Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод спиновой развязки

    Тотальный двойной резонанс, или метод спиновой развязки, требует дальнейшего повышения мощности второго поля. ГТри можно добиться полного коллапса расщеплений, связанных с облучаемым ядром. Этот метод находит широкое применение. В спектроскопии ПМР он используется для упрощения спектров и доказательства спиновой связи групп. В спектроскопии ЯМР С обычно бывает необходимая полная развязка от всех протонов ( С— Н ). [c.52]


    МЕТОД СПИНОВОЙ РАЗВЯЗКИ [c.327]

    В данной главе описаны некоторые методические приемы и дополнительные возможности спектроскопии ЯМР С при решении ряда типичных проблем органической химии. Кратко рассматриваются исследования механизмов реакций, динамических процессов, влияния растворителя, другие типы импульсных последовательностей в ФС ЯМР С, а также методы спиновой развязки и другие приложения, включая ХПЯ и ЯМР С в твердых телах. [c.243]

    Второй период развития спектроскопии ЯМР С характеризуется применением накопителей сигналов и метода гетероядерного двойного резонанса. Накопители сигналов для усреднения по времеии стали применяться после того, как спектрометры были оснащены системой стабилизации отношения поле/частота. Более того, введение широкополосной спиновой развязки от протонов привело к повышению интенсивности вследствие коллапса спиновых мультиплетов и за счет ядер- ного эффекта Оверхаузера, что иллюстрируют спектры пиридина, показанные на рис. X. 6. [c.386]

    Спиновая развязка с помощью монохроматического РЧ-поля очень чувствительна к расстройке РЧ-облучения от резонанса и приводит к неполному подавлению, когда резонансные частоты спинов / охватывают широкий диапазон. Введение методов широкополосной развязки сыграло важную роль для развития ЯМР С, который нашел практическое применение в органической химии. Методы, в которых используется РЧ-поле, обладающее минимальной мощностью, позволяют избежать недопустимого перегрева образца. [c.290]

    В работе [1703] определены параметры спин-решеточной ядерной релаксации (эффект Оверхаузера) и вращательно-решеточной релаксации для отдельных атомов углерода в твердом полиметилметакрилате. Для этого использовали метод ЯМР С с дипольной спиновой развязкой, причем определения проводили при естественном содержании изотопа в материале. [c.341]

    ГО порядка . Для упрощения интерпретации таких сложных спектров разработаны специальные методы. Например, спин-спиновое расщепление не зависит от величины внешнего поля, а поскольку химический сдвиг зависит от этого параметра, можно достичь такого увеличения Av, при котором проявляются лишь эффекты первого порядка (J 0,1 Av). Другой подход основан на использовании двойного резонанса. В этом случае прикладывают еще одно поле, осциллирующее с резонансной частотой, характерной для ядер, вызывающих расщепление сигнала изучаемых ядер. Если это приводит к насыщению возмущающих ядер, то исследуемый мультиплет превращается в синглет. Эта процедура известна под названием спиновой развязки . [c.154]


    С другой стороны, при необходимости наблюдать спин-спиновое взаимодействие Н— Н в таких молекулах, как пиридин, чтобы избавиться от возмущающего эффекта ядра N, нужно усилить квадрупольную релаксацию. Часто этого можно добиться понижением температуры. Кроме того, используется гетеро-ядерный двойной резонанс для развязки от ядра N. Этот метод мы обсудим в следующей главе. Возмущающее действие можно также исключить, замещая N изотопом N, спин которого равен 1/2. Но это, конечно, требует проведения дорогостоящих синтезов. [c.298]

    Знание химических сдвигов дает возможность расшифровывать сложные спектры больших молекул, что достигается путем простой комбинации селективного возбуждения и стробирующей развязки. При таком подходе каждый резонансный сигнал возбуждается селективно, затем устройство развязки выключается, что создает условия свободной прецессии резонансных линий мультиплетных сигналов, и Фурье-преобразование генерирует мультиплетные подспектры, соответствующие выбранному положению резонансного сигнала. Серия таких подспектров воссоздает обычный полный спектр со всей картиной связей. Дополнительную информацию относительно связности мультиплетных сигналов можно получить, используя методику селективного двойного резонанса, такую как селективный перенос населенности. Эти методы позволяют определить знаки констант спиновых связей, применяя мягкие селективные импульсы для облучения ядер, связанных с наблюдаемым ядром. [c.5]

