростей движения отличных по размерам капель сдвиговый (градиентный), вызванный наличием сдвигового течения в окрестности рассматриваемой капли при обтекании ее пульсациями различного масштаба турбулентная диффузия, в основе которой лежит предположение об аналогии между процессом диффузии и движением капель под действием случайных турбулентных пульсаций. В разделе 13.6 показано, что применительно к рассматриваемому процессу основной вклад в скорость коагуляции капель в турбулентном потоке дает механизм турбулентной диффузии, и ядро коагуляции с учетом сил гидродинамического и молекулярного взаимодействия капель имеет вид [c.547]

    Градиентное элюирование — процедура элюирования, в которой состав подвижной фазы изменяется непрерывно или ступенчато в течение процесса разделения. [c.181]

    В этих условиях могут свободно развиться обе составляюш ие элементарного потока и чисто дрейфовое течение и течение градиентное, охватывая всю прибрежную зону вплоть до стенки берега. В природе обычно бывает иначе берег образует сначала пологую материковую отмель, а потом, начиная примерно с глубины 200 м, дно чрезвычайно быстро понижается до нормальных морских глубин. В таких случаях приходится отвесной стенкой считать границу материковой отмели и к нех1 применять граничные условия. Тогда сами эти условия приобретают весьма простую форму — одного условия полный потоп в направлении нормали к стенке должен равняться нулю. [c.85]

    Градиентно-элюентный вариант представляет собой одновременно разновидность элюентного классического варианта метода Цвета и вытеснительного способа. От последнего он отличается тем, что концентрация вытеснителя не поддерживается постоянной, а непрерывно изменяется (возрастает). Вследствие этого вытесняющий эф кт плавно увеличивается, из-за чего сжимаются хроматографические зоны, повышаются выходные концентрации в сравне--шш с исходными и лучше разделяется многокомпонентная смесь. Выходная кривая имеет форму острых и узких пиков, как и в случае хроматермографического варианта. С этой точки зрения градиентно-элюентный вариант имеет большое сходство с хроматермогра-фическим. Постепенное увеличение концентрации вытеснителя в проявляющем растворителе или газе-носителе постепенно ослабляет адсорбент по отношению к сильно сорбирующимся компонентам и приводит к разделению, аналогичному разделению в хроматермографии, когда эффект ослабления адсорбента в течение хроматографического опыта обусловлен действием температурного поля. [c.20]

    Опыты проводили в различное время суток. Максимальную мощность эстакады как источника выброса паров определяли по производительности налива и концентрации насыщенных паров. Концентрации паров в воздухе измеряли переносным газоанализатором типа ПГФВЗГ на уровне земли и на высоте 1 м на различных расстояниях с подветрецной стороны эстакады. Измерения проводили многократно и последовательно во всех точках в течение всей операции налива. С помощью трех анемометров, закрепленных на высотах 0,5 1 и 2 м, производили градиентные измерения скорости ветра с подветренной стороны эстакады. [c.179]

    Обострение зоны в ходе градиентной элюции будет продолжаться, до тех пор, пока изменение силы элюента на длине суженной зоны не окажется уже слишком малым, чтобы воспрепятствовать расширению зоны за счет продольной диффузии и неоднородностей течения подвижной фазы. Следует ясно отдавать себе отчет в том, что (в случае линейной изотермы распределения) градиентная элюция пе дает выигрыша в разреилении близко идущих зон. Одновременно с описанным сужением зоны каждого компонента уменьшаются и расстояния [c.42]

    Для создания определенного pH и поддержания на необходимом уровне готовят соответствующий буферный раствор. Если это возможно, то буферный раствор подбирают таким образом, чтобы его функциональная группа была похожа на функциональную группу образца. Так, ацетатный буферный раствор приемлем для анализа карбоновых кислот, фосфатный — для люирования нуклеотидов. Большое значение имеет чистота буферного раствора, так как он не должен детектироваться выбранным детектором, что особенно важно при работе в режиме градиентного элюирования. Чистота буферного раствора зависит от фирм-производителей, и даже разные партии одной фирмы могут различаться по составу. Каждая новая партия буферного раствора тестируется двумя холостыми хроматографическими опытами перед использованием. Второй опыт показывает, существуют ли вещества, отложившиеся в колонке в процессе регенерации или в течение последних стадий предыдущего градиента. Хотя большинство разделений проводят в водных буферных растворах, иногда добавляют органический растворитель (метанол, этанол) в количестве 3-10% для повышения селективности и улучшения растворимости образца. При этом концентрация растворителя не должна быть велика, чтобы не выдать осаждения буферной соли, о чем будет свидетельствовать появление течи в системе и увеличение сопротивления в колонке. [c.38]

