Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесия в растворах координационных (комплексных) соединений

    Устойчивость комплексов характеризуется константой диссоциации (нестойкости) /Собщ, или константой образования. Диссоциация координационной сферы происходит ступенчато. Каждая стадия диссоциации комплекса определяется ступенчатой константой диссоциации Ki, К2 Кп-Чем больше значение /Сдис. тем менее устойчива комплексная частичка. Общие и ступенчатые константы связаны между собой Кобщ=Кь Кз... /С .Так, комплекс [Ag( N)2] Кдио = 1-10-22 значительно прочнее [Ag(NH3)2]+ /(дис == 9,3-10 . Для разрушения комплексного соединения необходимо связать одну из частичек, образующихся при диссоциации комплекса, в менее диссоциированное соединение, что приводит к смещению равновесия в сторону диссоциации комплекса. Так, введение в раствор, содержащий [Ag(NH3)j]+, иодид-ионов приводит к разрушению комплекса и образованию осадка Agi, потому что ПРаех = [c.291]


    Образование в растворах нескольких комплексных соединений значительно усложняет применение спектрофотометрического метода. Описанные выше приемы в рассматриваемом случае могут быть использованы только тогда, когда возможно создать условия, обеспечивающие доминирование одного из комплексов ряда. Это достигается, например, если ступенчатые константы нестойкости различаются не менее чем на 3 порядка. В общем случае метод Остромысленского — Жоба не может применяться для установления состава последовательно образующихся комплексов [65]. Следует, однако, отметить, что при обнаружении в растворах ступенчатого комплексообразования вопрос об определении состава таких комплексов не имеет решающего значения, так как в настоящее время большинство исследователей постулирует принципиальную возможность образования всех комплексов в пределах координационного числа данного иона металла. Важнейшей задачей в этом случае является определение максимального значения координационного числа, а также коэффициентов молярного поглощения комплексов и их констант нестойкости. В литературе описаны многие частные приемы, основанные на последовательном изучении равновесий в растворах, содержащих ограниченное число образующихся комплексов. [c.176]

    В растворах комплексные соли ведут себя как простые соли, и для их растворов характерны все свойства, присущие растворам электролитов повышение температуры кипения, понижение температуры замерзания, понижение давления пара растворителя над раствором, наличие осмотического давления, электропроводимость и др. На основе результатов изучения свойств водных растворов комплексных соединений можно установить характер их ионного равновесия, т. е. соотношение числа катионов к числу анионов в молекуле соединения, и тем самым по составу определить их строение (координационную формулу). [c.337]

    Первоначально в качестве комплексных соединений рассматривали неорганические комплексы с комплексообразующим ионом металла. Однако это понятие значительно шире, так что молекулярные соединения между органическими дипольными молекулами также следует считать комплексными соединениями. Педерсен [5] исследовал пикрат анилина как пример ступенчатого образования органического молекулярного соединения. В системе неорганических комплексов М представляет собой сольватированный центральный нон и МАдг—координационно насыщенный комплексный ион. Образование комплексного иона, -надо полагать, происходит во всех возможных промежуточных ступенях, причем оно связано с отщеплением соответствующего числа молекул растворителя. Комплексные соединения, образованные ионами металла и ионами растворителя (в водных растворах — это гидроксо-комплексы) представляют исключение, так как они могут образовываться непосредственно из сольва-тированных ионов металла отщеплением ионов водорода. В связи с этим важно заметить, что для трактовки равновесия в системе и для вычисления N констант равновесия не имеет никакого значения, участвуют молекулы растворителя в реакции или нет (при условии, что активность растворителя можно считать постоянной). [c.21]


    Исследование равновесий в растворах многоядерных и смешанных комплексных соединений имеет ряд специфических особенностей. В настоящее время химия координационных соединений со смешанными лигандами развивается весьма интенсивно в связи с большим значением этих соединений в практике. [c.260]

    РАВНОВЕСИЯ В РАСТВОРАХ КООРДИНАЦИОННЫХ (КОМПЛЕКСНЫХ) СОЕДИНЕНИИ [c.33]