    В рассмотренном ранее простом спектре этанола видно, что СН2- и СНз-группы соседствуют одна с другой. В более сложном спектре ЯМР, состоящем из большого числа линий, достаточно сложно сделать вывод о том, какие из взаимодействий вызывают наблюдаемое расщепление спектральных линий. В этом случае стремятся упростить спектр, применяя метод двойного резонанса или развязку. Если в процессе детектирования на систему взаимодействующих спинов подается еще одно РЧ поле, воздействующее селективно на резонансной частоте одного из ядерных спинов, например А, то мультиплетная структура резонансной линии, соответствующей спину ядра X, при условии, что расщепление этой линии обусловлено спин-спиновой связью между спинами А и X, исчезает. Для этанола (см. рис.2.2,с) развязка на частоте, соответствующей метиленовым протонам, приводит к исчезновению расщепления в метильной группе. На рис.2.5 приведена схема проведения этого эксперимента. Одновременно с возбуждающим импульсом (поле В у) дополнительно подается импульс второго РЧ поля В2, воздействующего на частоте Щ в течение сбора данных. Для эффективной развязки величина поля В2 должна удовлетворять условию у В2 > >2 Л/. Очевидно, что напряженность поля развязки должна превышать напряженность поля, создаваемого возбужденным спином. В гетероядерном случае при проведении этого эксперимента не возникает каких-либо дополнительных проблем, поскольку разность значений частот возбуждающего поля и поля развязки [c.63]

    Эти усовершенствования часто основывались на том принципе, что достаточно получить широкий спектр частот, который перекрывал бы все рассматриваемые резонансные частоты. Такие аргументы неявно предполагают наличие линейного отклика у спиновой системы. Нелинейные эффекты частично могут быть учтены [4.65]. Однако при таком рассмотрении нельзя использовать точные трансформационные свойства спинов, например инвариантность под действием 2тг-импульсов. Поэтому не удивительно, что ни один из этих методов модуляции не достигает идеальной эффективности развязки, [c.291]

    Другим эффективным методом упрощения спектров является двойной резонанс, или спин-развязка. Для простоты предположим, что мы имеем систему АХ (два дублета) и что при наблюдении сигнала ядра А в обычном поле Hi мы одновременно прикладываем второе, намного более интенсивное ВЧ-поле Нг на частоте резонанса ядра X. Мы увидим, что при включении поля Яг дублет А коллапсирует в синглет. Под влиянием поля Яг ядро X совершает быстрые переходы между двумя спиновыми состояниями, в ре- [c.58]

    В работах [52, 53] был снят спектр поливинилметилового эфира. Спектр преимущественно изотактического полимера показан на рис. 4.6. В спектре (а) спин-спиновое взаимодействие С—было полностью подавлено с помощью шумовой развязки (как объяснялось в разд. 1.18.2). В показанном масштабе пики представляют собой синглеты. В спектре (б) осуществлена частичная развязка от протонов с помощью нерезонансного облучения. Этот метод (как показано в гл. 1) приводит к коллапсу мультиплетов (в данном случае расстояние между линиями в мультиплете уменьшается в 5 раз) в то же время форма сигнала сохраняется, что позволяет идентифицировать пики по их мультиплет-ности и уменьшает вероятность ошибки из-за перекрывания сигналов. Полная развязка увеличивает эффективное отношение сигнал/шум и, как правило, используется в тех случаях, когда отнесение химических сдвигов уже сделано обычным путем. Как показано на рис. 4.6, а, группа СНг дает два пика — при 152 и 154 м. д. (в сторону сильного поля относительно СЗа) исходя из [c.111]


