Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотность растворов неорганических соединений органических соединений

    Фотометрический метод анализа. Измеряют оптическую плотность растворов комплексных соединений, образующихся при взаимодействии определяемых ионов с неорганическими или органическими реагентами. Так, для определения ионов железа к раствору прибавляют роданид калия или аммония оптическая плотность раствора образовавшегося роданида железа пропорциональна количеству железа в растворе. Кремний, фосфор или мышьяк можно определить в виде гетерополикислот Н4[51(МозОю)4], Нз[Р(МозОю)4] или Нз[АзХ X (МозОю)4 , окрашенных в желтый цвет. [c.24]


    Плотность водных растворов неорганических соединений и солей органических кислот [c.640]

    Графитовые аноды с пористостью до 70% предложены (пат. США 3236754) для процессов электрохимического хлорирования алканов при электролизе водных растворов хлоридов. С целью повышения каталитической активности графит пропитывается солями платины. Для выделения кислорода, окисления органических и неорганических соединений предложен анод с очень развитой поверхностью, достигающей 3000 см /см . Электрод изготовляется из карбонизированного углеродистого материала (ткань, войлок), покрытого оксидами титана и рутения. Покрытие наносится пропиткой растворами солей с последующим термическим разложением при 450—500 °С. При плотности тока 40 А/м в щелочном растворе без покрытия анод работает 3—4 мин, с активным покрытием — 100 ч (пат. США 4360417). [c.31]

    ПЛОТНОСТЬ РАСТВОРОВ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ И СОЛЕИ ОРГАНИЧЕСКИХ КИСЛОТ [c.496]

    Схематично механизм ионного обмена заключается в том, что сначала происходит диффузия иона N к частице Р ,М, затем диффузия вглубь ионита к его активным центрам, обмен с ионом М , диффузия вытесненного иона к поверхности частицы ионообменника и, наконец, его диффузия в раствор. При перемешивании раствора или в динамических условиях работы хроматографической колонки перемещение ионов к поверхности и от поверхности частицы ионита происходит быстро и эти стадии существенно не влияют на скорость установления равновесия (95). Однако диффузия ионов в самой частице ионообменного сорбента происходит медленно и практически не зависит от перемешивания раствора. Поэтому равновесие (95) устанавливается -не мгновенно, а в течение нескольких минут или даже часов, в зависимости от размеров обменивающихся ионов и плотности частицы ионообменника. На используемых в анализе ионообменниках равновесие ионного обмена обычно устанавливается в течение 5—10 мин при обмене мономерных простых и комплексных ионов неорганических или низкомолекулярных органических соединений. [c.147]

    Если производится восстановление с одновременным выделением на катоде водорода или окисление с анодным выделением кислорода, то контроль потенциала становится излишним и достаточно работать при постоянной плотности тока. Однако, так как растворимость большинства органических соединений в воде мала, то зачастую приходится использовать раствор соответствующего электролита (минеральной кислоты, неорганического или органического основания, соли—уксуснокислого калия, хлористого лития и др.) в смешанном (водно-неводном) растворителе, например вода—спирт или вода—уксусная кислота. Нередко в более сложных системах применяется спирт, уксусная кислота или смесь дихлорэтана и уксусной кислоты, с соответствующим электролитом. Какова бы ни была электропроводность таких систем, относительный потенциал рабочего электрода в них значительно выше того, какой требуется для выделения газов из водных растворов. Поэтому в схеме прибора необходимо предусмотреть возможность контроля относительного потенциала до 6 в. [c.33]


    Таблицы плотности растворов неорганических соединений, включающие также сведения о солях органических кислот, расположены по алфавиту формул. [c.496]

    ПЛОТНОСТЬ РАСТВОРОВ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИИ И СОЛЕЙ ОРГАНИЧЕСКИХ КИСЛОТ [c.496]

    Том II, 2-е изд., Москва (1935 г.). Содержит таблицу основных свойств большого числа неорганических и органических соединений (приведены формулы, молекулярные веса, температуры кипения и плавления, растворимость и др.). Имеются таблицы плотностей многих соединений и растворов, растворимость. [c.25]