    Сведения о составе равновесной смеси в конкретных условиях эксперимента (температура, концентрация) можно получить, зная константу равновесия реакции комплексообразования К или непосредственно связанное с ней изменение свободной энергии AG в этом процессе (см. уравнение 11.44). Поскольку величины /С и AG позволяют рассчитать степень диссоциации комплексов, их можно рассматривать как меру устойчивости комплексных соединений в растворе и газовой фазе в заданных условиях эксперимента. Хотя величины /С и AG не могут служить истинной мерой энергии ДА-связей, их часто используют в качестве относительной меры энергии координационных связей в рядах различных комплексов. Однако сопоставлять энергию межмолекулярных связей на основе констант равновесия следует с осторожностью. При этом необходимо учитывать влияние энтропийного члена на соотношение величин AG и АЯ. Взаимосвязь параметров AG, АЯ и А5 видна из уравнения (П.45) AG = АН — TAS. Если член TAS мал, то АН AG. Это возможно либо при температурах, близких к абсолютному нулю, либо в процессах, протекающих без изменения энтропии (А5 = 0). Ни то, ни другое условие обычно не выполняется в рассматриваемых реакциях. Во-первых, термодинамические параметры реакций комплексообразования, как правило, определяют при температурах О—100 °С, т. е. при температурах, лежащих значительно выше абсолютного нуля, во-вторых, связывание двух свободных молекул Д и А в одну молекулу комплекса ДА приводит к уменьшению числа степеней свободы системы и, следовательно, к заметному уменьшению энтропии при комплексообразовании (AG < 0). [c.100]

    В то время как в твердых кристаллических комплексах достигается характерное для данного иона металла координационное число, в растворах эти комплексные соли существуют чаще всего в довольно сложном равновесии с продуктами образования и распада. Для достижения соотношений, соответствующих составу комплексов, установление этого равновесия должно происходить быстро. Образование комплексов обычно устанавливают по растворимости бинарного соединения, используемого в синтезе, которая сильно увеличивается с ростом концентрации соответствующего лиганда для исследования равновесий комплексообразования, кроме того, измеряют э.д.с. и светопоглощение, определяют соотношения распределения между двумя растворителями и проводят опыты по диффузии и т. д. [c.274]

    Сокращенные формулы применяют по отношению к лабильным комплексным ионам, существующим в растворах. Существование таких ионов обычно определяется методами исследования равновесий. Для определения их состава прослеживают зависимость концентрации комплекса от концентрации компонентов. Если концентрация некоторых компонентов (обычно растворителя и индифферентной соли) во время исследования не изменяется в достаточной степени, невозможно установить, сколько частиц этих компонентов входит в состав комплексного иона. Поэтому в формуле комплексного соединения предпочитают указывать только те лиганды, наличие которых установлено достоверно. Остальные места в координационной сфере могут быть заполнены по-разному. Например, сокращенная формула иона дироданожелеза (1П) Fe(S N)2+, обнаруженного в системе Fe +—S N в присутствии [c.25]

    Кислотный характер координированного аммиака, метиламина, этилами-на и т. п. — вполне закономерное явление. В водном растворе щелочные свойства указанных веществ обусловливаются равновесием N[ 3 + Н20 1МН4 -1-4-ОН , т. е. в растворе происходит присоединение к аммиаку протона, причем координационное число азота становится равным четырем. Одновременно освобождается эквивалентное количество гидроксоионов. В комплексных аммиакатах координационное число азота насыщается за счет координирования аммиака тяжелым металлом и наиболее существенны свойства аммиака как водородного соединения. Интересно, что если в молекуле координированного амина координационное число азота не насыщено, то оно может быть пополнено за счет присоединения кислоты. В этом случае проявляются свойства аммиака как основания. Л. А. Чугаевым и М. С. Григорьевой были выделены соединения с гидразином, взаимодействующие с кислотами с образованием аммонийных солей  [c.283]

    Строго говоря гетеромолекулярные ассоциаты (аддукты) относятся к молекулярным комплексным соединениям. Однако из-за их определяющего влияния на стадии общей схемы равновесий в растворах (1-13) и многих других специфических особенностей, отличающих их от классических координационных соединений, влияние растворителя на равновесие (1-6) рассматривалось отдельно (см. разд. 1У.5). [c.145]