    Действительно, многих осложнений протонной спектроскопии просто не существует в методе ЯМР Естественное содержание изотопа составляет 1,1%, следовательно, вероятность расположения по соседству двух ядер ничтожно мала и взаимодействием спинов можно полностью пренебречь. Взаимодействие же спинов углерода с протонами легко подавить с помощью специальной техники (шумовая развязка) и регистрировать спектры в режиме полной развязки с протонами ( С— Н ). Спектр, снятый в этом режиме, всегда состоит из одиночных сигналов, соответствующих неэквивалентным атомам углерода в цепи. Таким образом, в спектроскопии С— Н вообще не существует затруднений, связанных с анализом спиновых мультиплетов. Далее, интервал углеродных химических сдвигов значительно больше, чем протонных, а дипольная ширина линии меньше вследствие меньшего магнитного момента, поэтому углеродные спектры полимеров бывают разрешены лучше протонных. [c.127]

    Двойной резонанс или спин-развязка, т. е. подавление спин-спинового взаимодействия. В этом случае образец дополнительно подвергается воздействию сильного радиочастотного поля с частотой, равной резонансу одной из взаимодействующих групп. Спин-спиновое взаимодействие между ядрами подавляется и мультиплет необлученной группы коллапсирует (сливается) в синглет. Этот метод применяют и для подавления спин-спинового взаимодействия ядер разных изотопов — гетероядерный двойной резонанс. Он особенно важен в спектроскопии 1 С для подавления спин-спинового взаимодействия — Н. Спектры снятые с подавлением ( развязкой ) спин-спинового взаимодействия с Ч-1, иногда обозначают 1 С— 41 . [c.254]

    Первое важное усовершенствование в экспериментальной технике ЯМР — полное подавление спин-спинового взаимодействия с протонами (широкополосная развязка от протонов) — было введено уже в 1965 г., однако превращение спектроскопии ЯМР в практически используемый метод аналитического исследования потребовало таких инструментальных и технических усовершенствований, которые стали общедоступными только в настоящее время. Спектры, приведенные на рис. 1.1—  [c.15]

    Существует еще и третий метод полного подавления спин-спинового взаимодействия с протонами, который оказался также чрезвычайно полезным при отнесении сигналов, а именно монохроматическая селективная развязка. Этот метод очень напоминает эксперименты по протон-протонной развязке ( протон А наблюдается, протон В облучается ). Если только данному протону может быть приписана определенная частота в спектре [c.27]

    Тотальный двойной резонанс (или метод спиновой развязки) находит широкое применение в спектроскопии ЯМР. В частности, в ЯМР Н эта методика часто используется для упрощения спектров и для доказательства спиновой связи мультиплетов. В спектроскопии ЯМР используется полная развязка от всех протонов (ЯМР С— Н ). При этом, как правило, применяют шумовую модуляцию частоты второго поля, что позволяет одновременно развязываться от всех протонов соединения. Для полной развязки необходимо, чтобы выполнялось условие Н2>Ау, где Ау — диa пaзoн химических сдвигов протонов, составляющий примерно 1000 Гц. Поскольку требуемая для такого облучения амплитуда второго ВЧ-1П0ЛЯ эквивалентна напряжению на катушке до 10 В, требуется дополнительное охлаждение датчика. В отдельных случаях может наблюдаться нагревание образца. [c.132]

    Наиболее общими методами конформациоиного анализа являются методы спиновой развязки и слабого возбуждения. Реализация этих методов при работе в режиме развертки поля малоудобна, поэтому далее рассматривается лишь методика проведения экспериментов на спектрометрах, работающих в режиме частотной развертки. [c.391]

    В методе тройного р е з о н а н с а кроме поля регистрации В,,, на образец накладываются еще два поля В, и В,.. Ничего принципиально нового по сравнению с двойным резонансом это не дает, но возможны различные сочетания рассмотрных выше видов двойного резонанса. Например, одно из полей используют для спиновой развязки с Н, а другое поле —для создания тиклинга. При наличии спектрометров ЯМР на многие ядра метод тройного резонанса применяется редко, но при использовании только спектрометра ПМР требуется иногда его применять. [c.52]

