Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ЯМР-спектроскопия определение протона

    При работе с инфракрасными спектрами и спектрами протонного магнитного резонанса используются таблицы характеристических частот и химических сдвигов. Для приобретения навыков в работе с таблицами в настоящем разделе особо выделены задачи но инфракрасной спектроскопии и спектроскопии протонного магнитного резонанса. В них предлагается провести как простое сопоставление спектров со строением органического соединения, так и определение структурных элементов молекулы по приведенному ПК- или ПМР-спектру. [c.111]


    Установить наличие водородной связи можно различными способами, в том числе измерением дипольных моментов, по особенностям растворимости, понижению температуры замерзания, теплотам смешения, но наиболее важный способ основан на том влиянии, которое оказывает водородная связь на вид инфракрасных [9] и других спектров. Частоты колебаний в ИК-спектре таких групп, как О—Н и С = О, значительно сдвигаются, если эти группы участвуют в образовании водородной связи. При этом всегда наблюдается сдвиг полос поглощения в область более низких частот для обеих групп А—Н и В, причем для первых этот сдвиг более значителен. Например, свободная группа ОН в спиртах и фенолах поглощает в области от 3590 до 3650 см если же эта группа участвует в образовании водородной связи, полоса поглощения смещается на 50—100 см и расположена в области от 3500 до 3600 см [10]. Во многих случаях в разбавленных растворах только часть ОН-групп участвует в образовании водородных связей, а часть находится в свободном состоянии, тогда в спектрах наблюдается два пика. С помощью инфракрасной спектроскопии можно различить меж- и внутримолекулярные водородные связи, поскольку первые дают более интенсивный пик при повышении концентрации. Для определения водородных связей используются и другие виды спектроскопии КР-, электронная, ЯМР-сиектроскопия [11, 12]. Поскольку при образовании водородной связи протон быстро переходит от одного атома к другому, ЯМР-спектрометр записывает усредненный сигнал. Водородную связь определяют обычно по смещению химического сдвига в более слабое поле. Водородная связь меняется в зависимости от температуры и концентрации, поэтому сравнение спектров, записанных в разных условиях, служит для определения наличия водородной связи и измерения ее прочности. Как и в ИК-спектрах, в спектрах ЯМР можно различить меж- и внутримолекулярные водородные связи, так как последняя не зависит от концентрации. [c.115]

    Применение Н ЯМР-спектроскопии к анализу нефтяных фракций не получило столь широкого развития, как газо-жидкостной хроматографии или масс-сПектрометрии, что связано со спецификой метода. Так, в сложных смесях,— учитывая и без того небольшой интервал значений характеристических величин, в данном случае химических сдвигов (всего 20 м. д. для протонов из всех возможных классов органических соединений) — близкие по структуре соединения дают лишь уширение сигналов. Дальнейшее усложнение спектров происходит за счет спин-спинового взаимодействия Н-атомов. Применение ПМР-спектров для количественной оценки тех или иных групп обычно затруднено. Так, определить интенсивности сигналов протонов различных алифатических групп трудно в виду их перекрывания. Определение интегральных интен- [c.140]


    Химический сдвиг в спектроскопии ЯМР дает важные сведения, которые, подобно групповым частотам в ИК-спектроско-пии, используются для определения строения неизвестных веществ. На рис. II. 7 показаны характеристические области поглощения для наиболее важных типов протонов, встречающихся в органических молекулах. Можно сделать следующие общие заключения- Для протонов алифатических связей С—Н экранирование уменьшается в ряду СНз > СНг > СН. Так, протоны Метильных групп у насыщенного атома углерода дают сигнал [c.37]

    Высокая специфичность присоединения к двойной связи при изотактическом росте цепи, доказанная методом ЯМР, сама по себе еще не дает возможности провести отнесение сигналов эритро-и т эео р-протонов. Отнесение, принятое выше, основано по существу также и на данных ИК-спектроскопии. Определение направления присоединения в синдиотактических конфигурациях требует более тонких экспериментов. Эти вопросы обсуждаются в разд. 8.4. [c.152]