    Комплексные соли с большой константой нестойкости, следовательно, с малоустойчивыми внутренними сферами, по свойствам приближаются к двойным солям. Это значит, что резкой границы между комплексными и двойными солями нет. Двойные соли можно рассматривать как нестойкие комплексные соединения с легко распадающейся внутренней координационной сферой. Например, соль К2[СиС14] имеет очень неустойчивую внутреннюю сферу в разбавленных водных растворах равновесие между комплексными ионами [СиС14] и элементарными ионами и С1 почти полностью смещено вправо [c.219]

    Образование комплексных (координационных) соединений в растворах приводит к равновесию  [c.72]

    Порфириновые лиганды образуют с большинством р-, d- и/-металлов очень устойчивые комплексные соединения в сравнении с комплексами простых, хелатирующих и насыщенных и непредельных макроциклических лигандов (43, 49-52]. Некоторые металлопорфирины со смешанолигандной координационной сферой - (X) 2(L) Mn, где L - молекулярный лиганд, не претерпевают изменений при длительном нагревании в концентрированной и 100%-ной серной кислоте, т.е. относятся к сверхстабильным комплексам. По причине высочайшей устойчивости в растворах, даже в присутствии в больших концентрациях сольватированных протонов и кислот, не представляется возможным определить для этих комплексов константы равновесия или скорости образования в тех же условиях, что и у комплексов с нециклическими лигандами. [c.339]

    Титан в кислой среде образует с роданидом малопрочные комплексы, имеющие в водных растворах максимум светопоглощения в дальнем ультрафиолете (кривая 1, рис. 1). С диантипирилметаном в солянокислых растворах образуется растворимое в воде комплексное соединение с Яшах 385 ммк (кривая 2). Характерной особенностью является малая скорость протекания реакции. Исследование состава этого соединения методом изомолярных серий и методом сдвига равновесия, сопоставление ряда свойств соединения (электромиграция, влияние кислотности) позволяют считать, что в этом комплексе титан находится в виде иона координирующего вокруг себя 3 молекулы диантипирилметана, каждая из которых занимает, по-видимому, два координационных места (8з85 = 16 000) [52]. Оба указанных соединения не извлекаются хлороформом. При наличии же в системе всех трех компонентов выпадает осадок желтого цвета, хорошо экстрагирующийся хлороформом. На кривой, 3 рис. 1 представлен спектр поглощения комплекса в очищенном хлороформе. Обращает на себя [c.119]

    За последние два десятилетия химия координационных соединений благодаря более широкому применению современных физико-химических методов исследования достигла значительных успехов. В качестве примера следует указать на экспериментальные и теоретические исследования поглощения света комплексными соединениями, которые привели к принципиальному решению проблемы их окраски и строения. Проводилось также систематическое изучение равновесий в растворах комплексных ионов, особенно в водных растворах. Различные методы исследования комплексообразования в растворах составляют в настоящее время важную область координационной химии. Развитию этой области в значительной степени способствовали фундаментальные работы Я. Бьеррума, особенно его диссертация Образование амминов металлов в водном растворе , появившаяся в 1941 г. С тех пор были исследованы многочисленные равновесия реакций комплексообразования. [c.7]

    Полярографический метод успешно используется для исследования процессов комплексообразования в растворах. В первые годы развития полярографии, начиная в работ Я- Гейровского, полярографические измерения служили главным образом для изучения равновесий в растворах комплексных соединений (определение состава и устойчивости комплексов). В последнее время полярография все в большей степени начинает иривлекаться для установления механизма электрохимического восстановления комплексных соединений п определения. кинетических параметров химических и электрохимических реакций, происходящих с участием комплексов. Это отражает общую тенденцию современной координацион- [c.70]