    Основу современного ЯМР составляет наше возросшее умение воздействовать на связанные системы. Более глубокое понимание их природы позволяет найти наилучшне способы проведения обычных измерений и разработать эксперименты, которые, подобно спиновой развязке, дают возможность создавать полную картину спиновой системы (гл. 8 и 9). На нем же основан ряд методов наблюдения ядер с низкими резонансными частотами, в которых их взаимодействие с протонами используется как рычаг для усиления нх сигнала (гл. 6). Оба этих приема позволяют осуществлять то, что уже давно возможно и в традиционном ЯМР. Но они облегчают работу, ускоряют эксперимент, делают его более информативным или более общим. Некоторые эксперименты являются совершенно новыми. Примером может служить [c.20]

    При определении характера спии-спиновой связи с помощью гомоядерной развязки возникают некоторые проблемы. Если мы имеем дело со сложным спектром, то может оказаться неочевидным, облучение каких сигналов будет наиболее информативным. При этом мы можем потратить массу времени иа проведение тех экспериментов, которые окажутся совершенно неинформативными. Даже если мы знаем, какие сигналы следует облучить, не всегда в спектре, имеющем сильное перекрывание сигналов, можно провести облучение с необходимой селективностью. Из-за сложного характера мультиплетиости результат развязки может быть замаскированным и не замеченным. Для решения последней проблемы предложен метод разностной развязки, но сам этот метод имеет ряд недостатков, в особенности нз-за эффектов, возникающих при сдвигах Блоха-Зигерта. [c.267]

    Спин-тиклинг представляет собой метод, предполагающий значительно менее интенсивное облучение ядра, чем это необходимо для полной или селективной спиновой развязки. Эффект состоит в увеличении числа линий при спин-спиновом взаимодействии. Эта методика редко используется в ЯМР-спектроскопии полимеров. Обзорная литература 91. [c.328]

    Как будет рассмотрено в гл. X, имеется несколько вариантов осуществления гетероядерной развязки типа которые оказываются чрезвычайно полезными для отнесения сигналов в спектрах ЯМР С. Один из этих вариантов, обсуждаемый ниже, известен как внерезонансная развязка. Как показывает само название, это метод частичной развязки, при котором используют сильное ВЧ-поле в области ЯМР Н с частотой V2, находящейся вблизи, но вне облучаемого резонансного сигнала. Важнейшая особенность этого эксперимента состоит в том, что в экспериментах по частичной развязке сохраняются расщепления линий. Разумеется, эти расщепления меньше, чем константы спин-спинового взаимодействия, но типичная мульти-плетная структура некоторых сигналов сохраняется. Этот эффект частичной развязки иллюстрирует рис. IX. 4, где наблюдают уменьшенное расщепление в дублете при смещениях частоты (vл —V2), равных —15 и —10 Гц. В случае ЯМР исчезают все малые константы С, Н (геминальные, вицинальные и дальние) и остаются только расщепления, обусловленные большой прямой константой. Вследствие этого сигналы ЯМР в экспериментах с внерезонансной развязкой от Н имеют вид мультиплетов первого порядка и могут быть легко распознаны. Для первичного (СНз), вторичного (СН2), третичного (СН) и четвертичного атомов углерода наблюдают соответственно квартет, триплет, дублет и синглет. Пример такого спектра приведен на рис. IX 20. [c.330]

    H-D-обмене или изменении химической структуры молекул с помощью де-риватизации. Однако несколько общих экспериментальных подходов в спектроскопии ЯМР на ядрах или ставших сейчас массовыми или почти массовыми, будут кратко описаны в следующих разделах. Это спиновая развязка, DEPT-эксперимент и два типа двумерных (2D) экспериментов. Методы DEPT и двумерной спектроскопии ЯМР приведены с целью заинтересовать читателя и побудить его к более глубокому знакомству с ними. Они дают представление о потенциале современной спектроскопии ЯМР. Однако изложение теории и экспериментальных деталей выходит за рамки данного краткого введения. [c.246]

