Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Промышленные источники спиртов

    Ниже приведена схема различных промышленных способов получения уксусной кислоты и ее ангидрида. В эту схему не включено производство уксусной кислоты сухой перегонкой древесины, образование кислоты при окислении низших парафинов воздухом и получение уксусной кислоты брожением этилового спирта. Ацетальдегид, являющийся основным исходным продуктом при получении уксусной кислоты, обычно производят из этилового спирта или ацетилена. В последнее время дополнительным источником уксусной кислоты становится ацетальдегид, образующийся при окислении низших парафинов. [c.334]


    Повышение цен на традиционные источники энергии (природный газ, нефть, уголь) и угроза их исчерпания побудили ученых обратиться к альтернативным путям получения энергии. Роль биотехнологии в создании экономичных возобновляемых энергетических источников (спиртов, биогенных углеводородов, водорода) чрезвычайно велика. Эти экологически чистые виды топлива можно получать путем биоконверсии отходов промышленного и сельскохозяйственного производства. Перспективно продолжение исследований по усовершенствованию и внедрению процессов производства метана, этанола, созданию на основе микроорганизмов (и ферментов) элементов, эффективно производящих электричество, а также по организации искусственного фотосинтеза, в частности биофотолиза воды, при котором можно получать богатые энергией водород и кислород. [c.204]

    В качестве источника сырья для производства продуктов нефтехимической промышленности стали использовать метан из природного газа. Конверсией метана с водяным паром или реакцией с кислородом получали газ синтеза (смесь окиси углерода и водорода) и водород. Таким образом, метан из природного газа стал одним из исходных продуктов для получения синтетического метилового спирта и синтетического аммиака. Синтез аммиака был разработан в Германии непосредственно перед первой мировой войной, за ним последовало развитие процесса производства синтетического метанола в обоих случаях исходным сырьем служил каменный уголь. Подобно этому и паро-метановый и метано-кислородный процессы получения газа синтеза имеют европейское происхождение, при этом в качестве сырья используется метан, являющийся побочным продуктом в процессах разделения коксового газа или при гидрогенизации угля. [c.21]

    По масштабам производства ацетальдегид занимает первое место среди альдегидов. В 1956 г. в США было произведено 386 ООО т ацетальдегида, а формальдегида 233 000 т [184]. В ФРГ в 1958 г. было произведено 220 ООО т ацетальдегида и 103 000 т формальдегида [182]. Поскольку подавляющая часть ацетальдегида (70%) расходуется на получение уксусной кислоты и ее ангидрида, необходимых для быстро развивающейся промышленности искусственного волокна, потребность в ацетальдегиде непрерывно увеличивается. Однако еще недавно единственными источниками сырья для производства ацетальдегида были энергоемкий карбид кальция и этиловый спирт, на который расходовались пищевые продукты. Поэтому промышленность часто отказывалась от процессов, где исходным сырьем является ацетальдегид, и заменяла их другими. Возможно, что эти тенденции исчезнут, когда приобретет широкое развитие наиболее прогрессивный метод получения ацетальдегида — окислением углеводородных газов. [c.313]


    Основная масса фталатных пластификаторов вырабатывается из 2-этил-гексанола-1 илп оксоспиртов Сд и С о умеренно разветвленного строения. Эти продукты, но-видимому, являются наилучшими пластификаторами, доступными в больших количествах но сравнительно низким ценам. Фталаты, получаемые из спиртов нормального строения, дают некоторые преимущества в отношении низкотемпературных Свойств и летучести. Однако они стоят несколько дороже и ресурсы их более ограничены. При наличии достаточных источников — олефинов нормального строения — (например в результате развития синтеза углеводородов) при помощи оксопроцесса можно будет вырабатывать в промышленном масштабе спирты с менее разветвленным углеродным скелетом. Однако полученпе спиртов нормального строения при современном уровне технологии оксопроцесса, по-видимому, невозможно. [c.279]

    Огромное значение имеет целлюлоза как источник глюкозы и этилового спирта (брожение). В нашей стране интенсивно развивается промышленность гидролизного спирта из древесины (стр. 118). [c.287]

    ПРОМЫШЛЕННЫЕ ИСТОЧНИКИ СПИРТОВ [c.640]

    Промышленные источники. Дегидратация спиртов [c.534]

    Реакцию одностадийной гидратации алкенов в присутствии кислых катализаторов используют для промышленного синтеза спиртов из непищевого сырья. Механизм каталитической гидратации включает присоединение на первой стадии иона гидроксония с образованием карбокатиона источником аниона является вода. При этом образуется протонированный спирт, который на следующей стадии отдает ион водорода другой молекуле воды  [c.64]