    Наиболее ценные для конформационного анализа замешенных гидразинов данные получены к настоящему времени с помощью ЯМР. В основном использовался резонанс на протонах, но в последние годы широко стал применяться и резонанс на ядрах углерода Достаточно полную сводку работ по использованию спектроскопии ЯМР Н и 1 С в кон-формационном анализе гидразинов можно найти в статьях [39, 40]. Применение спектроскопии ЯМР имеет определенное преимущество перед спектроскопией на протонах в связи со значительно большим различием в химических сдвигах ядер углерода, принадлежащих разным конформерам. Это позволяет делать достаточно строгие выводы о термодинамической стабильности конформаций таких гидразинов, изучение которых с помощью спектроскопии ЯМР Н затруднительно или просто невозможно. Параметры активации конформационных переходов в гидразинах находятся обычными методами динамической спектроскопии ЯМР, основанными на измерении температуры коалесценции или на полном анализе температурной зависимости формы линий. [c.21]

    ПО ступеням так, чтобы выходное напряжение на мостике изменялось в достаточной степени линейно в зависимости от температур термистора Н з между —5 - -21° в интервалах по 6°. Напряжение па выходе мостика, которое может быть измерено с помощью потенциометра на 25 ом, регистрируется компенсационным самописцем, включенным через чувствительный усилитель с высоким (по сравнению со средним поперечным сопротивлением мостика) входным сопротивлением. Вследствие сравнительно низкого внутреннего сопротивления самописца использовался усилитель со стабилизированным питанием такого типа, как применяется в аналогичных счетных устройствах и используется для интегрирования измеряемых величин, полученных методом газовой хроматографии, магнитного протонного резонанса, инфракрасной спектроскопии и т. д. [9]. Мостик после тщательного определения температурной функции термистора настраивался так, что при коэффициенте компенсационного усилителя 1 20 (входное сопротивление 500 ком, переходное сопротивление 10 мом) самописец на 25 мв (со шкалой на 100 делений) с изменением температуры на 0,1° показывал полный отброс стрелки, что соответствует максимальной чувствительности в 10 градуса на 1 деление шкалы. [c.135]

    При оценке интегральных кривых необходимо учитывать спин-спиновое расщепление с тем, чтобы уловить все линии, относящиеся к определенному сигналу. Как на особое преимущество количественного анализа при помощи ЯМР-спектроскопии высокого разрешения можно указать на тот факт, что определение можно проводить по одному-единственному спектру, при условии что каждый компонент смеси дает сигнал в спектре. Тогда в противоположность методам инфракрасной и ультрафиолетовой спектроскопии здесь не требуется съемка спектров эталонов. Абсолютное количество исследуемого компонента можно определить, примешивая к пробе точно взвешенное количество чистого вещества, с заведомо известным содержанием протонов, играющего роль внутреннего стандарта. Этот прием часто применяют, например, при определении степени дейтерирования частично дейтерирован-ных соединений 1831. [c.258]

    Сигнал протонов концевых ОН-групп получить в ЯМР-спектре нельзя. В ИК-спектре валентное колебание группы ОН вызывает появление широкой полосы поглощения между 3400 и 3600 см (полоса ассоциатов) и слабой полосы поглощения при 3600 см" (полоса свободных групп ОН). Влажность пробы затрудняет количественную оценку этих полос. Полоса поглощения при 3680 см 1, обусловленная содержанием воды в пробе, полностью исчезает после тщательного высушивания пробы. Определение среднего, молекулярного веса проводят, оценивая площадь полосы валентных колебаний ОН-группы. Калибровку проводят в растворах методом добавок с применением н-гекса-деканола. При калибровке в ИК-спектроскопии с добавлением твердых веществ получаются невоспроизводимые результаты. Поэтому определение молекулярного веса можно проводить только для растворимых проб. [c.420]


    Как и в случае амидов, перспективным методом при определении конфигурации тиоамидов оказалась ЯМР-спектроскопия с использованием сдвигающих реагентов . Координация лантанида происходит по атому серы, поэтому сигналы протонов радикала, находящегося в сим-положении к атому серы, сдвигаются сильнее [81]. [c.597]

