Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный вес, определение градиенте плотности

    В седиментационном анализе можно проводить два типа экспериментов. При анализе методом скоростной седиментации проводят определения скорости оседания и диффузии частиц при бioльшиx скоростях вращения ротора, тогда как при анализе методом седиментационного равновесия выжидают установления равновесия между процессами седиментации и диффузии в процессе центрифугирования при меньших скоростях вращения ротора. Теоретически неоднородность распределения по молекулярным весам в образце можно охарактеризовать с помощью обоих указанных методов, получая методом скоростной седиментации распределение по коэффициентам седиментации, а методом седиментационного равновесия — распределение по молекулярным весам. Распределение по молекулярным весам легче интерпретировать хими-ку-полимерщику, не имеющему специальной подготовки. Было показано, что детализированный характер распределения по коэффициентам седиментации можно получить методом скоростной седиментации в отсутствие дополнительных предположений о форме кривой распределения. Такие дополнительные предположения, как правило, необходимы при анализе методом седиментационного равновесия. Скоростное ультрацентрифугирование приобрело, следовательно, наиболее широкое распространение при исследовании неоднородности распределения но молекулярным весам полученные этим методом данные обычно комбинируют с результатами других измерений, преобразуя кривую распределения по коэффициентам седиментации в кривую распределения по мол екулярным весам, в ряде случаев более подходящую для целей исследования. Метод седиментационного равновесия применяется в основном в качестве способа определения абсолютных величин средних молекулярных весов, но применение этого метода для растворов в смешанных растворителях ультрацентрифугирование в градиенте плотности), как недавно было показано, позволяет оценить распределение полимера по плотности. [c.216]


    Аналитическое ультрацентрифугирование полимеров [1, 2, 4, 12] включает в себя три следующих экспериментальных метода скоростную седиментацию, изучение седиментационного равновесия и процесса приближения к нему. Скоростная седиментация позволяет определить константу седиментации и полидисперсность образца. Седиментация макромолекул в зоне (зонное ультрацентрифугирование) — ценный метод обнаружения гетерогенности высокомолекулярного образца. Метод приближения к равновесию позволяет рассчитать молекулярную массу М и получить сведения о неоднородности полимера, а изучение седиментационного равновесия (состояния, достигаемого транспортным переносом макромолекул, хотя сам метод и не является истинно транспортным) — молекулярную массу (надежнее, но с большей затратой времени, чем в предыдущем методе) различных типов усреднения. Метод центрифугирования в градиенте плотности заключается в исследовании седиментации, состояния равновесия и приближения к нему в условиях искусственно создаваемого в кювете градиента плотности это — широко используемый метод определения молекулярной массы, наличия неоднородности и ее типа, служащий и для препаративных разделительных целей. [c.14]

    Мы пренебрегаем эффектом конвекции, который пропорционален по величине градиенту плотности. Скорость конвекции будет тем выше, чем больше градиент плотности, а следовательно, будет пропорциональна как давлению, так и молекулярному весу при некоторой данной температуре. Конвекция как бы делает стенки более доступными для рекомбинации на них атомов и, таким образом, служит препятствием для точного определения коэффициента рекомбинации в области высоких давлений. [c.290]

    Принципиально возможно определение коэффициентов седиментации и, следовательно, приблизительных молекулярных масс даже не вполне индивидуальных белков, если имеется подходящий метод для измерения относительных концентраций белков, например путем измерения их ферментативной активности. Изучаемый образец осторожно наносится на раствор сахарозы с линейным градиентом концентрации и подвергается высокоскоростному центрифугированию в роторе с откидывающимися пробирками (в ба-кет-роторе). Обычно в качестве стандарта в раствор добавляется белок с известным коэффициентом седиментации s. Вещества с различными седиментационными свойствами отделяются в градиенте плотности друг от друга, образуя полосы. По окончании центрифугирования в нижней части центрифужной пробирки проделывают небольшое отверстие, фракции сливают и анализируют. Если фракции отбирают через различные промежутки времени центрифугирования, то временная зависимость расстояния от мениска до зоны белка, обладающего активностью, должна быть линейной. Для данного времени центрифугирования соблюдается следующая [c.130]