    Важнейшими промышленными источниками для получения этиленовых углеводородов являются продукты переработки (крекинга) нефти. Кроме того, этиленовые углеводороды могут быть получены из соответствующих спиртов нагреванием их с серной кислотой или в присутствии катализатора. [c.293]

    Одним из важных видов химического сырья является природный газ, содержащий до 98% метана. Природный газ в химической промышленности используется для производства органических продуктов и аммиака. Древесина и древесные отходы—источник получения целлюлозы, этилового спирта, уксусной кислоты, фурфурола и ряда других продуктов. Из сланцев и торфа производят горючие газы, сырье для производства масел, моторных топлив, высокомолекулярных соединений и т.п. [c.30]

    Он может найти широкое применение в странах, богатых природными источниками энергии (дешевый уголь или водород), где хорошо развита промышленность ацетилена, а также в странах, где ош,уш,ается недостаток в дешевом спирте. [c.125]

    Это служит примером двоякой роли, которую стали играть в химической промышленности процессы с использованием в качестве сырья нефти и нефтяных газов. С одной стороны, гидратация олефинов дала возможность производить спирты и различные их производные, которые уже получались из других источников. С другой стороны, окиси олефинов и их производные являлись совершенно новыми продуктами, ранее в промышленности неизвестными. [c.19]

    Этиловый спирт производят в столь больших количествах, что представляет интерес сопоставить получение этого продукта из нефтяного сырья с его получением из других источников. Хотя в некоторых странах этиловый спирт производят даже из карбида кальция (через ацетальдегид), основным его источником всегда было сбраживание продуктов растительного происхождения. Обычно брожению подвергают мелассу (побочный продукт сахарной промышленности), зерно, картофельный и кукурузный крахмал, а также сульфитные щелока бумажной промышленности. [c.148]

    Лишь это последнее соединение представляет некоторую техническую ценность, поскольку оно может применяться как многоатомный спирт для получения искусственных смол. Реакция ацетона с ацетальдегидом не приводит к ценным продуктам, однако в случае высших альдегидов продукты конденсации представляют интерес и уже были использованы в промышленном масштабе как источник высших вторичных спиртов изостроения. [c.321]

    Среди ненасыщенных С4-углеводородов наиболее важную роль в химической промышленности играет дивинил. Ограниченное количество этого диолефина присутствует в -фракции, получаемой при производстве этилена пиролизом жидких углеводородов. Вследствие высокой концентрации дивинила в этой фракции выделение его обходится дешево. Эта фракция и была первым источником дивинила, на который США ориентировались в 1941—1942 гг. Эту же фракцию используют и в Англии при современных полупроизводственных испытаниях. В том случае, когда дивинила требуется больше, чем его имеется в качестве побочного продукта производства этилена, этот диолефин производят дегидрированием н-бутиленов. Одностадийный процесс получения дивинила из н-бутана по существу не отличается от метода, в котором исходят из бутиленов. Его можно использовать в тех случаях, когда вследствие относительной доступности бутана последний будет более дешевым исходным веществом. В других методах производства дивинила сырьем служит ацетилен или этиловый спирт. Первый из этих методов использовали в Германии вплоть до 1945 г., по второму методу в США во время второй мировой войны получали подавляющую часть дивинила, необходимого для производства синтетического каучука. Считается, что в нормальных условиях наиболее экономичным является производство дивинила из н-бутиленов. Из других применений н-бутиленов в химической промышленности следует указать на производство растворителей втор-бутилового спирта и метилэтилкетона. Изобутилен применяют для получения бутил-каучука, полиизобутиленов, диизобутилена и полупродуктов в производстве искусственных моющих средств. [c.405]


    Алифатические углеводороды в парообразном состоянии можно окислять до кетонов с хорошими выходами при помош,и кислорода и бромистого водорода, который служит источником свободных радикалов (пример а). Окисление циклогексана изучено подробно, поскольку оно находит промышленное применение. Методы окисления, используемые в промышленности, приводят к получению ряда продуктов и в том числе гидроперекиси, спирта, кетона и продуктов расщепления и, по-видимому, мало подходят для применения в лаборатории. Вероятно, наилучшим лабораторным методом превращения углеводорода в кетон является нитрозирование при ультрафиолетовом освещении. При этих условиях, например, из циклогексана, хлористого нитрозила и концентрированной соляной кислоты при температуре от —5 до 5 °С был получен оксим циклогексанона со степенью конверсии 45—65% [611. [c.101]

