Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределение полисахаридов

    Наиболее достоверная картина распределения полисахаридов на электрофореграмме достигается элюированием углеводов с отдельных участков электрофореграммы, на которые ее разрезают, [c.50]

    Значительный вклад в представления о распределении полисахаридов, в том числе ГМЦ, внесли работы Мейера и Уилки [54, 55, опубликованные в 1959—1962 гг. В своих исследованиях авторы использовали молодую древесину ствола сосны, а также других пород, срубленных в середине августа. Часть ствола освобождали от коры и лезвием отделяли мягкий слой камбия, т. е. клетки, содержащие только слои М и Р. Следующие слои клеток снимали микроманипулятором под поляризационным микроскопом. Собранные образцы подвергали кислотному гидролизу и в гидролизатах определяли содержание отдельных моносахаридов. Уста- [c.35]


    Отмечается, что кроме приведенных сахаров гидролизаты содержат уроновые кислоты, особенно большое количество которых (>20%) находится во фракции М + Р. Исходя из соотношения сахаров в полисахаридах, ранее установленных для выделенных и очищенных фракций, можно использовать полученные данные содержания сахаров в кислотном гидролизате для пересчета их на определенные полисахариды. Необходимо лишь отметить, что это ие оправдано в случае образцов М+Р, так как ГМЦ в М+Р отличаются от состава ГМЦ во вторичной оболочке. Как отмечает Мейер [54], представленные данные по составу полисахаридов в отдельных слоях весьма приближенны и отражают тенденцию распределения полисахаридов в клеточной оболочке (табл. 1.3). [c.36]

    Некоторые сведения о распределении полисахаридов в стенках целлюлозных волокон получены косвенным путем и дают лишь качественные характеристики. [c.367]

    В разветвленных полисахаридах довольно частый случай — расположение более лабильных к кислотному гидролизу звеньев в боковых цепях и более прочных — в главной цепи. Тогда при частичном гидролизе можно получить набор моносахаридов и низших олигосахаридов из боковых цепей и полимерный материал главной цепи. Такой результат позволяет сразу установить, каково в общих чертах распределение определенных типов остатков между главной и боковыми цепями, а также, что пе менее важно, получить достаточные количества полисахарида упрощенной структуры (такие полимерные фрагменты часто называют деградированными полисахаридами) и установить его строение, т. е. решить уже более простую задачу, чем установление строения нативного (неизмененного) полисахарида. [c.101]

    Эффективность акриловых реагентов связана с особенностями их состава и строения. В отличие от реагентов на основе полисахаридов с их нестойкими эфирными и гликозидными связями у акриловых полимеров цепи скрепляются прочными связями углерод — углерод. Это придает им большую энзиматическую, гидролитическую и термоокислительную устойчивость. Существенно и расположение функциональных групп непосредственно у главной цепи, а не в связи с циклическими группировками, как у крахмала или КМЦ. Малые размеры заместителей (группы N, СНз, СООН) и высокая их полярность обеспечивают гибкость полимерных цепей и их развернутые конформации, наиболее выгодные с точки зрения химической обработки и легко регулируемые изменениями pH. Содержание большого числа активных групп, различных по своей природе, и атомов водорода с повышенной способностью к образованию водородных связей обусловливают своеобразие коллоидно-химических свойств реагента и его многофункциональность. С этим связана и склонность полиакрилатов к взаимодействию с щелочноземельными и другими металлами. Большое значение имеет структура макромолекул — распределение в них отдельных звеньев. Для промышленного продукта характерно неупорядоченное строение и размещение функциональных групп. [c.192]


    Для характеристики гемицеллюлоз необходимо знать качественный и количественный состав молекул полисахаридов, входящих в их состав. Исследование этих полимерных углеводов включает установление числа, соотношения и последовательности распределения компонентов в полимерной цепи, природы, числа и местоположения остатков, составляющих ответвления цепи, состава и положения неуглеводных заместителей, степени разветвленности молекул, положения и конфигурации гликозидных связей определение спектров поглощения, молекулярного веса, оптической активности, плотности и других химических, физико-химических и физических свойств. [c.55]