    Приведенные экспериментальные результаты поведения плотности раствора 47,9% гексана в октане свидетельствуют о том, что те растворы, компоненты которых имеют подобное молекулярное строение, ведут себя в окрестности точки исчезновения мениска так же, как и чистые вещества. С приближением температуры к в растворе наблюдаются значительные градиенты плотности, существование которых можно объяснить влиянием гравитационного поля и большой сжимаемостью вещества. Известно, что в то время как по классическим представлениям в критической точке чистого вещества изотермическая сжимаемость бесконечна, в случае раствора она остается конечной. Наши данные по распределению плотности раствора в камере позволяют оценить изменение изотермической сжимаемости с высотой при температурах, близких к критической. Действительно, по определению [c.169]

    Теория седиментационного равновесия в градиенте плотности усложняется тем, что 1) для создания градиента обычно применяют очень высокую концентрацию соли (5—7 М), что не позволяет рассматривать систему как двухкомпонентную, 2) положительно и отрицательно заряженные ионы соли распределяются в объеме неодинаково, так как они обладают разными молекулярными массами и коэффициентами диффузии, а это приводит к созданию градиента электрического потенциала, и 3) скорости центрифугирования настолько высоки, что уже нельзя пренебрегать влиянием давления. По этой причине данный метод обычно не используется для определения молекулярных масс, однако, так как его можно применять, если данные обрабатываются соответствующим образом, приведем краткое его описание. [c.331]

    Скорости движения молекул в газах и жидкостях почти одинаковы, однако в газе молекулы проходят значительно большее расстояние, прежде чем столкнуться (вследствие более низкой плотности), поэтому коэффициенты диффузии в газе в 10 —10 раз выше, чем в жидкости. Этот факт получает отражение в пропорциональности между Dg и величиной, обратной давлению в системе. Результатом любого диффузионного процесса с участием молекул, имеющих различную массу, является массообмен через некоторую плоскость в системе, причем наличие градиента плотности усложняет процесс конвективного смешивания. В газах этот эффект мал и коэффициент диффузии почти не зависит от концентрации вещества. Имеющиеся экспериментальные данные показывают, что величина Dg с изменением состава системы изменяется на 2—9% в зависимости от разницы молекулярных весов компонентов [2]. Это обстоятельство делает возможным использование в ГХ коэффициентов диффузии в газовой фазе Dg для надежного определения диффузионных эффектов. [c.175]

    Метод градиента плотности при определении Молекулярного веса не обладает преимуществом перед обычным методом седиментационного равновесия, особенно потому, что любая небольшая неоднородность осаждающихся молекул будет приводить к расширению распределения, которое нелегко отличить от расширения вследствие большего значения а. Однако этот метод является эффективным методом, позволяющим выявлять макромолекулы с резко различными значениями v . Особенно важным является то, что смесь макромолекул, характеризуемая различными значениями Оз, т. е. различными эффективными плотностями, в отсутствие сильных взаимодействий будет разделяться на дискретные слои, причем каждый из них будет располагаться около г, при котором р==1/у,-. [c.314]

    Отметим, наконец, что равновесная седиментация в градиенте плотности, как и обычное седиментационное равновесие, может использоваться для определений молекулярного веса [ср. формулы (6.112) и (6.117)]. Однако при этом следует считаться с тем, что локальная концентрация полимера в области изоденсы высока и пренебрежение термодинамической поправкой (пропорциональной второму вириальному коэффициенту Лг) приводит к сильным искажениям при расчетах. Так, в работе [84] для системы хлороформ — бензол было получено сильно завышенное, а для системы ДМФ — хлороформ — заниженное значение Л1 . Авторы объясняют это наличием агрегативных тенденций (Лг < 0) в первой системе и большими положитель- [c.493]

    ОПРЕДЕЛЕНИЕ МОЛЕКУЛЯРНОЙ МАССЫ В РАВНОВЕСНОМ ГРАДИЕНТЕ ПЛОТНОСТИ [c.126]