    Подход с проточной ячейкой — наиболее простой вариант работы ЖХ-ФПИК. Хроматографический элюат проходит через проточную ячейку непосредственно после колонки, и интерферограмма непрерывно записывается в течение всего анализа. Использование алгоритма Грама—Шмидта, как в ГХ-ФПИК, для расчета отдельной хроматограммы поглощения в режиме реального времени неосуществимо, поскольку подвижная фаза сильно поглощает и небольшие изменения в поглощении при элюировании определяемых веществ с трудом детектируются. Поэтому обработка данных обычно проводится по окончании хроматографического анализа после вычитания спектра поглощения подвижной фазы. Чтобы предотвратить полное поглощение в полосе растворителя, необходимо использовать короткий оптический путь, обычно менее 0,2 мм для органических подвижных фаз и менее 0,03 мм для водных смесей. Вместе с тем обстоятельством, что коэффициенты поглощения в среднем ИК-диапазоне значительно меньше по сравнению с коэффициентами поглощения в УФ- и видимом диапазонах спектра, это приводит к сравнительно низкой чувствительности этого метода, порядка 0,1-1 мкг. Дополнительным недостатком этого интерфейса является то, что в области поглощения растворителя никакой информации о поглощении определяемого вещества не может быть получено, поскольку правильное вычитание затруднительно, особенно для обращенно-фазовых смесей растворителей. Более того, вычитание фонового сигнала не может быть проведено удовлетворительно, если необходимо градиентное элю- [c.630]

    Вопросы теории и методики применения градиентного элюирования детально рассмотрены в монографии Яндеры и Хура-чека [226]. Помимо этой монографии заинтересованному читателю можно рекомендовать оригинальные работы [77, 78, 117, 219—225, 227, 228, 231, 232, 238, 339—341, 371]. Здесь же мы воспроизводим только простейшие соотношения из работы[226]. Расчет удерживаемых объемов при градиентном элюировании базируется на следующей основной идее. Предположим, что бесконечно малому количеству подвижной фазы dV, прошедшему через колонку, отвечает смещение максимума хроматографической зоны, пропорциональное величине объема подвижной фазы в колонке dVm. В течение этой бесконечно малой ступени элюирования коэффициент емкости можно считать постоянной величиной, потому [c.118]

    Успешное масштабирование градиентных систем требует просто разумного подхода с учетом некоторых рекомендаций, предложенных в этой главе для изократического и ступенчатого градиентного препаративного ЖХ-разделения. Следует позаботиться о воспроизводимости наклона или формы градиента, учитывая любые различия в геометрии колонки (длина, объем), химическую природу насадки (разд. 1.5.1), способ создания градиента, характеристики предколоночного смесителя и объем задержки градиента. Во всех случаях разделения основываются на коэффициенте распределения компонента между неподвижной и подвижной фазами (к или йщ). Непрерывный градиент изменяет значение к известным образом по зависимости, аппроксимируемой серией небольших изократических ступеней. Увеличивающаяся сила растворителя в течение элюирования сжимает полосу образца. Результатом этого являются узкие пики и уменьшение хвоста пика даже прн условии больших [c.69]

    Как видно из рис. 187, прн повышении степени предварительного насыщения последовательно снижаются отмечаемые значения Rf, но увеличивается скорость перемещения визуально обнаруживаемого фронта демонстрационная пластинка, помешенная в камеру Vario-KS, была подвергнута насыщающему воздействию дихлорметана в течение различных периодов времени (для соседних дорожек такое градиентное изменение степени предварительного насыщения оказалось ступенчатым). При выдержке 1-2 ч достигалось сорбционное насыщение. Значения Rf для Жирорастворимого желтого красителя (самое верхнее пятно) снижались от 0.71 (при отсутствии предварительного насыщения) до 0.32 (при предварительном насыщении в течение 2 ч). Основным последствием предварительного насыщения однокомпонентной подвижной фазой является пропорциональное снижение значений Rf. Это справедливо и для случая разделения на тонкослойных пластинках с обращенной фазой, и для классического варианта твердожндкофазной хроматографии (при употреблении относительно слабых растворителей), и для работы с сильными растворителями, когда содержание влаги мало (иначе попавшая в слой вода вытесняется растворителем, что обсуждается в следующем разделе). [c.124]

