Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Проницаемость механизм

    Технология воздействия на пласт с целью подключения в разработку трудно извлекаемых запасов из зон с пониженной проницаемостью. Механизм воздействия, по мнению ее авторов, предполагает увеличение сопротивления в пласте за счет повышения вязкости эмульсии вследствие поглощения воды. [c.122]

    Анионотропная аллильная перегруппировка (в среде с малой диэлектрической проницаемостью, механизм 5л-2)  [c.571]


    Оценки сродства были также использованы при попытках установить природу эффектов альдостерона и антидиуретического гормона (АДГ) — физиологических веществ, которые стимулируют активный транспорт натрия по механизмам, пока еще не вполне понятным. Три общие возможности указаны на рис. 8.13. Механизм (1) состоит в том, что облегчается проникновение натрия через внешний барьер для пассивной проницаемости механизм (2) —это стимулирование фосфорилирования АДФ с возрастанием сродства Лр механизм (3)—непосредственная активация натриевого насоса. [c.169]

    Таким образом, механизм эффективного вытеснения нефти различными химреагентами в значительной степени состоит в изменении вязкостей фаз и фазовых проницаемостей. Относительные фазовые проницаемости зависят при этом не только от водонасыщенности з, но и от концентрации с химреагента в водном растворе коэффициенты вязкости фаз также зависят от с  [c.302]

    В основе проявления неньютоновских свойств пластовых систем лежат различные физические механизмы. Важно, однако, что аномальные эффекты проявляются при малых скоростях фильтрации и в средах с малым размером пор, т.е. с малой проницаемостью. Это определяет особе нности неньютоновской фильтрации в неоднородных пластах. Области малой проницаемости оказываются областями наибольшего проявления неньютоновских эффектов. [c.339]

    Лучше многих предложенных схем полимеризации Д4 серной кислотой объясняет имеющиеся экспериментальные данные механизм катионной полимеризации [17], предполагающий, однако, участие свободных ионов. Последнее мало вероятно, так как реакция протекает в среде с низкой диэлектрической проницаемостью (ед, = 2,4) и концентрация свободных ионов должна быть [c.473]

    Понятно, что подвижность влаги в водонасыщенных торфяных системах в первую очередь определяется их структурой, а также электрокинетическими явлениями на границе раздела фаз. Ионогенные функциональные группы торфа, главным образом карбоксильные, диссоциируют в полярной дисперсионной среде (воде) с отщеплением катиона, вследствие чего частицы торфа приобретают отрицательный заряд [221]. Заряд частиц формируется из дискретных элементарных зарядов как вне, так и внутри надмолекулярных ассоциатов торфа [214, 222]. Диффузия полярных молекул внутрь частиц торфа вызывает увеличение диэлектрической проницаемости всего ассоциата, степени диссоциации функциональных групп [223]. В свою очередь, рост плотности заряда структурных единиц торфа интенсифицирует связь воды с торфом по механизму ион-дипольного взаимодействия между ионизованными функциональными группами торфа и молекулами воды. В результате содержание связанной воды в материале увеличивается. Особенно четко это проявляется при повышении pH торфяных систем (см. табл. 4.1) [224]. [c.69]


    Поскольку оценка этих величин обычно сопряжена с большими трудностями, вопрос о проницаемости той или иной породы по данному механизму может быть решен либо в прямом эксперименте, либо на основе косвенных критериев. Так, если считать, что межзеренная энергия в ионно-ковалентных кристаллах в грубом приближении равна половине поверхностной, то комбинация соотношений Гиббса — Смита и Гриффитса приводит к выводу, что проникать в поликристаллы могут жидкости, снижающие их прочность не менее, чем вдвое. С учетом уравнения Юнга легко показать, что межзеренная пропитка наиболее вероятна в системах, в которых наблюдается полное растекание по свободной поверхности. Отсюда ясно, что при обычной температуре межзеренное проникновение воды и водных растворов должно быть свойственно породам типа калийных и натриевых солей. [c.99]