    Структура макромолекул полисахарида, построенного из одинаковых или различных мономерных остатков, определяется природой мономеров конфигурацией гликозидных связей положением атомов, соединенных гликозидными связями последовательностью распределения разных типов связи в полимерной цепи природой, числом и местоположением ответвлений. Исчерпывающие сведения об этих деталях структуры позволяют составить представление о строении полисахарида и дать схематическую формулу структуры макромолекул. [c.87]

    Обычно строение олигосахаридов соответствует основной структуре исходного полисахарида и исследование их дает важные сведения о строении молекул, о природе связи между моносахаридами, порядке распределения отдельных остатков и ответвлений в цепи. [c.124]

Рис. 18. Возможный порядок распределения точек разветвления цепи в молекулах полисахаридов Рис. 18. <a href="/info/295093">Возможный порядок</a> распределения точек <a href="/info/117813">разветвления цепи</a> в молекулах полисахаридов
    Из других методов определения молекулярного веса наиболее надежным является метод седиментации.в ультрацентрифуге [39]. Для определения полимеров с молекулярным весом в пределах от 10000 до 30 000 может быть использована техника седиментацион-ного равновесия [40, 41]. По скорости седиментации полисахарида или по степени распределения его в центрифужной ячейке в равновесных условиях можно вычислить молекулярный вес и установить степень его полидисперсности [21, 40]. [c.148]

    Наиболее детально изучено распределение в слоях клеточной стенки лигнина и целлюлозы. При этом использовались окрашивание реактивами, растворение полисахаридов в кислотах, выделение отдельных слоев клеточной стенки микроманипулятором и их химический анализ, ультрафиолетовая и флуоресцентная микроскопия. [c.319]

    Детальное исследование распределения лигнина и полисахаридов в одревесневших клеточных стенках древесины ели и березы измерением интенсивности абсорбции тонкого пучка ультрафиолетовых лучей при прохождении их через прозрачный срез подтвердило преимущественное расположение лигнина в срединной пластинке и первичной стенке, а также частично в наружных слоях вторичной стенки [42, 43]. В срединной пластинке еловой древесины содержание лигнина достигает 73 /о, а во вторичной стенке — не более 16%. Отсюда следует, что полисахариды сосредоточены в основном во вторичном слое. Была сделана попытка измерить этим методом взаимное расположение целлюлозы и гемицеллюлоз. Для этого полисахариды вначале были превращены в окрашенные соединения, абсорбирующие свет. [c.320]

    Термин макромолекулы обычно применяется к молекулам с молекулярными весами более 10 000. Такие макромолекулы, как белки, полинуклеотиды и полисахариды, необходимы для жизни, их структуры осуществляют сложные функции. Макромолекулы типа синтетических высокополимеров являются основой многих синтетических волокон, пластиков и синтетического каучука. Соотнощение между физическими свойствами этих материалов и их молекулярным строением имеет огромнейшее значение. В этой главе будут рассмотрены белки и синтетические высокополимеры. Изучая такие свойства, как вязкость, ультрацентрифугирование, диффузия осмотическое давление и рассеяние света, можно получить информацию об их молекулярном весе, о распределении и форме распределения молекулярных весов. [c.601]

    Распределение гемицеллюлоз и других нецеллюлозных полисахаридов изучено меньше. Установлено, что в слоях Si и 8з(Т) относительное-содержание гемицеллюлоз выше, чем в слое S , причем наибольшая концентрация гемицеллюлоз наблюдается в слое Sj. [c.218]