    В начале второй мировой войны правительством США был организован аппарат, которому было поручено создание мощной промышленности синтетического каучука па основе бутадиена и стирола для замены натурального каучука, источники которого оказались отрезанными в результате военных действий. Эта организация пошла по пути строительства установок производства бутадиена, главным образом, из этилового спирта или к-буте-нов. Целесообразность использования н-бутенов для этой цели представлялась сомнительной вследствие крупных масштабов потребления этого сырья в производстве алкилата — важного компонента авиационного бензина. Поэтому были разработаны процессы дегидрирования, основанные на применении н-бутана в качестве исходного сырья, и построен ряд таких установок сравнительно небольшой производительности. [c.275]

    В угольных шахтах концентрация СО в забое штрека через б—10 мин после взрыва достигает 350 мг/м Выделение СО при открытой добыче угля колеблется от 10 мг/м на поверхности до 80 мг/м на глубине более 175 м. СО также образуется при поверхностном окислении угля на углеподающих трассах. Угольная пыль содержит 0,1—3,9% СО. Источником СО вблизи шахт может быть и тление терриконов на расстоянии 500 м от них находили концентрации СО, превышающие ПДК. В химической промышленности источниками СО являются установки каталитического крекинга СО выделяется при производстве аммиака конверсионным способом, формалина, соды, гидрогенизации жиров, синтезе углеводородов, фосгена, метилового спирта, муравьиной и щавелевой кислот, метана и др. Может выделяться СО при производстве и переработке синтетических волокон. Повышенные концентрации образуются у известковообжиговых печей, на кирпичных и цементных заводах, в керамической промышленности, в доменных цехах, при производстве кокса. Металлургические предприятия, выплавляющие [c.305]

    Условия максимального использования этилена в газах коксовых печей для получения спирта были рассмотрены Gluud OM, S hneider oM и Ке11ег ,ом указавшими, что применение в качестве катализатора сернокислого серебра существенно улучшает возможность промышленного получения спирта из этого источника. Однако весьма важным является удаление присутствующих в сыром газе тяжелых газообразных углеводородов и уменьшение количества воды, необходимой для гидролиза этилсерной кислоты. В дальнейшем Герр и Попов " использовали каталитическую активность сернокислого серебра для получения спирта из этилена, содержащегося в крекинг-газах. Газ, содержащий 54% парафиновых углеводородов, 12,2% водорода и 33,8% непредельных углеводородов, проводился над хлористым кальцием, затем над древесным углем (для удаления высших гомологов этилена) и наконец через нагретую до 40° поглотительную трубку, содержащую стеклянные бусы или стеклянную вату в этой трубке этилен поглощался 94%-ной серной кислотой, содержавшей в растворенном состоянии 1% сернокислого серебра. Таким путем из 300 я газа получалось 33,8 г спирта. [c.367]

    Промышленные источники окиси углерода для синтеза метилового спирта весьма разнообразны. Это так называемый синтез-газ (смесь водорода и окиси углерода), получаемый газификащгей твердого топлива, сжиганием кокса в кислороде и двуокиси углерода, конверсией метана и т. п. Обычно молярный (объемный) состав синтез-газа соответствует смеси СО+ 2Ш. [c.176]

    Отдельные представители. Этилен С2Н4, газ мало растворим в воде (при 0°С — 0,25 объема), лучше — в спирте (3,6 объема) горит более ярким пламенем, чем метан, поскольку содержание углерода в нем больше, чем в метане. Смесь этилена с воздухом взрывчата. Этилен образуется при сухой перегонке органических веществ, всегда содержится в светильном газе. Главные промышленные источники этилена — крекинг-газы, нефтяной газ. Последний содержит значительные количества этана, дегидрированием которого получают этилен. [c.78]

    Академическое изучение частичного окисления имело своей целъю> создание удовлетворительных механизмов реакций горения углеводородов. fj wibuioe количество прикладных исследований в этой области, широко отраженных в патентной литературе, было направлено на использование дешевых и доступных парафиновых углеводородов в качестве источников альдегидов, кетонов, спиртов и кислот, являющихся основой промышленной химии алифатических соединений. [c.318]

    Третья ветк а—производство на базе олефиновых углеводородов. Важнейшими полупродуктами в промышленности нефтехимического синтеза являются низкомолекулярные олефиновые углеводороды—этилен, пропилен и бутилены. На базе переработки этих продуктов основаны современные производства высококачественных пластических масс, синтетических волокон, синтетического каучука, моющих веществ и целого ряда других химических продуктов, таких, как синтетические спирты, альдегиды, кетоны, гликоли, фенол, окись этилена, нитрил акряловой кислоты и др., являющиеся, в свою очередь, ценными промежуточными продуктами в производствах органического синтеза. Основным источником получения олефиновых углеводородов является процесс пиролиза нефтепродуктов. [c.314]