    Многие из новых методов импульсного ЯМР основаны на том, что для получения необходимых данных имеется возможность почти произвольной модификации гамильтониана. С одной стороны, спектры могут быть упрошены за счет исключения или масштабирования выбранных взаимодействий, таких, например, как гомо-ядерное или гетероядерное дипольные взаимодействия. С другой стороны, благодаря введению дополнительных возмущений можно увеличить объем извлекаемой информации. Гамильтониан можно модифицировать до такой степени, что некоторые эксперименты граничат с колдовством. В разряд такого рода манипуляций попадает двойной резонанс, который может быть использован для спиновой развязки [1.83—1.85], спин-тиклинг [1.84, 1.86], многоимпульсные методы для исключения дипольных взаимодействий между распространенными спинами в твердых телах [1.22, 1.87—1.90], вращение образца под магическим углом для исключения анизотропной части химических сдвигов [1.91—1.94] и т. д. В гл. 4, 7—9 [c.26]

    К настоящему времени предложено много методов, использующих РЧ-поля для модификации гамильтониана. Внешние РЧ-поля Могут быть непрерывными, иметь вид периодических пачек импульсов или апериодических последовательностей. Приложение непрерывного РЧ-поля приводит к хорошо известным эффектам двойного резонанса с увеличением напряженности поля сначала получают возмущенные заселенности, затем эффекты типа спин-тиклинга и, наконец, спиновую развязку (см. разд. 4.7). [c.99]

    История развития и становления спектроскопии ядерного магнитного резонанса на ядрах С (ЯМР весьма любопытна. Десять-пятнадцать лет тому назад среди спектроскопистов и химиков, активно использовавших спектроскопию ПМР, существовало убеждение, что многие нерешенные в то время проблемы будут решены, как только появятся реальные возможности проводить измерения спектров магнитного резонанса углерода при естественном содержании изотопа в образце (1,1%). В течение долгого времени реализация этой голубой мечты оставалась невозможной из-за трудностей экспериментального характера, связанных главным образом с низкой чувствительностью спектрометров. Лишь Лау-тербур начиная с 1956 г. в полном одиночестве медленно, но методически публиковал данные изучения спектров ЯМР простейших классов органических молекул. Он использовал очень трудоемкую методику регистрации спектров (адиабатическое быстрое прохождение), которая оставляла мало надежд на широкое применение. Начиная с 1963—1964 гг. спектроскопией ЯМР начали заниматься еще несколько групп исследователей Грант (США), Стозерс (Канада) и Липпмаа (СССР). Этот этап развития метода был связан с внедрением методов двойного резонанса (спиновая развязка от протонов) и применением накопителей слабых сигналов на основе многоканальных анализаторов. Постепенно стали появляться исследования, содержащие большой объем измерений и широкие обобщения. С 1968 г. к этим группам присоединился Дж. Робертс с сотрудниками, начавший [c.5]

    Заместители (алифатические и ароматические) в антрахиноновых красителях могут иметь и простое, и довольно сложное строение. Для точной идентификации их могут потребоваться эксперименты со спиновой развязкой, применение сильных полей или оба метода. Данные по химическим сдвигам для ряда антрахинонов, имеющих строение (15—17), собраны в табл. 8.9—8.11. [c.232]

    С помощью метода ЯМР со спиновой развязкой удалось показать [1980], что цис- и транс-единицы в полибутадиене распределены статистически. Методом ЯМР широких линий был исследован [1981, 1982] аморфный компонент поли(4-метилпен-тена-1) и транс-1,4-полибутадиена, смоченных сероуглеродом. В работе [1983] проводилось сравнение спектров ЯМР С поли-1,4-бутадиенов и полипентенамера, в частности сигналов метиленовых групп. Дана [1984, 1985] интерпретация спектров ЯМР полибутадиена и проведено отнесение сигналов к Ыс-1,4-, транс-1,4- и 1,2-единицам. [c.392]

    Строение полученных соединений было изучено методом ЯМР. Поскольку протонный спектр адамантановой группы крайне сложен и не поддается расшифровке, для исследования соединений (I—IV) была использована спектроскопия углеродного магнитного резонанса. Углеродные спектры были измерены на частоте 25.2 Мгц в режиме импульсного Фурье-преобразования с шумовой развязкой от протонов полученные значения химических сдвигов приведены в таблице. Отнесение сигналов сделано на основании экспериментов по неполной спин-спиновой развязке от протонов и на основании литературных аналогий [6]. Выбор между сигналами р- и 8-углеродных атомов не был сделан ввиду близости их химических сдвигов и одинаковой мультиплетности в неразвязанных спектрах. [c.34]