    Экстракция неорганических веществ — извлечение кислот и соединений металлов в органические, не смешивающиеся с водой растворы независимо от условий, требующихся для этого процесса, и характера соединений, образующихся в органической фазе. Твердые и жидкие органические вещества, с помощью которых осуществляется экстракция, называются экстрагентами. Жидкие органические вещества, которые сами не экстрагируют, но применяются для растворения экстрагентов или для уменьшения их плотности и вязкости, называют растворителями или разбавителями. [c.332]

    Реакции между органическими соединениями, в том числе и применяемые в фотометрическом анализе, в отличие от ионных реакций неорганических соединений протекают медленно, что обусловлено, в частности, их сложным механизмом. В некоторых случаях максимально возможная оптическая плотность раствора устанавливается в течение длительного промежутка времени. Например, реакция формальдегида с фуксинсернистой кислотой завершается только через 12—18 ч при 10—12 °С при 20 °С она заканчивается за 6 ч. Некоторые реакции при комнатной температуре почти не протекают, поэтому для ускорения той или иной реакции необходимо нагревание. Однако при нагревании ускоряется не только основная, но и возможные побочные реакции. На скорость реакции сложно влияют ионный состав раствора, pH и другие факторы. [c.11]

    Глицерин — сиропообразная бесцветная жидкость сладкого вкуса смешивается с водой и спиртом, нерастворим в эфире и хлороформе способен растворять многие органические, а также и неорганические соединения (многие соли, например гипс). Он может быть получен в виде кристаллов, плавящихся при 17° С. Получение глицерина в кристаллическом виде представляет, однако, значительную трудность вследствие его большой склонности к переохлаждению и медленной кристаллизации. Глицерин кипит со слабым разложением при 290° С относительная плотность = 1,260. [c.492]

    Мешают определению (без экстракции комплексной кислоты) следующие ионы кремний в больших концентрациях, железо(III) в присутствии хлорида или сульфата, восстановители, хром (VI), мышьяк(V) и цитрат. Висмут(III), торий(IV), хлорид н фторид влияют на развитие окраски. Кремний можно удалить при кипячении раствора с концентрированной H IO4. Железо(III) можно связать в комплекс с фторидом, избыток которого удаляют введением борной кислоты. Борную кислоту можно использовать и для связывания фторидов, присутствующих в исходном анализируемом растворе. С использованием экстракции комплексной гетерополикислоты был разработан метод определения фосфора. Метод был применен для анализа практически всех фосфорсодержащих материалов стали [139, 140J, железных руд [141], алюминиевых, медных и никелевых сплавов с белыми металлами [142], воды [143, 144] и удобрений [145—147]. Работы по анализу удобрений [145—147] посвящены автоматизации очень точного метода определения фосфора с применением автоматических анализаторов. В анализаторы был заложен метод прямого измерения светопоглощения, а не дифференциальный вариант, который обычно используют для повышения точности определения. Полученные результаты позволяют заключить, что абсолютная ошибка измерения оптической плотности в интервале О—1,2 единицы не выше ошибки самого измерительного прибора (0,001 единицы поглощения). Следует отметить, что описанный метод по точности превосходит метод с применением молибдофосфата хинолина и, кро.ме того, обладает еще одним преимуществом — простотой выполнения определения. В биохимии метод применяли для определения фосфата в присутствии неустойчивых органических фосфатов [148] и неорганического фосфата в аденозинтрифосфате [149]. Метод был использован для анализа фосфатных горных пород [150]. В органическом микроанализе метод применяют после сожжения органических соединений в колбе с кислородом [151, 131]. [c.461]

    Устранение пассивации анода зависит как от примесей, присутствующих в нем, так и от состава подвергаемого электролизу раствора, анодной плотности тока и температуры. В связи с тем что не представляется возможным назвать общие условия поддержания анода в активном состоянии, целесообразно рассмотреть конкретные процессы получения неорганических [23] и органических соединений [16, 43] при электролизе с растворимыми анодами. [c.59]