    В главах 1, 2 и 3 рассмотрены основы массопереноса в мембранах, механизм переноса через непористые и пористые мембраны из полимерных и неорганических материалов, а также через мембраны кристаллической и жесткой аморфной структуры. Показано влияние сорбционных явлений на перенос через мембрану. Дан анализ проницаемости и селективности мембран. [c.7]

    Транспорт компонента разделяемой газовой смеси через пористую основу мембраны осуществляется одновременно несколькими механизмами переноса, в зависимости от структуры матрицы, свойств веществ и термодинамических параметров процесса. В общем случае движение компонентов смеси может вызываться конвективно-фильтрационным переносом, различного вида скольжениями вдоль поверхности пор, объемной диффузией, баро- и термодиффузией, кнудсеновской диффузией (эффузией), поверхностной диффузией, пленочным течением вследствии градиента расклинивающего давления, капиллярным переносом конденсированной фазы в анизотропных структурах. Вещество в порах скелета мембраны, как показано ранее, может находиться в виде объемной газовой фазы, капиллярной жидкости и адсорбированной пленки. Для каждого из этих состояний возможно несколько механизмов переноса, взаимосвязанных между собой. Не все виды переноса равнозначны по своему вкладу в результирующий поток веществу, поэтому при вычислении коэффициента проницаемости необходимо определить условия, при которых те или иные формы движения вещества являются доминирующими [З, 9, 10, 14—16]. [c.54]

    Основные виды переноса, учитываемые при расчете проницаемости пористых мембран (концентрационная и кнудсенов-ская диффузии в газовой фазе, поверхностное течение в адсорбированной пленке и фильтрационный перенос в газовой фазе) обычно считают в первом приближении независимыми и вычисляют по среднему значению градиента давления и при среднем значении давления и состава газовой смеси. Это вносит ошибку, однако интегрирование дифференциального уравнения конвективной диффузии в гетерофазной системе, при учете всех механизмов переноса практически невозможно. Таким образом, проницаемость пористой мембраны вычисляется по уравнению  [c.64]

    Обсуждаются [14] возможности управления проницаемостью полимерных мембран за счет модификации поверхности мембранной матрицы веществом иной природы. Повышение газопроницаемости модифицированной мембраны является следствием изменения механизма сорбции на межфазной границе и реализацией в этой области режима неравновесного массопереноса. Коэффициенты диффузии растворенного газа в матрице мембраны (вдали от границ) остаются неизменными при поверхностной модификации. [c.113]

    Исследования структуры имеют целью не только выявление механизма процесса. Они способствуют разработке обоснованных эффективных методов и режимов модифицирования мембран для улучшения их проницаемости, селективности и прочностных свойств. Важность структурных исследований определяется тем, что они дают ответ на первый из основных вопросов, с которым и связано исследование механизма,— каким образом происходит перемещение молекул через полимерную мембрану. Ответ на второй вопрос — каким образом достигается селективность процесса разделения, очевидно, также связан с успехами этих исследований. Представления о глобулярно-пачечном строении полимерных тел [51—54] оказались весьма благотворными для объяснения многочисленных экспериментальных данных в различных областях физики, химии и физической химии полимеров, что убедительно свидетельствует о действительном их соответствии реальной структуре полимерных материалов. Основу этих представлений составляет предположение о том, что элементарными первичными надмолекулярными образованиями являются либо глобулы, либо пачки> макромолекул с различной степенью упорядоченности внутри пачки. [c.64]


    Исходя из капиллярно-фильтрационной модели механизма полу-проницаемости (см. стр. 201), можно ожидать появления селективных свойств у лиофильного пористого материала со сквозными капиллярами при уменьшении его пор до размеров, не превышающих удвоенной толщины слоя связанной жидкости. [c.75]

    Одной из главных задач, которые предстоит решать в ближайшем будущем, является раскрытие механизма процессов селективной проницаемости мембран и создание количественной теории мембранных процессов. Это, Б свою очередь, в значительной мере поможет при разработке основных положений теории направленного получения мембран с заранее заданными свойствами, а также позволит проводить технологический расчет и проектирование мембранных аппаратов и установок без постановки предварительных экспериментов. В этой связи большое значение приобретают исследования по выявлению влияния внешних факторов (давления, температуры и др.) на селективность и проницаемость мембран, поскольку они не только отвечают на вопрос, для каких целей и в каких интервалах переменных может быть наиболее рационально использован данный метод, но и помогают глубже познавать сущность мембранных процессов. [c.169]