    Успех спектроскопии ЯМР в химии в первую очередь обусловлен тем, что информация, получаемая из спектров ЯМР, близка образу мышления химиков. Отнесение спектральных областей к определенным типам протонов, в различных типах связи, например, ароматических и.ли олефиновых , а также мультиплетность сигналов, дают информацию, которая может быть переведена на структурный или стереохимический язык легче, чем информация, получаемая из инфракрасных и ультрафиолетовых спектров. Особое значение имеет тот факт, что симметрия молекулы также находит отражение в спектре, вследствие высокой чувствительности параметров ЯМР к молекулярному окружению ядра. [c.208]

    ПО данным измерений методом микроволновой спектроскопии, составляет около 12 кДж/моль (3,0 ккал/моль). Причина заторможенности этого вращения до сих пор полностью не ясна. Однако известно, что замена одного или большего числа протонов группами большего объема повышает высоту барьера, и на этом основании можно прийти к выводу, что пространственные взаимодействия играют доминирующую роль в затруднении вращения в замещенных этапах. Большое значение для решения этой проблемы имеют дополнительные экспериментальные данные, которые могут быть получены с использованием спектроскопии ЯМР. Так, сведения о стабильных конформациях замещенных этанов были получены на основании определения вицинальных констант и их зависимостей от двугранного угла (разд. 2.2.1 гл. IV). В дополнение к этому для ряда молекул были измерены барьеры вращения путем анализа температурной зависимости спектров. Для этих исследований использовалась почти исключительно спектроскопия ЯМР Р, и мы вернемся к этой теме в гл. X. [c.269]

    Главной областью применения спектроскопии ЯМР является определение молекулярной структуры. Ядерный магнитный резонанс в основном используют в органической химии, поэтому наиболее распространена спектроскопия ЯМР на ядрах и В спектрах протонного магнитного резонанса (ПМР) [c.223]

    Несмотря на развитие инструментальных методов исследования, в настоящее время определение полного углеводородного состава возможно только для легких и средних фракций. Это связано с рядом серьезных ограничений, которые возникают при применении аналитических методов к сложным многокомпонентным углеводородным системам. Взаимодействия молекул между собой приводят к серьезным отклонениям от ожидаемого результата. Так, например, установлено, что обработка данных спектроскопии ЯМР приводит к заниженному количеству ароматических групп, так как не учитывается взаимодействие стабильных свободных радикалов нефтяных сред с протонами органических молекул. Тем не менее, существует ряд общих физико-химических закономерностей, которые позволяют проводить инженерные расчеты процессов переработки углеводородных систем. [c.47]

    Метод, позволяющий получить информацию о конфигурации гликозидных связей в полисахаридах при условии, что известен их моносахаридный состав и положения моносахаридных звеньев, создан на основе спектроскопии ЯМР. Гидроксигруппы углеводных остатков превращают (преимущественно) в 0-метильные или 0-триметилсилильные для исключения из спектров сигналов гидроксигрупп. Сигналы протонов при аномерных атомах углерода находятся в более низком поле, чем сигналы остальных протонов, причем химические сдвиги сигналов экваториальных протонов выше, чем для аксиальных. Полный структурный анализ полисахаридов осуществлен на основании данных спектров ЯМР И метилированных моносахаридов и спектров ЯМР Н простых полисахаридов, таких как гликогены [56]. Методы спектроскопии ЯМР С, и Р также могут быть использованы при определении места присоединения одного моносахарида к другому, причем в двух последних методах используются такие производные полисахаридов, как [ Р]-трифторацетаты. [c.226]

    Гипотетический спектр диметилтрифторацетамида- Ы, Ю, приведенный в конце гл. I, мог бы навести на мысль, что спектроскопия ЯМР используется для обнаружения в соединении магнитно различающихся ядер. Это не так, по крайней мере, по двум причинам. Во-первых, с экспериментальной точки зрения такое использование является трудным, если вообще возможным, поскольку условия и методику необходимо изменять для измерения резонансных частот разных ядер. Во-вторых, элементный состав органических соединений можно определить гораздо легче и точнее с помощью других методов, таких, как элементный анализ или масс-спектрометрия. Таким образом, значение спектроскопии ЯМР для химии основывается не на том, что она способна различить элементы, а на ее способности отличить некоторое ядро, находящееся в определенном окружении в молекуле, от других ядер того же типа. Было найдено, что на резонансные частоты отдельных ядер одного сорта влияет распределение электронов в химических связях в молекуле. Поэтому значение резонансной частоты конкретного ядра зависит от молекулярной структуры. Если для демонстрации этого явления выбрать протон, то в спектре такого соединения, как бензил-ацетат, например, будут присутствовать три различных сигнала от протонов фенильного ядра, метиленовой и метильной групп (рис. П. 1). Этот эффект вызван различным химическим окружением протонов в молекуле. Его называют химическим сдвигом резонансной частоты или просто химическим сдвигом. Таким образом, в поле 1,4 Т протонный резонанс происходит не при [c.29]