    На полоску хроматографической бумаги размером 1X1,5 см наносят 0,005— 0,1 мл 1—2%-ного раствора исследуемых полисахаридов в боратном. буфере (pH 9,3). Полоски подсушивают на воздухе н помещают в широкий бюкс. Полоски картона (картон для электрофореза) размером 2.5X40 см смачивают боратным буферным раствором и помещают в камеру прибора для Эотектро-фореза. Для этой цели можно использовать прибор ЭФА-1. Полоски бумаги с исследуемым раствором кладут на ленты картона, лежащие на рамке камеры прибора так, чтобы они были вблизи катода и на расстоянии 4—5 см от сгиба картона. Электрофорез проводят в боратном буферном растворе при pH 9,3. Электрофореграммы высушивают- и разрезают на отдельные участки длиной по 2 см. Полисахариды с каждого отрезка элюируют водой или раствором щеоючи. Элюаты гидролизуют с 2%-ным раствором НС1 в течение 3 ч при слабом кипении и затем исследуют хроматографией на бумаге или газожидкостной хроматографией. Качественная и количественная хроматография компонентов в гидролизатах элюатов позволяет установить порядок распределения полисахаридов на электрофореграммах и их химический состав. [c.51]


    Определение распределения полисахаридов представляет собой более трудную задачу. Немногочисленные ранние исследования касались лишь распределения пентозанов. Используя частичную деградацию выделенных волокон древесины хвойных и лиственных пород, установили [58], что в трахеидах хвойных пород на поверхности пеитозаиы составляют 50—60 % и вблизи люмена 24 %, а в случае волокон лиственных пород соответственно примерно 100 % и 8—10 %. [c.185]

    Из фундаментальных соотношений теории случайных марковских процессов выведены стохастические интегродифференциальные (скачкообразные), разрывные (дискретно-непрерывные), диффузионные и матричные (дискретные в пространстве состояний по времени) модели кинетики механодеструкции, описывающие эволюцию дифференциальных функций числового распределения макромолекул полимеров по длинам. Проведен последовательный анализ выведенных уравнений кинетики механодеструкции. Он показал, что при некоторых упрощающих предположениях решениями этих уравнений являются известные в литературе функции распределения Пуассона, Танга, Кремера-Лансинга и др. С помощью математического аппарата теории дискретных марковских процессов построены модели кинетики структурных превращений в ферритах -шпинелях, активированных в планетарных машинах разработана обобщенная модель кинетики механорасщепления зерен на примере природного полисахарида - крахмала. Из основного кинетического уравнения Паули выведены стохастические модели ряда элементарных химических реакций, протекающих в дисперсных системах при механическом нагружении частиц твердой фазы. Проведен анализ выведенных уравнений и выявлены преимущества статистического метода описания кинетики химических реакций перед феноменологическим. [c.19]

    ХОЛИНЭСТЕРАЗА, см. Ацетилхолинэстераза. ХОЛОСТОЙ ОПЫТ (контрольный опыт), повторение процедуры хим. анализа в аналогич. условиях (с теми же реагентами, приборами и т. п.), но без анализируемого к ва. Проводят для определения поправки, к-рую необходимо вычесть из значения аналит. сигнала, измеренного при анализе исследуемого в-ва, чтобы получить правильный результат. Иногда поправку специально не определяют, а учитывают непосредственно в ходе измерений аналит. сигнала напр., в дифференц. спектрофотометрии р-р, полученный в X. о., используют в качестве р-ра сравнения. X. о., проведенный без анализируемого в-ва, не всегда позволяет найти правильное значение поправки, т. к. распределение определяемого компонента между фалами в разл. стадиях анализа может зависеть от содержания всех остальных компонентов. Флуктуации результатов X. о. определяют предел обнаружения вещества. Значения поправки X. о. зависят от чистоты реактивов и условий анализа. ХОНДРОИТИНСУЛЬФАТЫ, сульфатированные муко-полисахариды. Входят в состав соединит, тканн животных (хрящей, сухожилий). Углеводные цепи X. (см. ф-лу) по- [c.665]