    В предыдущих разделах было показано, что центрифугирование в градиенте плотности является ценным методом исследования природных и синтетических полимеров. Если применимость этого нового метода к исследованию полимеров природного происхождения была продемонстрирована уже на многих примерах, так что метод практически стал стандартной операцией для биохимиков и биофизиков, его применение для исследований синтетических полимеров пока ограничено. Только недавно были получены результаты, показывающие, что центрифугирование в градиенте плотности не только применимо к синтетическим полимерам, но во многих случаях имеет преимущества перед другими методами. Эти преимущества особенно очевидны, когда имеются полимеры высокого молекулярного веса или количество полимера в образце очень мало. В качестве примера рассматривалось обнаружение микрогеля и была показана возможность оценки его молекулярного веса. Без труда могут быть определены небольшие различия в плотностях в растворе для двух полимеров. Из данных о концентрации полимера как функции расстояния от центра вращения может быть получена информация о распределении полимеров по молекулярному весу и по химическому составу, причем для смеси полимер-гомологов могут быть оценены значения средних молекулярных весов, включая среднечисловой молекулярный вес. Это позволяет в принципе заменить определение осмотического давления или по меньшей мере использовать эти измерения в качестве дополнения к осмотическому методу, так как при центрифугировании чувствительность повышается с увеличением молекулярного веса в противоположность осмометрии. Вопрос о том, является ли центрифугирование в градиенте плотности подходящим методом исследования микроструктуры полимеров, в общем виде еще не решен. По крайней мере в одном случае (атактический и стереорегулярный полистирол) было показано, что метод действительно применим. Однако до сих пор еще не известно, можно ли в общем случае ожидать, что различия в микроструктуре приведут к достаточным различиям в кажущихся парциальных удельных объемах, чтобы этот эффект можно было использовать для определения степени стереорегулярности. [c.443]


    Рассмотрение принципов, лежащих в основе равновесного распределения в гравитационном поле, привело Сведберга к убеждению, что этот метод можно использовать для определения молекулярного веса макромолекул, если бы экспериментатор имел в своем распоряжении гравитационные поля порядка 10 —10 д. Создание таких полей стало возможным после разработки в Упсальской лаборатории ультрацентрифуги, и к 1926 г. она была использована для определения молекулярного веса гемоглобина [446, 447] и яичного белка [448]. Популярность этого метода в течение двух следующих десятилетий медленно снижалась в основном вследствие того, что для достаточно близкого приближения к равновесным условиям необходимо длительное время. Однако в последние годы значение равновесного центрифугирования опять повысилось благодаря нескольким факторам. Ряд усовершенствований конструкции прибора и экспериментальных методов привел к значительному расширению применения этого метода для прецизионных измерений [449, 450]. Полагали, что использование 0-растворителей позволит надежно оценить всю функцию распределения по молекулярным весам образцов полидисперсных полимеров по сравнению с ограниченной характеристикой средних значений молекулярного веса таких материалов другими методами. В то же время были разработаны конструкции кювет и экспериментальные методы, которые позволили производить наблюдения за столбиками жидкости высотой 1 мм или менее, что сократило время, необходимое для близкого приближения к равновесию, от нескольких суток до 1 час [451, 452]. Наконец, разработка метода центрифугирования в градиенте плотности позволила исследовать распределение по химическому составу этот способ нашел эффективное применение для изучения биологически важных макромолекул и обещает приобрести равное значение при исследовании синтетических полимеров. [c.157]

    Из всего вышеизложенного должно быть ясно, что практическое использование уравнений (11.90) и (11.93) для определения абсолютных значений молекулярных масс и плотностей наталкивается на значительные трудности. Принято пользоваться уравнением (11.84) для оценки (Эр/Эх) , поскольку все присутствующие в этом уравнении величины поддаются измерению. Макромолекулы с известным или предположительным значением Ро помешают в градиент, и исследуемые макромолекулы сравнивают со стандартом по их относительному расположению в градиенте. При необходимости более точных измерений можно экспериментально определить (Эр/Эд ) , используя изотопное замещение в препарате, например N-ДHK на фоне N-ДHK. В этом случае предполагают, что указанное изотопное замещение не влияет на значение термодинамических величин, а лишь изменяет величину молекулярной массы безводной формы вещества и плотность макромолекулы. Зная фр/дхУ , по ширине концентрационного распределения в зоне с помощью формулы (11.93) получим точное значение молекулярной массы. [c.265]