    В начале 60-х годов ЯМР начали заниматься несколько групп исследователей, возглавляемых Д. Грантом (США), Дж. Стозерсом (Канада) и Э. Липпмаа (СССР). В это время было сделано первое важное усоЕшршенствование в экспериментальной технике спектроскопии ЯМР С, а именно благодаря методу двойного резонанса было осуществлено полное подавление спин-спинового взаимодействия с протонами (широкополосная развязка от протонов), которое существенно упростило спектры ЯМР С и увеличило интенсивность сигналов ядер углерода благодаря эффекту Оверхаузера. Кроме того, стали применяться накопители слабых сигналов на основе многоканальных анализаторов. С 1968 года Дж. Робертс с сотрудниками начал систематическое исследование многих классов органических соединений. [c.136]

    Я полагаю, что вы уже сталкивались с традиционным ЯМР и близко знакомы с использованием протонного магнитного резонанса (ПМР) для решения структурных задач, В связи с этим книга не содержит разделов о связи химических сдвигов или констант снин-спиио-вого взаимодействия (КССВ) со структурой, так как эту информацию легко найти в других книгах и учебниках, но не только поэтому. Более важно то, что современные эксперименты ЯМР могут уменьшить нашу зависимость от таких эмпирических корреляций. До сих пор мы чаще всего ограничивались формулировками типа Спектр находится в соответствии со структурой X . Наша цель состоит в том, чтобы перейти к формулировкам Доказательство структуры X следует из.., , Я надеюсь, что вам знаком метод двойного протои-протонного резонанса, представляющий собой подавление снин-спинового взаимодействия между протонами (гомоядерная развязка). Этот метод несколько раз [c.16]

    Методы отнесения сигналов. Сейчас для отнесения резонансных сигналов экспериментатор имеет большой выбор методов. Большинство из них использует определенные типы развязки от протонов. Например, после записи обычного спектра с широкополосным подавлением Н обычно измеряют спектр неполного двойного резонанса. Как уже обсуждалось в разд. 2.8 гл. IX и как показано на рис. IX. 20, так можно различить в спектре первичные, вторичные, третичные и четвертичные атомы углерода. Кроме того, возможность импульсной развязки открывает путь для наблюдения констант Н, С. По крайней мере прямые константы через одну связь обычно находятся с точностью, достаточной для использования при отнесении, даже если совершенно корректное определение этих параметров и невозможно без проведения полного анализа спектра (см. гл. V). Это требование в особенности необходимо выполнять при определении меньших констант спин-спинового взаимодействия более чем через одну связь, даже несмотря на то, что многие неразвязанные спектры кажутся спектрами первого порядка. Тем не менее данные об изменениях /( С, Н) в зависимости от строения, которые позднее мы обсудим детально, представляют большую ценность для целей отнесения. Например, в циклопропане /( С, Н) составляет 161 Гц, а в метане — только 125 Гц. Поэтому метиленовые группы трехчленных циклов легко распознать по большому триплетному расщеплению их сигнала С. [c.392]

    В настоящее время описанные выше эксперименты с развязкой во многом утратили свой смысл. Как увидим в дальнейшем, эту же информацию для всех партнеров по спин-спиновому взаимодействию можно получить из одного эксперимента - двумерного ЯМР-эксперимента, требующего однако, значительных затрат времени. Относительно больших молекул, для анализа структуры которых необходимо определить большое число констант спин-спинового взаимодействия, такая затрата времени вполне оправдана и, безусловно, компенсируется получаемыми результатами. Отметим, что существует большое число вариантов экспериментов с развязкой, которые могут дать более полную информацию, однако используются при решении специальных задач. Среди них можно отметить спин-тиклинг". Этот метод не упрощает спектр, а наоборот, приводит к возникновению новых линий -так называемых артефактов, которые появляются в том случае, если при развязке мощность РЧ поля выбирается слишком малой. [c.64]