    Известно, из каких моносахаридов построен полисахарид, в какой циклической форме их остатки входят в его состав, каково положение межмономерных связей в остатках каждого типа, каков тип структуры (разветвленный — неразветвленный). Для разветвленных полисахаридов, кроме того, известны степень разветвленности и структура точек ветвления. Это не мало, но это еш,е не структура. Что же еш е не известно Для всех типов полисахаридов — конфигурация гликозидных связей и последовательность расположения моносахаридных остатков в цепи, а также, за редкими исключениями, молекулярная масса. Для разветвленных полисахаридов к этому еш,е прибавляется вопрос о распределении остатков между основной и боковыми цепями, о длине боковых цепей и о положении различных точек ветвления (они могут располагаться в главной цепи, в первых от главной боковых цепях, во вторых от главной боковых цепях и т. д.). А для полисахаридов, имеюш,их неуглеводные заместители, надо еще установить положение этих заместителей. И только для одного — простейшего — типа полисахаридов мономерный анализ дает почти всю структурную информацию — для линейных регулярных полисахаридов, построенных из однотипно связанных остатков одного единственного моносахарида, каковы, например, целлюлоза и амилоза. [c.86]

    Огромные успехи исследований механизмов кодирования наследственной информации и биосинтеза белка, ферментативного катализа и регулирования активности ферментов, действия антибиотиков и гормонов, всей той области изучения живого, которую принято называть молекулярной биологией, приучили всех к мысли о том, что в структурах молекул жизни положение буквально каждого атома строго обусловлено и подчинено выполнению предназначенных для этих молекул биологических функций. Именно в атом смысле принято обычно говорить о специфичности биополимеров, прочно ассоциировавшейся в сознании исследователей с однозначным соответствием между структурой и выполняемой функцией. При таком комплексе стр>т<турного детерминизма трудно было освоиться с представлением о специфичности полисахаридов, для многих из которых характерна статистичность структур, микрогетерогенность и, нередко, хаотичность распределения различных моносахаридных остатков по цепи. И, тем не менее, накапливающийся материал по сложному и высоко специализированному функционированию углевод ных полимеров в живых системах убеждает в том, что и в этой области возможен и необходим перевод функций- нальных свойств биополимеров на язык молекулярных структур, т. е. применим основной принцип молекулярной) [c.162]

    Метод М. м. позволяет получать информацию для полного описания геометрии разл. конформеров в осн. состоянии и в седловых точках на пов-сти потенц. энергии (ППЭ), а также геом. строения в кристалле. Определяют также теплоты образования, энергии напряжения, энергии отдельных конформеров и высоты барьеров для конформац. превращений, частоты колебаний, распределения электрич. заряда, дипольные моменты, хим. сдвиги в спектрах ЯМР, скорости хнм. р-ций и др. Диапазон применения М.м. велик от простых молекул до полисахаридов и белков. В сочетании с др. методами, в частности газовой электронографией и рентгеновским структурным анализом, надежность и точность определения геом. характеристик повышается. [c.114]

    Расщепление по Смиту позволяет установить, в каком порядке распределены заместители в молекулах арабоксилана. Концевые остатки арабинозы полностью разрушаются при действии перйодата, но защищают от окисления замещенные в положении Сз остатки ксилопираноз. При окислении полисахарида с распределением заместителей типа I, после восстановления и мягкого гидролиза образуется с большим выходом ксилопиранозилглицерин. Полисахарид с заместителями типа И в конечном итоге должен дать, ксилопиранозилглицерин и ксилобиозилглицерин, а из полисахарида типа П1 должны образоваться гликозиды глицерина и олигосахаридов, размер которых определяется числом звеньев с рядом расположенных заместителей. [c.121]

    Весьма существенное значение имеет для установления структуры полисахаридов расщепление их до олигосахаридов частичный ферментативный гидролиз). Этим путем могут быть получены сведения о последовательности распределения моносахаридных остатков в полисахаридах ак, с помощью фермента пектиназы в результате гидролиза глюкуроноксилана белой березы [171] были получены ксилоза — 34%, нейтральные олигосахариды — 26% и кислые олигосахариды — 40%. Из кислых олигосахаридов была выделена альдопентауроновая кислота, г сследование продуктов гидролиза позволяет установить, из каких структурных единиц построена мо-.лекула полисахарида. Д [c.122]