    Переход от этой в основном упорядоченной конформации к отдельным цепям беспорядочного клубка приводит к изменению молекулярных размеров, которые проявляются в изменении светорассеяния или свойств, основанных на внутреннем трении макромолекул. За изменениями кажущейся плотности и двукратным уменьшением кажущегося молекулярного веса ДНК за счет диссоциации двойной спирали можно проследить при помощи ультрацентрифугирования в градиенте плотности (гл. IV). Наиболее наглядным доказательством существования перехода спираль — клубок в ДНК является значительное изменение ультрафиолетового спектра поглощения (гл. V). Кроме этих физико-химических методов, однозначным критерием целостности нативной спиральной структуры служит биологическая активность некоторых препаратов ДНК. Авери и др. [3411 обнаружили, что контакт некоторых бактерий с растворами ДНК может привести к трансформации наследственных характеристик микроорганизмов. Эта трансформирующая активность , которая исчезает после денатурации нуклеиновой кислоты, может быть использована в качестве наиболее чувствительного средства определения доли молекул, присутствующих в нативной двойной спирали [342, 343]. [c.127]

    Определение средневесового молекулярного веса анализом в градиенте плотности [c.124]

    Нагревание раствора нативной ДНК при некоторых значениях pH и ионной силы вызывает разделение двойной спирали на две цепи, сворачивающиеся в статистические клубки. При этом значительно уменьшаются вязкость и оптическая активность, исчезает гипохромизм, т. е. возрастает интенсивность полосы поглощения в области 2600 А (см. стр. 498) [75]. Разделение на две цепи непосредственно доказывается центрифугированием ДНК, содержащей в градиенте плотности СзС (см. стр. 153). Клетки Е. соН, выращенные в среде, содержащей переносились в среду с обычным При делении клеток образовывались редуплицированные двойные спирали, в которых одна цепь содержала N , другая — До денатурации наблюдался один пик плотности 1,717 г/см , отвечающий двойным спиралям —N . После денатурации появляются два пика, а именно 1,740 и 1,724 г/см , отвечающие однонитевым клубкам соответственно с и Плотность повышается, так как клубки более компактны, чем спираль [76]. Прямые определения молекулярного веса ДНК показывают, что при денатурации он уменьшается вдвое [75, 77]. Образование клубков при денатурации непосредственно наблюдается в электронном микроскопе (рис. 8.15). [c.507]

    Метод седиментационного равновесия в качестве абсолютного метода онределения молекулярных весов полимеров обладает рядом достоинств. Силовое поле ультрацентрифуги обусловливает осаждение крупных частиц типа пыли, но в то же время практически весьма слабо влияет на низкомолекулярные включения в образце. На довольно малом количестве полимера можно измерить молекулярные веса, изменяюш иеся от нескольких сотен до нескольких миллионов, а также получить обш ую картину степени полидисперсности. Недостатки метода, обусловленные большим временем эксперимента и трудностями при исследовании достаточно низких концентраций образцов, применяемых для надежной экстраполяции к бесконечному разбавлению, могут оказаться не столь суш ественнымй, если применять идеальные растворители и использовать появившиеся возможности быстрого достижения равновесных условий седиментации. В то время как метод скоростной седиментации обладает большей чувствительностью к тонким характеристикам распределений по молекулярным весам, метод седиментационного равновесия применяют главным образом для определения средних молекулярных весов, хотя использование этого метода в случае смешанных растворителей (седиментация в градиенте плотности), как недавно было показано, перспективно для определения наличия в образце других типов неоднородности. [c.238]

    Первая стадия опре51 еления строения белка состоит в идентификации и количественном определении составляющих его аминокислот. Для этого требуется образец чистого белка, что само по себе представляет значительную проблему. Чтобы получить чистый образец, обычно применяют комбинацию методов (гл. 3), таких, как гель-электрофорез, ионообменная хроматография и центрифугирование по градиенту плотности (белки с большей молекулярной массой оседают быстрее, чем белки с меньшей молекулярной массой). Когда белок в результате применения этих методов становится однородным или когда достигнут максимум биологической активности, белок считается чистым. Тогда его гидролизуют до составляющих аминокислот горячей соляной кислотой и гидролизат анализируют. [c.267]