    Как уже отмечалось, косвенное спин-спиновое взаимодействие, характеризуемое константой взаимодействия J, тесно связано с ковалентной химической структурой. Если химическая структура известна, то можно провести отнесение соответствующих резонансных линий. Если же структура неизвестна, то можно выбрать структуру из нескольких альтернативных. В общем случае следует найти ответ на следующие два вопроса (1) Какие из ядерных спинов связаны между собой взаимодействием (2) Насколько велико это взаимодействие В принципе можно получить ответ на оба эти вопроса для достаточно простых структур даже с использованием одномерных методик, например, с помощью развязки или построения теоретических спектров. В более сложном случае, когда в спектрах содержатся перекрывающиеся линии, эти методы приводят к успеху только при использовании большого числа трудоемких и длительных экспериментов. С помощью двумерных методов эту информацию можно получить из одного эксперимента. Стандартным методом при этом является метод OSY ( orrelated spe tros opy), в котором применяются два 90°-ных импульса, разделенных временем эволюции i[ (см. рис.2.14). Полученный спектр симметричен относительно диагонали, на которой расположены так называемые диагональные пики. Эти спектры по содержащейся в них информации соответствуют одномерному спектру. Основная информация содержится в пиках, расположенных вне диагонали - это так называемые кросс-пики (см. рис.2.15 и 2.16). Именно эти пики указывают на то, между какими ядрами существует спин-спиновое взаимодействие, т.е. они позволяют определить те константы спин-спинового взаимодействия, которые превышают ширину линий компонент мультиплетов. Тонкая структура кросс-пиков позволяет получить представление о величине констант спин-спинового взаимодействия. [c.92]

Рис. 7.2.8. Схемы для разделения взаимодействий Jifs и 5. а — импульс, приложенный в центре периода эволюции, вызывает рефокусировку сигнала под действием химических сдвигов спинов X, в то время как включение развязки в период расфокусирования препятствует рефокусировке /Х-взаимодействия (эксперимент с прерыванием развязки) б — аналогичная схема с включением развязки в период рефокусировки мультиплеты, полученные в обоих экспериментах (рис. а к б) совпадают с мультиплетами обычных спектров без развязки независимо от величины спин-спинового взаимодействия в — схема с одновременной рефокусировкой спинов X и инверсией спинов / (метод переворота протонов) для систем с сильным взаимодействием эта последовательность дает симметричные мультиплеты с большим количеством линий, чем в традиционном спектре без развязки. Рис. 7.2.8. Схемы для <a href="/info/250261">разделения взаимодействий</a> Jifs и 5. а — импульс, приложенный в центре <a href="/info/250547">периода эволюции</a>, вызывает рефокусировку сигнала под действием <a href="/info/1487019">химических сдвигов спинов</a> X, в то время как включение развязки в период расфокусирования препятствует рефокусировке /Х-взаимодействия (эксперимент с <a href="/info/250258">прерыванием развязки</a>) б — аналогичная схема с включением развязки в период рефокусировки мультиплеты, полученные в обоих экспериментах (рис. а к б) совпадают с мультиплетами <a href="/info/1882802">обычных спектров</a> без развязки независимо от величины <a href="/info/92508">спин-спинового взаимодействия</a> в — схема с одновременной рефокусировкой спинов X и <a href="/info/565973">инверсией спинов</a> / (метод переворота протонов) для систем с <a href="/info/117354">сильным взаимодействием</a> эта последовательность дает симметричные мультиплеты с <a href="/info/472531">большим количеством</a> линий, чем в традиционном спектре без развязки.

Смотреть страницы где упоминается термин Метод спиновой развязки: [c.248]    [c.233]    [c.210]    [c.233]   
Смотреть главы в:

Экспериментальные методы в химии полимеров - часть 1 -> Метод спиновой развязки

Экспериментальные методы в химии полимеров Ч.1 -> Метод спиновой развязки




ПОИСК





Смотрите так же термины и статьи:

Спинового эха метод



© 2025 chem21.info Реклама на сайте