    Из таблицы следует, что каждый метод имеет свои преимущества. Так, например, ВЭЖХ следует использовать для массовых анализов в течение длительного периода времени, а ТСХ лучше применять во всех тех случаях, когда необходимы гибкость и быстрота оптимизации анализа. Одним из недостатков ВЭЖХ является то, что свойства стационарной фазы изменяются под действием подвижной фазы. Например, хорошо известно, что после нескольких циклов хроматографического разделения характеристики стационарной фазы ухудшаются. Иногда необходимо проводить градиентное элюирование, после которого в течение относительно длительного периода времени сорбент необходимо регенерировать. Как видно [c.151]

    РЧ-импульса в присутствии йгградиента. Для рефокусировки возбужденной намагниченности в течение периода эволюции прикладывается градиент противоположного знака -gx. В это же самое время, чтобы дифференцировать элементы объема вдоль оси у, включается у-градиент с изменяемой амплитудой. Наконец, в ходе наблюдения используется -градиент, чтобы различать элементы объема в направлении z. Градиенты можно включать и выключать плавно, сохраняя неизменной форму градиентного импульса во всей серии измерений и тем самым исключая неблагоприятные эффекты. [c.655]

    Когда способные к обмену ионы элюента (Н+) имеют мень-,шее сродство к иониту, чем разделяемые ионы (N3+ и Ы+), в элюате в течение всего процесса элюирования обнаруживаются ионы элюента (Н+). Поэтому важно выбирать элюент так, чтобы его ионы легко отделялись от разделяемых ионов. В этом особенность элюентной хроматографии — когда все разделяемые ионы можно в принципе получить в виде отдельных фракций (в отличие от метода фронтального анализа). Однако полосы некоторых элементов могут быть сильно размытыми, и чистыми такие элементы можно получить лищь в виде очень разбавленного раствора. В этом случае полезно применять ступенчатое элюирование. Так как наибольшее размазывание наблюдается для наиболее сорбируемых ионов смеси, сначала элюируют не-, сколько ионов одним элюентом, а затем завершают элюирование другим раствором, более эффективно выделяющим ионы, оставшиеся в колонке. Можно применять непрерывное повышение концентрации элюента (градиентное элюирование). [c.159]

    При переходе в область течения с разрушенными структурами, пространственная тиксотропно-упроченная структура (псевдогель), как было показано нами [10], разрушается на агрегаты — обломки геля, представляющие собой основные кинетические единицы потока. При этом вязкость течения, имевшая место в области неразрушенных. структур и обусловленная практически полной иммобилизацией дисперсионной среды структурной сеткой, более или менее резко падает на несколько порядков благодаря высвобождению части дисперсионной среды. В области перехода наблюдается возникновение макрогетерогенпых образований, состоящих из агрегатов, компактно упакованных в слои, отделенные друг от друга и от стенок сосуда тонкими прослойками дисперсионной среды. Это явление вызывает упрочение системы и образование ряда специфических промежуточных режимов течения. При выходе на З-образный участок реологической кривой эти слои разрушаются на исходные агрегаты — основные кинетические единицы потока. Соразмерность величин агрегатов с толщиной градиентного слоя обусловливает возникновение момента их вращения, в результате чего диссипация энергии в потоке осуществляется по всей поверхности агрегатов, а не только на плоскостях скольжения. По мере увеличения касательных напряжений на 8-образ-пом участке реологической кривой происходит разрушение агрегатов до размеров, соответствующих равновесным для данного градиента. Состояние равновесия обусловлено как уменьшением плеча сил, воздействующих на агрегаты при их разрушении, так и некоторым упрочением агрегатов, вызванным увеличением доли более прочных связей вследствие разрыва менее прочных. Эти же причины приводят ко все более зна- [c.188]


Библиография для Течение градиентное: [c.230]    [c.208]   
Смотреть страницы где упоминается термин Течение градиентное: [c.182]    [c.68]    [c.69]    [c.82]    [c.56]    [c.60]    [c.159]   
Физика моря Изд.4 (1968) -- [ c.9 ]




ПОИСК





Смотрите так же термины и статьи:

Теория градиентных и конвекционных течений



© 2025 chem21.info Реклама на сайте