    Для определения молекулярного веса ДНК (обзоры — см. наиболее широко используются методы, основанные на определении скорости седиментации макромолекул. Это определение может быть выполнено по различным методикам наиболее широкое распространение в последнее время приобрела методика, основанная на зональном центрифугировании в градиенте плотности сахарозы в препаративной ультрацентрифуге В данном случае распределение веществ по скорости осаждения можно контролировать по радиоактивной метке, что обеспечивает высокую чувствительность с другой стороны, методика практически без изменений может быть применена и для препаративного разделения нуклеиновых кислот. Предложен ряд эмпирических уравнений, связывающих скорость седиментации двухцепочечного комплекса ДНК со значением молекулярного веса определенным независимыми методами. Последнее из этих уравнений охватывает пределы мол. веса 0,2— 130 108. [c.30]

    Изоэлектрическое фокусирование в геле имеет определенные преимущества по сравнению с ИФ в среде со стабилизованным градиентом плотности. Эти преимущества состоят в следующем 1) сокращается длительность разделения 2) полностью подавляется термическая конвекция 3) применяется простое оборудование для ИФ 4) возможно одновременное разделение нескольких образцов 5) возможно обнаружение с помощью различных красителей и различных методик 6) возможно объединение ИФ и зонного электрофореза в двухмерном варианте 7) достаточно небольшого количества образца 8) возможно обнаружение белков методом иммунодиффузии. Однако при применении геля возникают проблемы, связанные с молекулярноситовым эффектом, который имеет место в основном при разделении больших молекул. Другой недостаток метода — это низкая точность определения pH в зонах. В настоящее время этот метод (сокращенное обозначение ИФПАА или ПАГИФ) является общепринятым и широко используется. В отдельных случаях, согласно данным [73], при проведении дискретного трубчатого электрофореза в полиакриламидном геле доо пска-ется окрашивание. Для снижения молекулярно-сито<вого эффекта рекомендуется [23] концентрация геля 3,7%. Типичный градиент напряжения для 8-часового разделения составляет 200 В на 60 мм. Если тепло отводится, то напряжение можно увеличить и соответственно сократить длительность разделения. Градиент pH можно измерить после разрезания столбиков с гелем и последующего элюирования сегментов небольшим коли- [c.323]

    Если полимерный образец неоднороден по молекулярным весам, но однороден по эффективной плотности макромолекул, то наблюдаемая в условиях равновесия полоса полимера является суммой многих гауссовых кривых с совпадающими центрами распределений, каждая из которых характеризуется стандартным отклонением, связанным с молекулярным весом макромолекул данной длины по уравнению (8-64) . По моментам такой составной кривой можно определить различные типы средних молекулярных весов [74, 76]. В связи с невозможностью выполнения идеальных условий в каждой точке градиента плотности, установившегося в смеси растворителей, всегда оказывается необходимым проводить экстраполяцию кажущихся молекулярных весов, определенных описанным способом, к бесконечному разбавлению. Хермане и Энде [76] показали, что при ультрацентрифугировании полистирола в идеальной смеси растворителей (циклогексанол и четыреххлористый углерод) линейной экстраполяцией (1/А/ )каж и (-Мги)каш к нулевой концентрации можно с удовлетворительной степенью точности получить величины молекулярных весов. В смеси указанных растворителей кая<ущаяся плотность полистирола в значительной мере зависит от избирательной адсорбции полимером хорошего растворителя. Удовлетворительные величины молекулярных весов не удалось получить таким способом для смеси хороших растворителей. Параметры предполагаемых функций распределения можно определить с помощью полученных этим методом средних величин молекулярных весов, но тем не менее детали кривой распределения по молекулярным весам нельзя воспроизвести вследствие ограниченности количества моментов кривой. [c.243]

    Ультрацентрифугирование в градиенте плотности оказывается полезным не в качестве метода определения молекулярных весов, но как обладающий высокой чувствительностью метод оценки различий в плотностях макромолекул данного образца. Если степень различия между плотностями макромолекул разных типов достаточно высокая, то можно получить распределение с более чем одним максимумом. Бреслер с сотр. [77], применяя методы ультрацентрифугирования в градиенте плотности, отделил блок-сополимер стирола и изопрена от соответствующих гомополимеров в то время как Бухдалу с сотр. [78] удалось разделить сополимер акрилонитрила с винилацетатом на три фракции с отличающимися кажущимися удельными парциальными объемами, причем различие, наблюдаемое между кажущимися удельными парциальными объемами двух фракций, составляло лишь 0,0005 см г. Бухдал с сотр. [79] смог также отделить атактический полистирол от стереорегулярного, при этом удельные парциальные объемы отличались на [c.243]