    Применение ЯМР-спектроскопии для установления структуры. Методика установления структуры с помощью протонной спектроскопии изменяется от одного примера к другому. В некоторых случаях структурную формулу оказывается возможным установить лишь на основании протонного спектра и элементарного анализа, но, как правило, протонный спектр следует рассматривать в связи с известными химическими свойствами соединения, а также данными ультрафиолетовой и инфракрасной спектроскопии. Примеры совместного применения спектроскопических методов обсуждаются в гл. 6. Здесь мы опишем лишь два примера, когда протонный спектр в дополнение к химическим данным приводит к определенным заключениям, которые можно было бы получить другими [c.111]

    Наиболее сложным вопросом при установлении структуры разветвленных сахаров является определение конфигурации у места разветвления. Такой общий для всех моносахаридов метод, как ЯМР-спектроскопия, в этом случае не может дать необходимой информации, так как разветвленные моносахариды типа А вообще не содержат протона у места разветвления, а в разветвленных моносахаридах типа Б сигнал соответствующего протона бывает сильно расщеплен в результате спин-спинового взаимодействия с протонами трех соседних углеродных атомов, что крайне затрудняет трактовку спектра. Поэтому при определении конфигурации у места разветвления приходится пользоваться другими приемами. [c.346]

    Метод ЯМР-спектроскопии может применяться и для количественного анализа. Например, очень легко и быстро можно определять содерн ание влаги в различных материалах по интенсивности сигнала протонов воды. При содержании влаги от нескольких до 100% точность определения 0,1%, [c.129]

    Ядра элементов представляют собой совокупность определенного числа протонов и нейтронов. Ядра характеризуют зарядом, равным сумме зарядов протонов, и массой (или массовым числом). Ядра одного и того же элемента (т. е. ядра, имеющие одинаковый заряд), обладающие разной массой, называют изотопами данного элемента. Важной характеристикой изотопа является его естественное содержание, показывающее, какова доля (в %) данного изотопа среди стабильных изотопов элемента. Некоторые важные для спектроскопии ЯМР изотопы в природных объектах встречаются с небольшими естественными содержаниями ("О 0,01%, [c.7]

    Рассмотрим случай, когда спектр ЯМР полностью описывается в рамках формализма спин-гамильтониана. Очевидно, что полная информация в этом случае состоит из двух частей, соответствующих химическим сдвигам ядер и константам спин-спинового взаимодействия. В спектроскопии ЯМР Н химические сдвиги определяются с точностью от 0,1 до 0,001 м. д. в зависимости от условий регистрации спектра (гл. 5, 2). Таким образом, при диапазоне химических сдвигов протонов 10 м. д. (гл. 3, 2) информация, содержащаяся в значении химического сдвига, составляет от 7 до 13 бит. Константы спин-спинового взаимодействия лежат в диапазоне от —20 до +20 Гц. При точности определения констант от 1 до 0,01 Гц информация, заключенная в значении константы, будет составлять от 5 до 12 бит. [c.232]

    Интегралы применяют при определении состава смесей по спектрам ЯМР, при исследовании кинетики реакций и т.д. Однако использование интеграла требует соблюдения определенных условий при съемке спектра. В ПМР-спектроскопии таким условием является использование достаточно слабого по мощности поля Н , не насыщающего сигналы протонов. При [c.306]

    Определите молекулярную формулу исследуемого вещества. Это можно сделать с помощью масс-спектрометрии высокого разрешения путем точного определения массы молекулярного иона (разд. 5.3.3), изучения относительных интенсивностей в кластере пиков молекулярного иона (разд. 5.3.4.), использования результатов элементного анализа или спектроскопии ЯМР (в частности, определения числа протонов) и т. д. Иноща здесь могут шшочь следующие два простых правила  [c.225]