    В процессе разделения ПАВ адсорбируется на границе раздела мембрана — раствор и образует на поверхности мембраны жидкий селективный слой. Поэтому такие мембраны принято называть жидки-м и . Жидкие мембраны образуются за счет поверхностной активности молекул в растворе. С увеличением содержания ПАВ селективность мембраны возрастает, а проницаемость падает до тех пор, пока не будет достигнута критическая концентрация мицеллообразования (ККМ). При этой концентрации селективность и проницаемость достигают своих постоянных значений (рис. IV-23). Причиной этого является растущее покрытие поверхности раздела мембрана — раствор слоем адсорбированных молекул ПАВ. Этот слой увеличивает сопротивление прохождению как воды, так и соли вплоть до достижения ККМ, при которой покрытие нижележащей ацетатцеллюлозной мембраны полностью завершено. Инфракрасные спектры ПАВ показали сильное взаимодействие между гидрофильными группами эффективной добавки и молекулами воды (подробнее о механизме данного процесса см. стр. 212). [c.197]

    Предложено несколько моделей селективной проницаемости мембран, которые ранее рассмотрены в работе [1, с. 83]. Там же проведено сопоставление этих моделей и дана оценка их соответствия экспериментальному материалу. Показано, что опытные данные по селективности и проницаемости мембран и влияние на эти характеристики внешних факторов наиболее полно объясняются капиллярно-фильтрационной моделью механизма полупроницаемости, которая за последние годы получила дальнейшее развитие и экспериментальное подтверждение. Из этой модели следует, что очень большое влияние на процесс разделения растворов неорганических и органических веществ оказывает поверхностный слой жидкости. [c.200]

    Капиллярно-фильтрационная модель механизма селективной проницаемости позволяет объяснить влияние внешних факторов на процесс разделения электролитов и водных растворов органических веществ и получить некоторые расчетные зависимости для определения основных характеристик процесса. Так, учет влияния концентрации электролита в исходном растворе на эффективность разделения обратным осмосом может быть проведен на основе представлений об определяющем влиянии гидратирующей способности ионов [116, 158, 163]. Согласно этим представлениям, чем выше гидратирующая способность ионов электролита, тем больше и прочнее гидратная оболочка ионов, что, в свою очередь, затрудняет их переход через поры мембраны. Поэтому в разбавленных растворах, когда сила связи ион — вода меняется незначительно, селективность остается практически постоянной (область И на рис. IV-18,б). С увеличением концентрации электролита эта связь ослабевает и селективность снижается. [c.204]

    Обнаруженный факт уменьшения селективности при больших разведениях можно объяснить с позиций капиллярно-фильтрационной модели механизма селективной проницаемости. [c.210]

    Следовательно, экспериментальные зависимости хорошо согласуются с выводами капиллярно-фильтрационной модели механизма полу-проницаемости. Следует ожидать, что данный подход с учетом взаимного влияния ионов и внешних факторов на процесс гидратации, а также с учетом влияния электролитов на толщину адсорбционных слоев растворителя даст возможность разработать количественную теорию обессоливания растворов обратным осмосом. Однако решение этой задачи невозможно без точного определения размеров пор и их распределения, толщины слоя связанной жидкости на внутренней поверхности пор при течении жидкости под действием градиента давлений. Уместно отметить, что и для процесса ультрафильтрации определение толщины слоя связанной жидкости также имеет важное значение, особенно при сравнительно небольших диаметрах пор (порядка 5 30 нм, или 50—300 А). Как было показано выше (см. стр. 105), в этом случае толщина слоя связанной жидкости становится соизмеримой с радиусом пор ультрафильтров. [c.211]