    Одним из методов, который успешно применяют для разделения тяжей ДНК, является предложенный Доти и Мармуром [23] метод термической обработки ДНК в растворителе с низкой ионной силой. Однако для его применения в случае исследования ДНК или ДНП, поврежденных ионизирующей радиацией, необходимо точеое тестирование образования одиночных полинуклеотидных участков после термического разделения тяжей ДНК. Обычно о разделении тяжей судят на основании изменения молекулярного веса, поведения полимера при центрифугировании в градиенте плотности СзС1 и т. д. Анализируя ряд экспериментальных подходов, дающих возможность судить о наличии в растворе однотяжевых структур, можно прийти к выводу о том, что один из наиболее перспективных методов, дающий прямой ответ на вопрос о количестве тяжей в макромолекуле полимера,— это определение характера кинетических закономерностей деградации. Принцип метода применим к тем деградационным воздействиям, которые вызывают статистически независимые единичные разрывы в главных цепях валентностей. [c.9]

    В качестве примеров рассмотрим кратко некоторые экспериментальные результаты. Для понимания интерпретации этих результатов будет достаточно тех сведений, которые были изложены в предыдущем разделе. На рис. 291 показаны шлирен-диаграммы, полученные при центрифугировании в градиенте плотности для системы сополиме ) акрилонитрила с винилацетатом в смеси диметилформамида и бромоформа. Исследования светорассеяния [45] указывали на присутствие в полимере микрогеля. На рис. 291,а, полученном при малых скоростях, обнаруживается присутствие фракции с очень высоким. молекулярным весом, оценка которо[ о по ширине полосы дает величину порядка 75 млн. Эту фракцию считают микрогелем. Нри больших временах начинает развиваться вторая полоса (рис. 291,6, полученный при больших скоростях). Когда при этой более высокой скорости достигается равновесие, из диаграммы видно, что в образце содержатся три различных вида молекул (рис. 291,в). Молекулярный вес второго из них был оценен в 25 млн. По всей вероятности, он также является микрогелем. Молекулярный вес наиболее низкомолекулярного полимера (широкая полоса на рис. 291,в), определенный по ширине полосы, составляет величину порядка 500 ООО. [c.426]

    Хорошо известный метод исследования избирательной сольватации — светорассеяние [53] в связи с осмотическим равновесием это явление было рассмотрено Айзенбергом [54]. Из изложенного выше ясно, что центрифугирование в градиенте плотности — удобный альтернативный метод [42, 54]. Этот вопрос не будет здесь рассматриваться более подробно, поскольку количество данных для синтетических полимеров мало. Укажем только на одно обстоятельство, играющее важную роль при анализе полимер-гомологов (см. раздел Е). Для полимера определенного химического состава не зависит (или практически не зависит) от молекулярного веса. Это является следствием того факта, что величина фа/йФ1 в уравнении (XI11-24) пропорциональна Мг-Этот результат нельзя рассматривать как точное общее правило, а лишь как хорошее приближение. Можно показать, что он выполняется довольно точно, если для расчета свободной энергии полимерного раствора хорошим приближением является формула Флори — Хаггинса. Это доказательство со всеми подробностями приведено в работе Херманса и Энде [42] и здесь не будет повторяться. [c.432]

    Сделав подстановки = р и (л,/1) / 2 ф (х) = г(5 (р), легко видеть, что, согласно уравнению (XII1-31), г 5 (р) является преобразованием Лапласа для величины / (М). В принципе это может быть использовано для определения f (Л1), если известна г1) (р), применяя, например, вычислительную машину. Однако очень часто этот метод не приводит к успеху, поэтому предпочтительнее использовать метод моментов. Уже в ранней работе по центрифугированию в градиенте плотности Мезельсон, Шталь и Виноград [81 нашли, что можно вычислить среднечисловой и средневесовой молекулярный вес, если известно Ф (х). Для демонстрации этого рассмотрим моменты распределения по молекулярным весам [c.434]