    Исследования гемицеллюлоз различных растительных тканей показали, что преобладающее число полисахаридов имеет линейную структуру главной цепи, к отдельным звеньям которой могут быть присоединены различные осташи моносахаридов или уроновых кислот, образующих ответвления. Ответвления могут быть составлены из одного и нескольких остатков, возможен также различный порядок распределения точек разветвления в цепи (рис. 18). Относитель- [c.146]

    В гидролизатах глюкоманнана норвежской ели были обнаружены небольшие количества 1)-галактозы. Частичный гидролиз полисахарида дал трисахарид, состоящий из остатков /)-манкозы, Д-глюкозы, )-галактозы, и дисахарид 6-0-а-1)-галактопиранозил--1)-маннозу, в котором остатки 1)-галактозы присоединены к остаткам >-маннозы а, 1 6 гликозидными связями [10]. Поэтому возможно, что в древесине ели, кроме глюкоманнана, присутствует небольшое количество галактоглюкоманнана. Остается пока не определенным порядок распределения остатков / -глкжозы, Д-ман-нозы и разветвлений в макромолекулах глюкоманнана. Также не ясно, одинаковы ли ветви ответвлений по длине. Очень малая разница между величинами, среднечисловой и средневесовой степенью полимеризации [9] указывает на то, что полисахарид имеет короткие боковые цепи. [c.167]

    Для анализа электрофореграммы разрезают на отрезки по 2 см, полисахариды с полученных отрезков элюируют водой, элюаты гидролизуют и углеводный состав гидролизатов определяют хроматографией на бумаге с растворителем пиридин— этилацетат—вода (1 5 5). Состав углеводов на хроматограммах, соответствующих отрезкам —6 электрофореграмм (рис. 26), дает возможность представитв распределение на электрофореграммах 4-0-метилглюкуроноарабоксилана и галактуроноарабогалактана. Наличие только двух пиков на электрофореграмме свидетельствует об однородности разделенных полисахаридов. [c.177]

    Лиственница — наиболее распространенная порода древесины Дальнего Востока и Восточной Сибири. На территории СССР произрастает несколько видов лиственницы даурская, сибирская, Сукачева и др. Исследование древесины даурской лиственницы различных районов страны (Якутской АССР, Дальнего Востока и Сахалина) показало, что химический состав образцов из мест с различными условиями произрастания не одинаков [48]. Так, содержание целлюлозы в них колеблется от 30,5 до 45,4%, пентозанов от 5,6 до 10,1%, веществ, экстрагируемых водой, от 11,9 до 33,3%. Основную массу водорастворимых веществ даурской лиственницы составляет арабогалактан, содержание которого в различных образцах колебалось от 4,5 до 29,7%. Наблюдалось также различие в химическом составе ядра по сравнению с заболонью. Содержание легкогидролизуемых полисахаридов в ядре одного из образцов найдено равным 25,5%, в заболони 16,5%, в то время как содержание арабогалактана в ядре этого же образца составляет 19,5%, а в заболони— только 0,8%. Приведены обширные исследования по распределению арабогалактана в стволе и его содержанию в разных образцах даурской лиственницы, взятых из различных районов произрастания, а также содержание арабогалактана в древесине в зависимости от возраста дерева и других условий и факторов роста [49]. Эти анализы не показали прямой зависимости между содержанием арабогалактана и возрастом дерева, однако наблюдается тенденция к повышению его содержания с возрастом дерева. В заболони якутских образцов древесины в возрасте от 22 до 186 лет арабогалактана содержится, как правило, от 0,6 до 1,4%, в заболони лиственницы, пораженной гнилью, содержание арабогалактана возрастает до 3,27о- В образцах лиственницы в возрасте от 29 до 186 лет содержание арабогалактана в ядре колеблется от 5,2 до 21,3%. Ара-богалактан, содержащийся в дереве и находящийся почти полностью в ядре, распределяется по диаметру среза таким образом, что количество его увеличивается по направлению от центра к периферии и достигает максимума в годичных кольцах ядра, граничащих с заболонью. Содержание арабогалактана при переходе в заболонь резко падает и затем остается примерно на одном уровне при даль- [c.188]