    В будущем возможно более широкое использование метанола в органическом синтезе и химической промышленности в целом, а также применение его в качестве топлива, источника водорода, в микробиологическом синтезе, для очистки сточных вод и других целей. В химической промышленности большое значение имеет синтез высших спиртов, алвдегидов, кетонов, кислот и углеводородов на основе водорода и окиси углерода. Производство этих продуктов потребляет более 5% водорода и в дальнейшем доля водорода для них будет возрастать.Таким образом, наряду с синтезом аммиака синтез органических продуктов является крупнейшим потребителем водорода. [c.5]

    Переработка таких видов сырья, как уголь, горючие сланцы природные битумы и биомасса, сегодня представляется как новое, перспективное направление для удовлетворения растущей потребности общества в моторных топливах и химическом сырье. Тем не менее для большинства из них технология переработки имеет давнюю, порой многовековую историю. Например, газификация угля впервые была осуществлена более двух столетий тому назад история переработки и топливного использования горючих сланцев восходит также к ХУП1 в. давно известны и широко используются методы получения-спиртов и других химических веществ из биомассы и природного газа, а процессы ожижения угля имели достаточно широкое промышленное применение в 1930—1940-х годах. Поэтому, рассматривая сегодня производство жидких и газообразных топлив из различных, альтернативных нефти, сырьевых источников, правильнее говорить не об открытии, а о возрождении процессов в условиях новой ресурсной ситуации и современного уровня развития науки и техники. [c.61]

    Для большой промышленной установки в г. Батон-Руж нроизводитель-ностью 27 ООО ООО декалитров спирта в год сырьем служит этилен, получаемый крекингом пропана. В большинстве случаев источником пропана являются газы стабилизационных установок, содержащие такнге 25% этана. Этот газ поступает в печи пиролиза, где превращается в смесь этилена, пропилена, метана и водорода (см. гл. II, раздел III). [c.452]

    Тремя основными источниками сырья для производства синтетических органических продуктов являются каменный уголь, нефть и растительные вещества. При достаточной изобретательности химика-органика любой из этих видов сырья может стать источником всех необходимых для химической промышленности исходных ве1цеств. Действительно, любое из органических соединений, описанных в справочнике Бейльштейна, можно синтезировать тем или иным путем, исходя из метана или в конечном счете из угля или кокса. Однако технолог должен принимать во внимание не только возможные, но также и наиболее экономичные методы. Выбор их зависит от новых технологических открытий и от наличия и стоимости сырых материалов, причем эти факторы могут непрерывно изменяться. Естественные ресурсы промышленных стран неодинаковы, но влияние этого на выбор того или иного метода производства может усиливаться или ослабляться в результате определенных государственных мероприятий. Примерами этому служат поддержка, которую в течение многих лет оказывало правительство Великобритании производству этилового спирта, и политика автаркии гитлеровской Германии, которая привела к широкому развитию химии ацетилена в этой стране. [c.11]

    Получаемые с помощью этой реакции фенолы, имеющие промышленное знйчение, являются в основном производными изобутилена, метилэтил-этилена и диизобутилена. Этими олефинами алкилируют фенол или крезолы, выделяемые из каменноугольной смолы или из некоторых фракций нефти (гл. 21, стр. 397). трет-Бутил фенол получают из фенола и изобутилена в присутствии серной кислоты. Источником изобутилена служит бутан-бутиленовая фракция крекинг-газов (гл. 7, стр. 127), из компонентов которой в условиях процесса реагирует только изобутилен. При высокой температуре трет-бутилфенол можно получить также из фенола и диизобутилена и из фенола и mpem-бутилового спирта или хлористого трет-бутила. При умеренной температуре фенол и диизобутилен реагируют с образованием 1,1,3,3-тетраметилбутилфенола (mpem-изооктилфенола)  [c.202]

    ФЕНОЛ (оксибензол, карболовая кислота) СвНвОН — бесцветные кристаллы, на воздухе — светло-розовые, имеют характерный запах, т. пл. 40,9° С растворим в воде, спирте, эфире и т. д., обладает слабыми кислотными свойствами, при действии щелочей образует феноляты. При действии брома на Ф. образуется трибромфенол СаНаВгзОН, используемый для получения антисептика — ксероформа. Фталевый ангидрид конденсируется с Ф., образуя фенолфталеин с формальдегидом Ф. дает фенол-формальдегидные смолы. До последнего времени основным источником получения Ф. была каменноугольная смола, образующаяся при коксовании каменного угля. Современный метод промышленного синтеза Ф. основан на расщеплении кислотами гидроперекиси изопропилбензола (кумола). Продуктами реакции являются два ценных вещества  [c.260]