    При гармоническом изменении поля с круговой частотой и в несовершенных диэлектриках, обладающих электропроводностью (V > 0) и замедленными механизмами поляризации, происходящими с рассеянием энергии, вводится комплексная диэлектрическая проницаемость, равная [c.35]

    Внешнее электрическое поле широко используется в процессах обезвоживания и обессоливания нефтей для интенсификации коалесценции отдельных капель. Рассмотрим на примере поведения пары капель механизм их взаимодействия. Будем считать, что капли не деформируются, что эквивалентно замене их двумя жесткими сферами. За счет растворенных минеральных солей капли можно считать проводниками в поле они поляризуются и начинают взаимодействовать друг с другом (рис. 1.4). Сила их взаимного притяжения пропорциональна диэлектрической проницаемости нефти г , квадрату напряженности электрического поля Е и существенно зависит от расстояния между каплями и их радиусов и Общее выражение для силы взаимного притяжения двух незаряженных частиц, действующей вдоль линии, соединяющей их центры, можно записать в виде [c.19]

    Явления, обусловливаемые молекулярным взаимодействием, играют большую роль в условиях нефтяного пласта, высокодисперсной пористой среды с развитой поверхностью, заполненной жидкостями, которые содержат поверхностно-активные вещества. Однако механизм этих явлений не познан настолько, чтобы при разработке нефтяных месторождений их можно было учитывать количественно. Использование изученных закономерностей в технологических процессах возможно лишь тогда, когда они описаны математически, с учетом основных факторов, определяющих эти закономерности. Решить такую задачу для нефтяного пласта трудно, так как геолого-физические и минералогические характеристики пласта и свойства жидкостей и газов, насыщающих его, не постоянны. Как результат молекулярно-поверхностных эффектов на границе раздела фаз в нефтяном пласте наибольшее значение имеет процесс адсорбции активных компонентов нефти на поверхности породообразующих минералов. С этим процессом прежде всего связана гидрофобизация поверхности, а следовательно, и уменьшение нефтеотдачи пласта. Образование адсорбционного слоя ведет к построению на его основе граничного слоя нефти, вязкость которого на порядок выше вязкости нефти в объеме, а толщина в ряде случаев соизмерима с радиусом поровых каналов. В связи с этим уменьшается проницаемость и увеличиваются мик-ро- и макронеоднородности коллектора. [c.37]

    Некоторые исследования фильтрации нефтей указывают на меньшую проницаемость по нефти, чем по неполярной жидкости. Механизм этого явления в работах [88, 87] объясняется пристенным гелеобразованием, связанным с адсорбцией активных компонентов из нефти. Были обобщены результаты тех исследований [12, 76, 178] затухания фильтрации, которые дают возможность выделить несколько характерных видов кривых затухания (рис. 96). [c.158]

    Методы внутрипластового горения (ВДОГ, влажный ВДОГ и др.) преимущественно применимы для высоковязких нефтей,, залегающих в песчаниках эффективной толщины не менее 3—5 м и общей толщины не более 30 м эксплуатационного объекта. Неоднородность пласта может быть существенной, однако средние-значения проницаемости и пористости не должны быть малыми ( пр более 0,1 мкм , т более 20%) в связи с необходимостью создания каналов продувки окислителем или закачки воды при модификации влажного ВДОГа. На механизм этого сложного процесса с интенсивными элементами тепло- и массопереноса значительное влияние оказывают литологические особенности пласта, поэтому необходим этап ОПР на месторождениях с различными физико-геологическими и литологическими условиями. В том числе имеет существенное значение вещественный состав породы-коллектора. Этот вопрос о влиянии минералогического состава пласта на эффективность горения углеводородов в пористых средах при технологиях ВДОГ изучен недостаточно. [c.30]

    Модификации методов увеличения нефтеотдачи, связанные с механизмом смешивающегося вытеснения (вытеснение нефти газом высокого давления, обогащенным газом, сжиженными нефтяными газами и другими растворителями), применимы для маловязких нефтей (до 10 Па-с), залегающих в песчаниках умеренной однородности с невысокими литологическими характеристиками толщина до 10—15 м, проницаемость до 0,05 мкм , пористость до 15%- Ограничений по вещественному составу пород-коллекторов здесь не имеется, однако наличие трещиноватости не желательно, так как может усугубить неблагоприятное развитие микропроцесса — неустойчивость движения фронта газ—нефть, и отразиться на общей эффективности процесса. [c.30]