    При условиях метилирования полисахарида, а также его выделения возможна миграция ацетильных групп и частичный гидролиз, поэтому результаты исследований метилированием дают только приближенное распределение ацетильных групп в природном 0-ацетил-(4-0-метилглюкуроно)-ксилане. В связи с этим Бу-венгом [102, 106] было исследовано распределение 0-ацетильных групп в ацетилированном 4-0-метилглюкуроноксилане методом локализации ацетилов с применением фенилизоцианата для введения защитных заместителей. Для замещения свободный гидроксильных групп полисахарид в растворе безводного диметилформамида обрабатывался фенилизоцианатом, деацетилирование проводилось добавлением небольшого количества серной кислоты к раствору полисахарида в диметилформамиде. 0-ацетильные группы замещались 0-метильными путем чередующихся деацетилирования и метилирования. Ниже представлена схема замещения 0-ацетильных групп (см. на стр. 214 верхняя). [c.213]

    Полученным таким способом волокнам можно придать разную организацию, например, расположить их параллельными пучками, чтобы имитировать волокнистую структуру мышечной ткани. Однако необходимо соединить волокна между собой для получения продуктов с приемлемой текстурой. Когезии можно добиться термообработкой сырых волокон под давлением [32 , но чаще всего она достигается введением связующего вещества. Нередко для этого служит овальбумин, поскольку он коагулирует под действием тепла, но в состав связующих веществ могут входить и другие белки, такие, как желатин, казеин, белки сыворотки молока, клейковина, белки сои. Используются также крахмал и полисахариды типа альгината и каррагинана благодаря их загущающим и желирующим свойствам. Связующие вещества, помимо их склеивающей, когезионной роли, могут служить основой для введения пигментов, ароматизирующих добавок и липидов. Пропитку волокон можно проводить в ванне с раствором, содержащим связующее вещество. Закрепление связующего вещества происходит затем под действием прогрева, а более равномерное распределение в массе можно улучшить разделением волокон вибрацией [29] или заставив их циркулировать в противотоке связующего вещества в извилистом контуре [71]. Некоторые авторы [64] предложили технологический процесс, в котором связующее вещество не распределяется равномерно, [c.536]

    При обработке моносахаридов кислотой в водном растворе иолучается смесь олигосахаридов и сравнительно низкомолекулярных полисахаридов с ветвящимися цепями и случайным распределением а- и р-т1гаов [c.483]

    Изучение количественного распределения гемицеллюлоз по клеточной стенке показывает, что у хвойных пород концентрация глюкоманнанов возрастает в направлении от сложной срединной пластинки (ML + Р) к слою 8з(Т), а концентрация араби-ноглюкуроноксилана почти не меняется. У лиственных же пород относительное содержание глюнуроноксилана выше во вторичной стенке, чем в (ML + Р). Полисахариды бородавчатой мембраны в древесине хвойных пород представлены в основном га-лактоглюкоманнанами. [c.218]


Смотреть страницы где упоминается термин Распределение полисахаридов: [c.106]    [c.106]    [c.185]    [c.185]    [c.106]    [c.249]    [c.40]    [c.55]    [c.168]    [c.108]    [c.121]    [c.168]    [c.177]    [c.272]    [c.483]    [c.390]    [c.251]   
Смотреть главы в:

Древесина -> Распределение полисахаридов




ПОИСК





Смотрите так же термины и статьи:

Полисахариды



© 2025 chem21.info Реклама на сайте