    Из рассмотрения материалов табл. 4.1 вытекает помимо всего прочего, что для установления структуры молекулы бензола методами колебательной спектроскопии потребовался только подсчет числа полос в инфракрасном спектре и спектре комбинационного рассеяния. Кстати, именно таким путем зачастую решается вопрос о характере координации атомов в комплексных соединениях, а также ионов в растворах. Между тем в самом общем случае при полном решении колебательной задачи в распоряжении исследователя оказывается весьма большая совокупность данных (частоты, форма колебаний, электрооптические параметры и т. д.), позволяющих определять не только строение и симметрию молекулы, но и судить о прочности связей, их взаимном влиянии, распределении электронной плотности и других важных характеристиках. Аналогичное положение имеет место и в других разделах спектроскопии. Так, при изучении и интерпретации электронных спектров органических, неорганических и комплексных соединений хорошие результаты дает проведение квантовохимических расчетов, расчетов на основе теории поля лигандов и т. д. По существу электронная спектроскопия является в настоящее время одним из основных экспериментальных методов, на которых базируется современная теоретическая химия. Совершенно особое значение имеет в связи с этим сочетание и совместное использование различных спектроскопических методов при решении структурных вопросов. Такой комплексный подход к проблеме открывает чрезвычайно широкие возможности и обеспечивает высокую надежность получаемой с его помощью информации о строении химических соединений. Укажем для примера, что при решении задач органической химии наилучшие результаты дает совместное использование методов инфракрасной спектроскопии, ядерного магнитного резонанса и электронной спектроскопии. [c.113]


    Б. Жидкости. Жидкие реагенты, продукты реакции, теплоносители, хладагенты, катализаторы и другие широко распространены в химической промышленности. Это растворы газообразных, жидких и твердых веществ в воде и других растворителях, жидкофазные органические и неорганические соединения, эмульсии, суспензии, многокомпонентные системы — такие, например, как нефть и продукты ее переработки и т. п. Важнейшими физическими величинами, характеризующими свойства жидких веществ, являются плотность и вязкость. [c.340]

    Давление пара жидкого сероводорода при 0° равно 10,3 атм. Крит. темп. 100,4° крит. давление 89 атм крит. плотность 0,31. Жидкий сероводород прекрасно растворяет многие органические соединения, а неорганические, напротив, в нем мало растворимы. Растворенные в сероводороде соединепия очень слабо ионизируются, что объясняется его довольно низкой диэлектрической проницаемостью, которая при —60° равна примерно 10, при 0° — около 6. [c.702]

    А, с =6,13 А, с/а = 1,633. Рентгеновская плотность 0,088 г/см . Теплота плавления 14 кал/г. Сжимаемость твердого В. наибольшая по сравнению со сжимаемостью твердых тел и составляет (т-ра 4,2 К, давление 10 000,йт) 4,8 10 см /кг. В. плохо растворяется в воде (нри т-ре 20° С в 100 объемах воды растворяется 1,82, при т-ре 80° С — 0,85 объема В.). Еще меньше растворимость В. в органических растворителях. В небольших количествах растворяется во всех расплавленных металлах, во многих (никеле, платине и др.) хорошо, особенно в палладии (850 объемов на 1 объем палладия). При высоких т-рах растворяется в огнеупорных материалах, в кварце (при т-ре 690° С и давлении 788 мм рт. ст. содержится 6,0 X X Ю" г1см В.). В.— один из самых реакционноспособных хим. элементов, непосредственно взаимодействует со мн. лшталлами и неметаллами, входит в состав мн. неорганических и почти всех органических соединений. В обычных условиях молекулярный В. малоактивен. Однако при нагревании вступает в реакцию со мн. хим. элементами с кислородом образует воду (пре- [c.197]

    Среди методов определения микроколичестз платиновых металлов и золота основное место занимают колориметрические и спектрофотометрические или экстракционно-спектрофотометрические методы. Число колориметрических методов для некоторых благородных металлов, например палладия, чрезвычайно велико между тем для определения иридия существует сравнительно небольшое число методов. Чувствительность спектрофотометрических методов достигает 0,01 мкг/мл, за редким исключением 0,001 мкг/мл. Большая часть методов основана на возникновении окраски комплексных соединений платиновых металлов с органическими реагентами (реже применяются неорганические реагенты) и на использовании собственной окраски таких комплексных соединений, как хлориды, бромиды, иодиды. Для спектрофотометрического определения платиновых металлов и золота применяют все классы органиче ских реагентов,, перечисленные в главе П. Во многих случаях химизм реакции и состав образующихся окрашенных продуктов неизвестны. Многие реагенты не избирательны, поэтому методы определения одного металла в присутствии другого основаны либо на нахождении различия в условиях образования окрашенных соединений (температура, pH раствора), либо на использовании некоторого различия в спектрах поглощения соединений двух металлов с одним и тем же реагентом, т. е. определении оптической плотности в разных областях спектра, либо на различной экстрагируемости окрашенных соединений органическими растворителями. [c.158]