    Точное измереинс частот скрытых резонансных линий с помощью ИНДОР-спектроскопии определение протонных последовательностей установление структуры определение относительных знаков констант спин-спинового взаимодействия построение диаграммы энергетических уровней, косвенное определение химических сдвигов слабочувствительных ядер, например С и с помощью гетероядерной ИНДОР-спектроскопии [c.333]

    Хиральные растворители используются в ЯМР-спектроскопии для определения абсолютной конфигурации оптически активных соединений. С этой целью рацемат растворяют в хи-ральном растворителе. При этом отдельные энантиомеры (5) и (R) взаимодействуют с хиральным растворителем по-разному и потому дают неодинаковые спектры ЯМР. Так, если в качестве хирального растворителя использовать (5)(+)-2,2,2-три-фтор-1-фенилэтанол, а в качестве субстрата взять рацемический а-арилэтиламин, то в его спектре ПМР сигнал метинового протона 5-энантиомера попадает в более слабое поле, чем сигнал соответствующего протона Л -энантиомера. [c.74]

    В молекулярно-спектроскопических исследованиях микроструктуры используются короткодействующие силы взаимодействия структурных единиц в цепи сополимеров и дальнодействующие силы в полимерах регулярного строения. Для анализа регулярных сополимеров особенно хорошие возможности представляет ЯМР-спектроскопия высокого разрешения. На резонансную частоту протонов звена А оказывают влияние непосредственно-соединенные с этим звеном группы В или А (см. стр. 419). Таким образом, возникает возможность определения химической природы соседних групп, а также их конфигурации в виде триад ВАВ, ВАА, ААА, пентад или даже гептад. [c.418]

    Интегрирование спектров с целью получения информации о площадях пиков одиа из самых обычных процедур протопион спектроскопии ЯМР. Ее точность вполне достаточна для определения числа протонов, дающих вклад в какой-либо пик. Было бы очень заманчиво использовать эту процедуру для других задач, требующих определения относительных количеств каких-либо соединений в растворе, например для экспериментов по кинетике или для количественного анализа смесей. Но если точность в 10-15%, вполне достаточная для определения числа протонов, достигается довольно легко, то точность, требующаяся для других количественных применений (допустим, лучше 1-2%), может оказаться недостижимой, В этом разделе мы коротко рассм )трим те причины, которые затрудняют использование спектроскопии ЯМР и особенно фурье-спектроскопни ЯМР для строгого количественного анализа, Эта тема подробно излагается в других руководствах по практическому ЯМР, но она настолько важна, а ожидания химиков настолько преувеличены, что, пожалуй, имеет смысл наложить здесь некоторые наиболее существенные моменты, [c.240]

    Хотелось бы, чтобы вы представили себе следующий эксперимент. На первый взгляд ои может показаться не очень серьезным, но иа самом деле иллюстрирует основу техники, имеющей чрезвычайно важное значение для спектроскопии ЯМР. Возьмем образец, спектр ЯМР которого характеризуется только одной резонансной линией, например раствор хлороформа в дейтерированном растворителе при наблюдении протонов, Линия имеет химический сдвиг V. Проследим за превращением этой линии во вращающейся системе координат после (п/2) -им-пульса, так же как мы делали много раз раньше. Для простоты будем полностью пренебрегать эффектами продольной релаксации, ио учитывать поперечную релаксацию, которая определяет форму линии сигнала ЯМР. На рис. 8,1 изображена линия, которая в течение определенного времени прецесснровала на частоте V (в Гц). Это время обозначим через, исходя из соображений, которые станут понятными в дальнейшем (эту переменную не следует путать с 7 1-временем продольной релаксации). В конце интервала прикладывается второй (и/2) -импульс и производится регистрация сигнала ЯМР в форме сигнала ССИ. Что же при этом происходит  [c.261]

    Эксперимент с ннжнм разропенвем но координате Традиционной проблемой в спектроскопии ЯМР С является определение числа протонов, связанных с каждым атомом углерода. Мы рассмотрим сейчас два способа, альтернативных традиционному методу внерезонансной развязки редактирование спектра посредством переноса поля- [c.379]