    Исследование механизма вытеснения нефти водой из коллекторов, характеризующихся локальной измен-чивостью проницаемости. [c.101]

    В тех случаях, когда необходимо улучшить какие-либо свойства никельцинковых ферритов, вводят малые добавки некоторых окислов наиболее часто применяют СоО. Введение последней приводит к снижению магнитных потерь на низких частотах, увеличивает критическую допустимую частоту применения ферритов, уменьшает температурный коэффициент магнитной проницаемости. Механизм действия малых добавок на свойства ферритов в большинстве случаев неясен, общее состояние данного вопроса изложено, в конце главы. [c.86]

    Другой механизм, по которому полимеризация протекает в газовой фазе и в средах с низкой диэлектрической проницаемостью,— свободнорадикальный механизм. Свободный радикал В, образующийся в системе в результате термического или фотохимического распада, ирисоединяется но двойной связи, аналогично тому как это происходит в случае ионов, [c.514]

    В работах [6, 14] обсуждаются также аномалии проницаемости полимеров при дифференциальном режиме, когда движущая сила процесса намного меньше давления в напорном канале АР/Р<1. Обнаруженный [18] эффект резкого увеличения проницаемости в дифференциальном режиме объясняют образованием в матрице вторичных структур и появлением в связи с этим новых механизмов переноса массы. Надмолекулярные объединения частиц растворенного газа—кластеры—при определенной их концентрации в матрице образуют зону повышенной проницаемости. При дифференциальном режиме этазо- [c.103]

    Таким образом, на основе рассматриваемой модели механизма селективной проницаемости -мем1бран с учетом представлений о гидратации в растворах электролитов удается не только объяснить основные зависимости, характерные для разделения водных растворов солей обратным осмосом, но и получить количественный подход к расчету ряда параметров процесса разделения. Полученные результаты нашли подтверждение в последних работах Сурираджана [175]. [c.210]

    Обратным осмосом и ультрафильтрацией, как отмечалось выше (стр. 180), можно разделять не только растворы электролитов, но также и смеси органических веш,еств. Примеры подобного разделения приведены на стр. 279— 284. Разделение растворов органических веществ обратным осмосом, влияние на продесс внешних факторов [(рис. IV-7), (IV-11) —(IV-13) и др.] могут быть объяснены с позиций капиллярнофильтрационной модели механизма селективной проницаемости. [c.217]

    В теории молекулярных силовых полей учитывается все мно-гообразне взаимодействий, включая диполь-дипольное, квадру-иоль-квадруполь[1ое и диполь-квадрупольное. Исследованиями в этой области было показано, что растворители, обладающие близкими по величине силовыми полями, взаимно растворимы. Распределение по величине силовых полей различных растворителей приводит к петле Семенченко, на одной ветви которой укладываются слабые взаимодействия, на другой ветви — сильные. В качестве критерия, определяющего энергию взаимодействия, предлагается использовать диэлектрическую проницаемость, плотность энергии когезии. Введено понятие об обобщенных моментах, эффективном заряде и эффективном радиусе. Несмотря на то что теория молекулярных силовых полей достаточно строго описывает механизм взаимодействия молекул в растворе, пользоваться ею для расчета систем практически невозможно [59, 60], поскольку математический аппарат не обеспечен исходными данными в справочной литературе. [c.213]

    Механизм воздействия таких реагентов основан на том, что при смешении их с пластовой водой в ПЗП образуются водные растворы пониженной вязкости, которые легко вытесняются из ПЗП при вызове притока. Этому способствуют падение межфазного натяжения на границе раздела нефть — водный раствор реагента, а также снижение гидратированности глинистого материала, который легче выносится пластовой жидкостью из пласта. Все эти факторы способствуют увеличению проницаемости призабойной зоны, в особенности фазовой проницаемости для нефти. [c.27]