    Как было показано, гидразин является ионизирующим растворителем с несколько необычными характеристиками. По своим физическим свойствам гидразин сходен с водой, поскольку он остается жидкостью в том же температурном интервале, что и вода, и его плотность близка к плотности последней. Гидразин сходен также с жидким аммиаком в том отношении, что он является растворителем с ясно выраженными основными свойствами. Гидразин характеризуется значительно более высокой диэлектрической постоянной, чем жидкий аммиак. Как ионизирующий растворитель он сходен как д водой, так и с аммиаком, поскольку растворы солей в безводном гидразине прекрасно проводят электрический ток. Подобно жидкому аммиаку гидразин превращает некоторые неионные органические соединения (ароматические нитросоединения) в электролиты. Это явление заслуживает дальнейшего исследования. Гидразин безусловно является ассоцйированной жидкостью, о чем свидетельствует высокое значение его теплоты испарения. Он является хорошим растворителем как для неорганических, так и для органических соединений , хотя растворимость в гидразине органических соединений изучена еще недостаточно. [c.203]

    Двухкапиллярные пикнометры с успехом используются для определения плотности в широких температурных интервалах не только полимерных жидкостей и растворв полимерных веществ, но и многочисленных органических и неорганических соединений, металлических расплавов, а также летучих, ядовитых и агрессивных жидкостей. Однако при определении плотности расплавов веществ, твердых при комнатной температуре, двухкапиллярные пикнометры разрушаются при расплавлении этих веществ, затвердевших в приборе. Они оказываются непригодными также и для определения плотности некоторых растворов полимеров и суспензий (например, водных суспензий фторопластов), если в процессе определения плотности на внутренних стенках их оседают несмываемые пленки достаточной толщины. [c.173]

    Большое число фотометрических методов определения кислорода основано на реакциях огкисления неорганических соединений, которые затем взаимодействуют с органическими и неорганическими веществами с образованием окрашенных, соединений. В качестве восстановителей кислорода в щелочной среде часто применяются соли марганца(II), железа(II), хрома(II) и (III), одновалентной или металлической меди. После поглощения кислорода определяют окисленные формы этих элементов и пересчитывают на содержание кислорода. Достаточно pa npo tpaHeHHHM является метод, основанный на окислении в щелочной среде с последующим определением После взаимодействия марганца (IV) в кислой среде с иодидом измеряют оптическую плотность раствора выделившегося иода. [c.175]

    Электролиты никелирования очень чувствительны к загрязнениям, и поэтому необходимо принимать возможные меры, предотвращающие попадание их в ванну. К ним относят использование для анодов чехлов из полипропиленовой ткани с обязательной промывкой их после окончания работы, применение чистых исходных материалов, загрузка в электролит деталей из медных сплавов под током, применение для промывки непосредственно перед никелированием конденсатной воды. Способы очистки электролитов от примесей достаточно подробно рассмотрены в литературе. К ним можно добавить рекомендацию по использованию для этой цели очистителя АЖ [115], представляющего собою водный раствор органического соединения. Электролит пропускают через фильтр с намытым на него очистителем совместно с активированным углем, что позволяет исключить проработку при низкой плотности тока для удаления примесей посторонних металлов. От примесей органических соединений и механических загрязнений можно успешно освободиться, пропуская раствор через угольный волокнистый фильтр, разработанный Институтом общей и неорганической химии АН БССР (а. с. 1142531 СССР). Наиболее эффективный результат достигается непрерывным фильтрованием и селективной очисткой. [c.170]

    Самым распространенным фотометрическим методом определения кобальта, основанным на образовании окрашенных комплексных соединений с неорганическими аддендами, является роданидный метод. Измеряют оптическую плотность синих водно-ацетоновых растворов роданидныл комплексов кобальта или экстракты этих комплексов в амиловом спирте нли других органических растворителях. Чувствительность метода ниже, чем при использовании оксинитрозосоединений. Влияние железа, меди, цинка легко устраняется введением маскирующих средств. [c.135]