    Экстракционная химия — это прежде всего химия растворов координационных соединений. Современные же теория растворов и химия координационных соединений представляют собой обширные и интенсивно развивающиеся области физической и неорганической химии. При решении теоретических вопросов экстракции химику приходится, таким образом, изучать ряд связанных между собой проблем. Он должен знать первоначальную форму существования элемента в водном растворе, все стадии взаимодействия элемента с реагентом и растворителем, состояние реагента и комплексного соединения в водной и органической фазах. В растворах почти всегда существуют сложные равновесия, которые необходимо принимать во внимание в расчетах и при практическом использовании метода экстракции. Кроме того, нужно учитывать влияние сложного фона электролитов и изменение квазиструктуры воды и органических растворителей. [c.3]

    В последнее время Таубе [4] подверг систематическому исследованию различную реакционную способность комплексных соеди нений. При этом он главным образом обращал внимание на реакции замещения в комплексах. В этих случаях имеет место либо собственно реакция замещения, в которой какой-либо адденд замещается аддендом другого типа, либо так называемая реакция обмена. В растворах комплексных соединений равновесие имеет динамический характер, и если в растворе присутствует в свободном состоянии комплексообразующее соединение 1акого же типа, то в большинстве случаев адденды комплексного соединения обмениваются с молекулами свободного комплексообразующего веи1,ества. Скорость такой обменной реакции измеряется, иапример, прибавлением к раствору комплекса комплексообразующего вещества, синтезированного из материала, обогащенного радиоактивным изотопом. Через некоторое время выделяется химическим путем комплексный ион или комплексообразующее вещество и измеряется его активность, по которой определяется, до какой степени произошел обмен аддендов. Таубе показал, что реакциями замещения,протекающими крайне медленно.характеризуются преимущественно комплексные соединения внутреннеорбитального типа- с координационным числом 6, у которых на каждой оболочке й находится по крайней мере по одному электрону. Так, например, внутренне-орбитальные комплексы трехвалентного ванадия со структурой д - (Р дР В 8Р характеризуются быстро протекающими реакциями замещения, тогда как комплексы трехвалентного хрома со структурой (1 В 8Р , наоборот, реагируют медленно. [c.29]

    Двойные соли можно рассматривать как нестойкие комплексные соединения с легко распадающейся внутренней координационной сферой. Например, соль К, [ u lJ имеет весьма неустойчивую внутреннюю сферу, поэтому в разбавленных водных растворах равновесие [c.270]

    Необычные валентности элементов в простых соединениях в настоящее время дополняются данными о необычных координационных числах. В свете этого представляет интерес вспомнить высказывания Курнакова о взаимном подчинении решеток при образовании твердых растворов [2, 134] и природе соли Магнуса [2, 130], а также соображения Гринберга [216] о возможности сосуществования различных координационных чисел для одного и того же центрального атома в комплексных соединениях. Равновесие различных координаций одного и того же атома в растворах было подтверждено экспериментально [217]. За последнее время удается, например, доказать непрерывный переход кобальта тетраэдрической конфигурации в октаэдрическую в расплавах ВаОд—N830 и, следовательно, сосуществование их в некотором интервале изменений температуры и концентрации окиси натрия [218. [c.46]

    В преобладающем большинстве случаев образование и диссоциация комплексов в растворах происходит ступенчато. В зависимости от дентатности лигандов и значения координационного числа центрального атома последний способен присоединять несколько лигандов. Процесс образования комплексных (координационных) соединений, т. е. процесс взаимодействия гидратированных ионов с лигандами, характеризуется константами равновесия (константами устойчивости). Если ионы М"+ взаимодействуют с моподентатным лигандом и при этом не прЬисходит образование нерастворимых соединений, то состояние системы описывается следующими выражениями  [c.239]


Смотреть страницы где упоминается термин Равновесия в растворах координационных (комплексных) соединений: [c.378]    [c.5]    [c.8]    [c.378]    [c.15]   
Смотреть главы в:

Сборник вопросов и задач по аналитической химии -> Равновесия в растворах координационных (комплексных) соединений




ПОИСК





Смотрите так же термины и статьи:

Комплексные растворы

Комплексные соединения равновесие в растворах

Координационные соединени

Равновесие в растворах

Равновесия комплексных соединений

Соединения комплексные координационные

Соединения координационные



© 2025 chem21.info Реклама на сайте