    Основу применения спектроскопии протонного магнитного резонанса и в общем ядерного магнитного резонансг (ЯМР) для определения структуры неизвестных веществ составляют эмпирически найденные корреляции между спектральными параметрами, химическим сдвигом и спин-спиновым взаи модействием, с одной стороны, и строением образца — с дру гой. В этом отношении ядерный магнитный момент оказалс5 [c.12]

    Для более сложных молекул, в которых имеется большее число независимых диполь-дипольных взаимодействий, обычно появляется достаточно данных для определения как расстояния, так и ориентации какой-либо пары ядер. Кроме того, можно определять валентные углы. В последние годы спектроскопия ЯМР ориентированных молекул стала важным методом структурного анализа, дополняющим такие хорошо известные методики, как микроволновая спектроскопия, электронография и рентгенография, особенно в тех случаях, когда можно включить в анализ расщепления линий, обусловленные присутствиег ядер С. Эти данные также дают информацию о геометрии углеродного остова, что, очевидно, представляет больший интерес, чем только протонные геометрические параметры. Вероятно, наиболее важный аспект рассматриваемой методики состоит в том, что она позволяет получить информацию о структуре молекул в жидкости. [c.363]

    Как указывалось выше, теперь спектры ЯМР С записываются исключительно с использованием спектроскопии ФП. Ее экспериментальные аспекты были весьма детально рассмотрены в гл. IX, и основные высказанные там положения в равной мере применимы и к ЯМР- С-ФП. Запись спектров проводят с использованием сигнала ТМС как внутреннего стандарта (см. разд. 2.2) и гетероядерной системы стабилизации, где резонансный сигнал Н от растворителя С0С1з служит опорным. Применяется широкополосное подавление протонов, и химические сдвиги определяются обычным способом, так как частоты линий печатаются непосредственно компьютером. Однако существует несколько проблем, связанных с развязкой от протонов, которые требуют специальных комментариев. Во-первых, исчезновение расщеплений спектральных линий лишает нас возможности измерять константы спин-спинового взаимодействия С, Н, т. е. приводит к потере ценной информации. Во-вторых, ядерный эффект Оверхаузера приводит к искажению интенсивностей, и интегрирование таких спектров вызывает сомнение. Наконец, отнесение резонансных сигналов к определенным атомам углерода в конкретной структуре никоим образом не является очевидным. [c.390]

    Основными методами идентификации соединений после обычного элементарного анализа, определения молекулярного веса в т. д. являются методы инфракрасной спектроскопии, протонный ядерный магнитный резонанс и в некоторой степени эффект Мессбауера. [c.254]

    Следует отметить, что специфическая сольватация анионо может быть обусловлена не только образованием водородных связей с протонным растворителем или ионных пар, но и координационными взаимодействиями с макроциклическими органическими лигандами, в частности с протонированными риптан-дами [591, 592]. Недавно с помощью спектроскопии ЯМР СЕ в водных растворах были идентифицированы комплексные соединения— криптаты хлсфид-аниона, обладающие строго определенным составом [591]. В таких комплексах анион локализован во внутримолекулярной полости криптанда, где ои удерживается системой водородных связей. Об изучении нуклеоф ль-ности таких ионов галогенов, связанных специфическими координационными связями, в различных растворителях ока не сообщалось. [c.305]

    Для определения строения природных фурокумаринов большое значение имеют спектральные исследования. Для идентификации заместителей особенно важна спектроскопия ЯМР при определении типа замещения могут быть полезны лантанидные сдвигающие реагенты [6]. Важным аналитическим признаком являются констан--ты дальнего взаимодействия между протонами [7]. В масс-спектрах простых фурокумаринов наблюдаются интенсивные пики молекулярных ионов. Основное направление фрагментации обычно включает потерю СО пироновым кольцом этому предшествует (или протекает одновременно) отщепление метильного радикала. Фурановый цикл не затрагивается до последующих ступеней фрагментации [8, 9]. [c.179]