    Случай Б. Дистиллят содержит менее 0,005 мг фенолов. Повышения ч встви-тельности я-нитроанилинового метода можно достигнуть экстракцией получаемого окрашенного соединения бутанолом. ISO мл дистиллята переливают в делительную воронку на 250 мл. После прибавления 3 мл 50 о-ного раствора карбоната натрия и 6 ыл диазотированного раствора гг-нитроанилина и 15-минутного отстаивания туда же приливают 30,0 мл бутанола. Смесь тщате.пьно взбалтывают в течение 1 мин. Через 1 ч из делительной воронки сливают неорганический слой. Для получения прозрачного экстракта в делительную воронку прибавляют 5,0 мл раствора карбоната натрия и полученную смесь взбалтывают 10 с. После осветления органического слоя отсасывают пипеткой, снабженной шлангом, нужный объем экстракта в кювету, в которую предварительно вносят 1,0 мл изо-пропило-рого спирта, чтобы предотвратить прилипание воды к стенкам кюветы. Измеряют оптическую плотность пробы н вычитают из полученного значения оптическую плотность экстракта холостого определения, которое проводят с ди- [c.552]

    Иодистоводородная кислота, 45%-ный раствор иодистого водорода в воде — бесцветная жидкость, быстро темнеющая на свету и на воздухе, плотностью 1,49 г/см . Используется в органическом анализе для определения метокси- и этокси-групп и в синтезе для получения неорганических солей и иодорганических соединений. [c.28]

    Отдельное рассмотрение распределения простых неорганических кислот между двумя несмешивающимися растворителями позволяет обратить внимание на ряд факторов, характерных для экстракции гидратированных ионных соединений и отличающих их поведение от поведения ковалентных молекул. Ранее отмечалось, что экстракция ковалентной молекулы из водного раствора возможна, по существу, любым органическим растворителем, который не смешивается с водой, хотя специфические эффекты и изменяют в ряде случаев коэффициент распределения. Однако небольшие ионные формы относительно сильно сольватированы в водном растворе высокополярными молекулами воды, причем степень сольватации зависит от плотности их заряда и химических свойств. В связи с этим они обладают малой тенденцией к экстракции неполярными, некоординирующимися растворителями, которые не могут компенсировать возникающие потери энергии гидратации. Подобные же причины определяют, без сомнения, и нерастворимость ионных кристаллов в таких растворителях. Только те растворители, которые могут обеспечить первичную сольватацию и (или) представляют собой среду с высокой диэлектрической проницаемостью, способны преодолеть силы, удерживающие кристалл. [c.47]

    В последние годы в зарубежной литературе появились сообщения о некоторых новых вариантах кулонометрическо о анализа. Например, предложен способ кулонометрии [951], в котором определяемые органические и неорганические вещества количественно адсорбируются на электроде, изготовленном из ацетиленовой газовой сажи , и подвергаются на нем электролитическому восстановлению или окислению. Такая методика исключает трудности, связанные с необходимостью обеспечивать тесный контакт между электродом и реагирующими веществами в процессе электролиза. Метод применим к веществам, плохо растворимым в водных растворах. Адсорбцию определяемого соединения можно осуществлять не только из жидкой, но также из газовой фазы, что особенно важно для применения этого способа к определению малых количеств веществ в воздухе и газовых смесях. Анализируемый раствор пропускают через сажевый электрод со скоростью, обеспечивающей количественную адсорбцию определяемого компонента. Определение таким путем миллиграммовых количеств меди, антрахинона и 4-нитропиридин-1-окиси дает ошибку соответственно 3 2,32 и 1,89%. При определении аналогичных количеств железа ошибка значительно больше из-за неполноты адсорбции указанного иона. Для достижения количественной адсорбции в такого рода случаях анализируемый образец следует растворять в небольшом объеме раствора и применять в качестве инертного электролита концентрированные солевые растворы. Конечную точку определяют потенциометрически, причем для получения больших скачков потенциала в конечной точке необходимо применять большие плотности тока электролиза. Описанный [c.116]


Смотреть страницы где упоминается термин Плотность растворов неорганических соединений органических соединений: [c.496]    [c.308]    [c.496]    [c.496]    [c.50]    [c.76]    [c.372]    [c.133]    [c.342]   
Справочник химика Изд.2 Том 3 (1964) -- [ c.551 , c.579 ]




ПОИСК





Смотрите так же термины и статьи:

Неорганических соединений органических соединений

Плотность растворов неорганических соединений

Плотность растворов органических соединений



© 2025 chem21.info Реклама на сайте