    Наиболее распространены приборы автоматического действия, основанные на линейной зависимости диэлектрической проницаемости тоилива от содержания в нем воды. Из влагомеров данного типа представляет интерес установка Микроскан , выпускаемая фирмой Миллипор (США) с 1963 г. и предназначенная для непрерывного конт1роля за содержанием воды и механических примесей в потоке реактивных топлив с помощью емкостного датчика. При прохождении механических частиц (или частиц воды) между пластинками конденсатора (детектор Микро-Скан ) его емкость изменяется пропорционально объемной концентрации частиц. Изменение емкости преобразуется в сигнал с постоянной амплитудой и частотой, который усиливается в многокаскадном усилителе и подается на указатель концентрации примесей в топливе. Прибор реагирует на суммарное содержание примесей воды и механических частиц и нечувствителен к воздушным и паровым пузырькам. Установка обладает высокой чувствительностью по воде 0,000001% по механическим примесям 0,02632 мг/л по размеру частиц 5 мкм [149, 154]. Используют установку на автотопливозаправщиках и гидрантных тележках, а также на трубопроводах и стационарных резервуарах. Для отсечения потока топлива при загрязненности его выше установленного уровня предусмотрено использование дополнительного сигнала самописца и автоматических механизмов. [c.176]

    Механизм структурирующего действия промоторов состоит, вероятно, в том, что высокодисперснне частицы промотора покрывают частицы металла слоем, проницаемым для молекул газа, но препятствуищш контакту никелевых частиц. Это предотвращает их спекание в относительно крупные агрегаты, имеющие малую удельную поверхность 20]. [c.35]

    Один из основных факторов, влияющих на механизмы нефтеизвлечения,— литологическая особенность насыщенных пород. Причем если ранее этому фактору давали обобщенное понятие и усредненные характеристики (терригенные или карбонатные коллекторы, средние значения пористости, проницаемости и т. д.), то теперь этого недостаточно. [c.5]

    Одна из таких методик определения нижнего кондиционного предела коллектора, предложенная во ВНИИ по материалам месторождения Узень, использует эмпирическую зависимость между проницаемостью продуктивных пластов (горизонты XIII— XVIII) по кернам и удельным коэффициентом продуктивности интервалов, откуда отобраны эти керны. Кстати, по этой методике. для юрских отложений месторождения нижний предел проницаемости получается равным 0,001 мкм . Предполагается, что найденные по этой зависимости границы коллектор-неколлектор в дальнейшем должны корректироваться с учетом экономических и технологических показателей, в том числе и факторов, определяющих механизм массопереноса в пластах, микропроцессы в необычной (полимиктовой) пористой среде. [c.17]

    Повышенные требования информативности по геологическим параметрам предъявляются к объектам воздействия, где планируется применить гидродинамические методы и технологии, рассчитанные на улучшение коэффициентов охвата пласта вытеснением (циклические методы, водогазовая репрессия, изменение потоков, применение микроэмульсий, ультразвуковые и вибрационные воздействия, ядерные подземные взрывы). Применение всех этих методов основано на срабатывании механизма выравнивания фронтов вытеснения в неоднородных по толщине и проницаемости продуктивных пластах, поэтому характер микрофильтрационных процессов, здесь имеет первостепенное значение. Сюда относятся пласты со слоистой, зональной, линзообразной, и любой другой морфологической неоднородностью. Поэтому при выборе и проектировании технологий воздействия или обработки здесь требуется исчерпывающая на дату составления технологической схемы литологическая информация , распространейие коллекторов, коэффициенты расчлененности, гистограммы проницаемости, данные геофизических измерений по интервалам, показатели гидропроводности и гидрофобности и т. д. Все эти элементы литологического строения пластов или участков используются в расчетных схемах, основанных на математических моделях процесса повышения КНО или интенсификации притока. Качество и количество литологической информации (в числовом или графическом выражении) зависит от метода выбора объекта, этапа воздействия и строгости математической модели и расчетной схемы. [c.31]