    Первое сообщение о применении ультрацентрифугирования в градиенте плотности для исследования синтетических полимеров было опубликовано Бреслером и др. [473], которые использовали этот метод для исследования свойств системы, содержащей изопренстирольный блок-сополимер, а также два гомополимера. Применение этого метода имеет большое потенциальное значение для определения свойств сополимеров, так как в результате различных методов фракционирования, как правило, получаются вещества, отличающиеся как по химическому составу, так и по молекулярному весу. Поэтому проблема раздельного определения функций распределения по длине цепей и по составу полимера в течение длительного времени с.лужила предметом оживленных дискуссий. Однако теоретические затруднения при объяснении данных, полученных для растворенного вещества, состав и молекулярный вес которого изменяются непрерывно [463], значительно серьезнее, чем те, [c.167]

    Определение размера молекул ДНК, присутствующих в экстрактах, которые Меселсон н Сталь использовали в своих опытах по разделению в градиенте плотности, показали, что молекулярная масса этих молекул составляет примерно 1% общей массы ядра одной бактерии. Следовательно, полуконсервативная репликация, осуществляемая путем разделения цепей, происходит в длинных двойных спиралях, состоящих из полинуклеотидных цепей, каждая из которых содержит десятки тысяч нуклеотидных остатков. Однако этот важный вывод — не единственное, [c.199]

    Пташке надеялся, что в этих условиях значительная часть остаточного синтеза белка будет приходиться на образование продукта гена с1 супер-инфицирующими бактериофагами, так как синтез белков клетки-хозяина был подавлен предварительной обработкой, а синтез большинства вегетативных белков фага не мог происходить из-за присутствия эндогенного иммунитетного репрессора. Действительно, после экстракции и хроматографического фракционирования радиоактивных белков из таких клеток оказалось, что одну из фракций можно идентифицировать как продукт гена с1. Эта фракция обнаруживалась, только если бактерии заражали бактериофагами Яс1+, содержащими нормальный ген репрессора, и отсутствовала при заражении атйег-мутантами по гену с1. Определение скорости седиментации этой белковой фракции в градиенте плотности сахарозы показало, что ее молекулярная масса соответствует длине полипептидной цепи примерно в 200 аминокислот, т. е. близка к молекулярной массе одной из четырех субъединиц, составляющих /ас-репрессор. [c.492]

    Наиболее важными являются два средних значения — средне численный и средневесовой. В принципе они определяются следующим путем. Когда показание измерительного прибора пропорционально числу частиц, то определяют среднечисленный молекулярный вес. Когда оно пропорционально весу вещества, тогда получают средневесовое значение. Так, эквимолярные растворы мономера и его димера будут обладать равным осмотическим давлением, но раствор димера будет иметь примерно вдвое большее поглощение света и вдвое больший показатель преломления, чем раствор мономера. Таким образом, молекулярный вес, определенный по осмотическому давлению, будет среднечисленным, но большинство физических методов зависит от измерения двух последних физических свойств. При этих обстоятельствах количество материала, отнесенного к -му компоненту, зависит не от числа присутствующих молекул, а от массы материала этого вида. На практике 5о является средневесовым, так же как и Од, в тех случаях, когда инкремент показателя преломления на единицу веса остается одним и тем же для всех видов молекул. Однако молекулярный вес зависит от отношения За/Од. Когда это отношение определяется непосредственно, как в методе Арчибальда, никаких сомнений не возникает но когда средневесовые во и Од определяются раздельно, полученное отношение не обязательно является подлинно средневесовым. Если распределение молекулярных весов не очень широкое, это вряд ли приведет к серьезным ошибкам. Вычисленное значение молекулярного веса зависит также от парциального удельного объема предполагается, что он также постоянен для всего полидисперсного набора молекул. Фактически он может немного изменяться, особенно для заряженных молекул (стр. 70, 71) это опять-таки не вызовет серьезных ошибок, за исключением метода седиментации в градиенте плотности. [c.43]


Смотреть страницы где упоминается термин Молекулярный вес, определение градиенте плотности: [c.607]    [c.88]    [c.12]    [c.79]    [c.244]    [c.264]    [c.45]    [c.48]    [c.241]    [c.197]    [c.429]    [c.68]    [c.445]    [c.401]   
Физическая химия для биологов (1976) -- [ c.419 ]




ПОИСК





Смотрите так же термины и статьи:

Градиент плотности

Молекулярный вес, определение



© 2024 chem21.info Реклама на сайте