    Валентное карбонильное поглощение v( O), вероятно, применяется наиболее часто из всех характеристических частот групп, используемых обычно в работах по определению структуры. Важность этого поглощения не уменьшилась с появлением спектроскопии ЯМР, так как оно дает прямую информацию (а не косвенную, какой является величина т для а-протонов), касающуюся наличия или отсутствия отдельных карбонильных групп. Карбонильное поглощение почти всегда интенсивно (е 300 2000) и лежит в пределах области характеристических частот групп (1820—1620 см рис. 4.5). Точное значение частоты, как правило, дает возможность химику сделать выбор между вероятными структурами так, более высокая частота всегда бывает обусловлена карбонильной группой 5-членного, а не 6-членного кольца, и это свойство было широко использовано в исследовании природных веществ, для того чтобы отличить 5-членные циклические формы от 6-членных для кетонов, лактонов, лактамов и ангидридов. Конечно, иногда случается так, что накладываются поглощения двух различных карбонильных групп одной и той же молекулы, как в соединении XXVII, но двойственное происхождение одиночной полосы можно обнаружить при внимательном исследовании интенсивности (ср. табл. 4.1). [c.167]

    Известно, что после включения кислорода в молекулу алюминийтриалкила присоединение таких доноров, как эфир и амины, невозможно, потому что алкоксигруппа вследствие сочетания индуктивного и координационного (доноркого) эффектов [4] является более сильным донором, чем молекула эфира. (Это используют при так называемом определении активности , стр. 30, а также [5].) Этот факт при молекулярной спектроскопии проявляется во влиянии ОС-поглощения в ИК-спектра.х или в химическом сдвиге в спектрах протонного резонанса [4, 6]. [c.142]

    Многие из методов переноса поляризации, разработанных первоначально для гетероядерных систем, могут быть приспособлены для изучения гомоядерных спин-спиновых взаимодействий. Разработано множество методов редактирования, которые основаны на распознавании спиновой конфигурации . Эти методы чувствительны к топологии спин-спиновых взаимодействий и позволяют упростить анализ сложных перекрывающих протонных спектров. Поскольку многие из этих методов выводятся из двумерной спектроскопии, более подробно мы их рассмотрим в гл. 8. Здесь достаточно упомянуть, что многоквантовые фильтры позволяют выборочно выделить сигналы взаимодействующих групп, содержащих по меньшей мере определенное минимальное число взаимодействующих ядер. Так, двухквантовую фильтрацию можно применить для выделения сигналов от взаимодействующих пар ядер углерода-13 [4.165] и от взаимодействующих систем по крайней мере с двумя ядрами [4.166 — 4.170]. Чтобы выделить сигналы, относящиеся к более сложным спиновым системам, были использованы многоквантовые фильтры более высокого порядка [4.171 —4.173]. При помощи так называемых методов /7-спиновой фильтрации в благоприятных случаях можно подавить сигналы спиновых систем с числом ядер 7V > р м 7V < р [4.173]. И наконец, при помощи специальных последовательностей импульсов, подобранных для спиновой системы [4.174, 4.175], можно разделить сигналы, соответствующие группам спинов, связанных со спин-спиновыми взаимодействиями различной топологии (конфигурации), но с одинаковым числом ядер. Например, можно разделить четырехспиновые системы типа АзХ и А2Х2. В будущем можно ожидать появления большого числа методов усиления и редактирования сигналов, поэтому любая попытка сделать полный обзор этих методов не только выходит за рамки настоящей главы, но и вскоре может быстро устареть. Поэтому мы обсудим лишь некоторые из методов, которые могут помочь в понимании основных принципов. [c.226]

    Ганё и Мейер [231] использовали и закрепили ПМР-спектроскопи-ческий метод для определения положения аминогруппы в фуроксановом ядре. На примерах изомерных пар нескольких ариламинофуроксанов они установили, что протоны аминогруппы, расположенной со стороны N-оксидиой группы кольца, имеют химический сдвиг 5,9—6,1 м.д., а с противоположной стороны кольца — 6,2—6,5 м,д. [c.56]


Смотреть страницы где упоминается термин ЯМР-спектроскопия определение протона: [c.44]    [c.986]    [c.35]    [c.26]    [c.297]    [c.19]    [c.94]    [c.200]    [c.208]    [c.64]    [c.64]   
Современная аналитическая химия (1977) -- [ c.179 ]




ПОИСК





Смотрите так же термины и статьи:

Протоны определение



© 2025 chem21.info Реклама на сайте