    Механизм вытеснения нефти водой из коллекторов, характеризующихся локальной изменчивостью проницаемости, впервые рассмотрен в работах Ш. К. Гиматудинова, А. Е. Евгеньева и И. М. Муравьева. [c.107]

    Адсорбционные явления как определяющие микропроцессы в пластах наблюдаются и в уже распространенном методе увеличения нефтеотдачи — полимерном воздействии на нефтяные залежи. Это метод предназначен преимущественно для залежей с высоковязкой нефтью ( iн>50 мПа-с),где при вытеснении нефти необработанной водой даже в макрооднородном пласте развивается, так называемая вязкостная неустойчивость. Однако полимерное воздействие применимо и в залежах с нефтями средней вязкости, а в этих условиях механизм нефтевытеснения во многом определяется степенью адсорбции полимерных растворов в неоднородной пористой среде. Механизм и степень адсорбции многих полимерных рабочих агентов (особенно на основе полиакриламида ПАА) в настоящее время достаточно полно изучены с получением широкого спектра изотерм адсорбции. Построенные на этой основе математические модели процесса, оценивающие динамику факторов сопротивления и остаточных факторов сопротивления, количественно используются в проектных работах и в анализах опытно-промыщленных испытаний метода. Однако этими изысканиями и разработками не ограничивается роль (и учет) микропроцессов в пластах при осуществлении работ по повыщению нефтегазоотдачи. Оказалось, что адсорбция ПАА существенно зависит от состава и свойств породы и от минерализации пластовых вод. Поэтому при усовершенствовании математической модели полимерного воздействия нами предлагается рассматривать полимерный раствор Как активную примесь с изменяющейся подвижностью вследствие адсорбции, степень которой зависит от минерализации пластовых вод (наличие в них подвижных ионов Ма, Са, Ре и др., а также изменяющейся величины pH). Сорбция полимерных агентов благоприятно влияет на соотношение подвижностей вытесняющей и вытесняемой фаз, снижая фазовую проницаемость, но приводит и к отставанию фронта рабочего агента от фронта продвижения воды. Получается сложная игра микропроцессов, при которой желательно получить оптимальное значение нефтевытесняющей способности рабочего агента в конкретных физико-геологических условиях пласта. [c.163]

    Результаты приведенных расчетов показывают, что обменные микропроцессы в глинизированных нефтяных пластах, связанные с изменением минерализации закачиваемого рабочего агента, оказывают заметное влияние на механизм нефтеотдачи, поэтому учет этого фактора прн выборе и проектировании технологии (и метода) воздействия необходим. Предложенная выше модель не позволяет строго количественно оценить влияния изменения минерализации воды на нефтеотдачу в сильно неоднородных коллекторах. Технологическая эффективность заводнения в последнем случае будет существенно зависеть от соотношения пропластков, изменчивости их пористости и проницаемости, от степени неоднородности проницаемости пласта по объему. Если менее проницаемые прослои или зоны будут характеризоваться большей глинистостью (что реально и наблюдается) или глины в этих частях обладают большей способностью к набуханию, то закачка в пласт воды, более пресной, чем пластовая, по-видимому, приведет к снижению нефтеотдачи за счет уменьшения гидропроводности в менее проницаемых зонах. Этим и объясняется установившееся мнение о глинистости как об осложняющем физико-геологическом факторе при разработке нефтяных месторождений. Однако, если менее проницаемый слой характеризуется меньшим коэффициентом глинистости (или содержит слабонабухающую глину) или подвергаемый заводнению пласт сравнительно однороден, то переход на закачку менее минерализованной воды (вне зависимости от времени разработки залежи) может привести к существенному приросту нефтеотдачи за счет выравнивания фронта вытеснения из-за набухания глин. [c.171]


Смотреть страницы где упоминается термин Проницаемость механизм: [c.259]    [c.282]    [c.473]    [c.542]    [c.65]    [c.166]   
Основы переработки пластмасс (1985) -- [ c.104 , c.106 ]




ПОИСК







© 2025 chem21.info Реклама на сайте