    Между лабораторным и промышленным синтезом органических соединений имеется ряд принципиальных различий. Например, цена химикатов, использованных в лабораторном синтезе, обычно не имеет решающего значения, поскольку синтез проводится в сравнительно малых масштабах. Поэтому при лабораторном восстановлении кетонов в спирты можно использовать сравнительно дорогой алюмогидрид лития, в то время как в промышленности для этих целей применяют сравнительно дешевые водород и никелевый катализатор. Другим примером дешевого реагента является кислород воздуха, с помощью которого в промышленности осуществляется ряд процессов каталитического окисления. Исходный материал для промышленных синтезов также должен быть дешевым и легкодоступным в больших количествах. Поэтому такой материал в большинстве случаев получают с помощью простейших методов из указанных выше источников сырья, прежде всего из природного газа и нефти. Применяемые растворители тоже должны быть дешевыми, а кроме того (по возможности), негорючими или хотя бы малогорючими. В то время как в лабораторных условиях не составляет проблемы провести синтез с использованием в качестве растворителя нескольких литров диэтилового эфира, применение этого растворителя в промышленном производстве вызывает большие трудности, связанные с его горючестью (складирование больших количеств растворителя, соблюдение строгих предписаний техники безопасности всеми работниками и т. д.), так что он применяется только в исключительных случаях. [c.241]

    В первом из них спирт образуется также при брожении сахаров, которые, однако, получаются из непищевого сырья — из клетчатки (целлюлозы), т. е. в конечном итоге из дерева. Для этого целлюлоза подвергается под действием сильных кислот гидролизу с образованием глюкозы. Источником глюкозы могут служить также сульфптрнле щелока — отход бумажно-целлюлозной промышленности. Получаемый таким путем гидролизный спирт содержит несколько повышенный процент примесей (метанол, альдегиды, в особенности фурфурол). [c.160]

    Глюкозу СеНхзОб, которую собственно подвергают брожению, можно получить не только из названных пищевых продуктов, но и из клетчатки (целлюлозы) под действием сильных кислот клетчатка подвергается гидролизу с образованием глюкозы. Источником глюкозы могут служить и сульфитные щелока — отход целлюлозной промышленности. Получаемый таким путем гидролизный спирт содержит несколько повышенный процент примесей (метанол, альдегиды). [c.286]

    Фурфурол является неизбежным побочным продуктом при гексозном гидролизе древесины, имеющем место на гидролизных заводах, производящих этиловый спирт. Поскольку гидролиз древесины в этом случае также требует использования разбавленной минеральной кислоты и нагревания под давлением, создаются все необходимые условия для образования фурфурола из содержащихся в гидролизате пентоз. При охлаждении гидро-лизата фурфурол в главной своей массе увлекается отходящими парами и конденсируется в решоферах значительная часть фурфурола остается в охлажденном гидролизате. Таким образом удается уловить фурфурол в количестве, составляющем 1—1,5% к весу исходной древесины. Принимая во внимание масштабы переработки древесины этим способом, даже при несовершенстве методов выделения фурфурола из гидролизата, производство спирта из древесины мон-сно считать таким источником промышленного фурфурола, которым отнюдь не приходится пренебрегать. [c.41]

    До сего времени важнейшим промышленным применением оксосинтеза в США являлось производство изомерных спиртов Сд и Сю, используемых в производстве соответствующих фталатов или фосфатов, представляющих важные пластификаторы для виниловых пластмасс. Однако быстро растет также производство более низкомолекулярных соединений. Ассортимент продуктов оксосинтеза значительно расширился со времени начала промышленного производства октилового спирта в 1948 г. Непосредственное получение многочисленных новых продуктов задерживается лишь экономическими факторами, отсутствием рынков сбыта или соответствующих сырьевых ресурсов. Кроме того, оксосинтез является потенциальным источником весьма много численных продуктов, получаемых дальнейшей переработкой альдегидов или спиртов. Многие вырабатываемые в настоящее время или потенциально возможные оксопродукты не могут быть экономично получены никакими другими промышленными методами. В других случаях оксосинтез вследствие его экономи- [c.277]


Смотреть страницы где упоминается термин Промышленные источники спиртов: [c.14]    [c.17]    [c.93]    [c.105]    [c.438]    [c.45]    [c.82]    [c.7]   
Смотреть главы в:

Начала современной химии -> Промышленные источники спиртов




ПОИСК





Смотрите так же термины и статьи:

Промышленные источники



© 2025 chem21.info Реклама на сайте