Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электростатические величины

    Реальную опасность воспламенения газо-паровоздушных смесей от разрядов статического электричества представляет собой человек, который способен накапливать электростатические заряды. Разность потенциалов между телом человека и окружающими металлическими предметами может достигать значительных величин— десятков тысяч вольт. [c.339]


    Это особенно актуально при рассмотрении вопроса о ионных парах и сольватных оболочках ионов.) Ионные растворы с измеримыми концентрациями существуют только благодаря тому, что взаимодействия между ионами и молекулами растворителя достаточно сильны, чтобы преодолеть взаимодействие между ионами. В противном случае соль была бы нерастворима. При рассмотрении ионных систем мы, таким образом, сталкиваемся с так называемыми силами, действующими на далеких расстояниях, т. е. между сильно взаимодействующими частицами. Чтобы оценить величину этих взаимодействий, подсчитаем их, исходя из чрезвычайно простых, но полезных электростатических моделей. Из электростатической теории следует, что сила взаимодействия между двумя точечными зарядами 218 и на расстоянии г в вакууме равна [c.444]

    Огромную роль в межмолекулярных взаимодействиях играет водородная связь, поскольку ею в значительной мере определяется возможность образования комплексов, мицелл и ассоциаций молекул в объеме масла и на поверхности металлов. Межмолекулярная водородная связь зависит от электростатических и донорно-акцепторных взаимодействий между молекулами—донором (АН) и акцептором (В) водорода. Энергия водородной связи по величине (8—60 кДж/моль) уступает энергии химических связей, но именно она в межмолекулярных связях во многом определяет ассоциацию молекул воды, спир- [c.203]

    Для того чтобы выразить коэффициенты активности полярных молекул через три параметра — радиус, дипольный момент растворенного вещества и диэлектрическую проницаемость растворителя, —можно воспользоваться простой электростатической моделью. Для нахождения величины свободной энергии сольватации сферической молекулы радиусом г с точечным диполем в центре можно использовать обычную модель растворителя. Величина / в, полученная Кирквудом [62] из электростатической теории, равна [c.457]

    Мюллер [134] предположил, что должна существовать аналогия между электростатическими величинами и различными характеристиками коагуляции. Поскольку напряженность поля высока в областях сильного искривления поверхностей носителей заряда, скорость коагуляции частиц также должна быть высокой в подобных местах на несферических частицах [98]. Можно продолжить аналогию, предположив, что частицы с формой, отличной от сферической, будут способствовать увеличению коагуляции по сравнению с коагуляцией на больших сферических частицах. Однако меньшая подвижность частиц несферической формы будет способствовать снижению коагуляции. Поэтому приближение Мюллера следует использовать только для [c.829]


    Энергия адсорбции неполярных молекул на поверхности ионных решеток. Если адсорбент построен не из атомов, а из ионов, то к рассмотренным дисперсионным силам притяжения добавляются индукционные силы притяжения диполя, индуцированного в молекуле адсорбата электростатическим полем, создаваемым ионами решетки адсорбента. Доля индукционных сил в величине потенциальной энергии адсорбции пропорциональна поляризуемости молекулы адсорбата 2 и квадрату напряженности электростатического поля над поверхностью адсорбента  [c.493]

    Многие будут критиковать написанные формулы размерностей для электростатических величин на том основании, что диэлектрическая [c.88]

    Поскольку можно судить на основании существующих довольно скудных данных, представляется вероятным, что в реакциях второго порядка, идущих с образованием связи между двумя частицами, будет составлять около Vз А7г, т. е. в общем величину порядка —20 см . Наоборот, для реакций распада можно ожидать, что в 1/3 т. е. около 10 см . В случае заряженных частиц действие электростатических сил на растворитель будет превышать влияние растворенного вещества и можно ожидать, что окажется отрицательной для реакции образования заряженных частиц. [c.442]

    Авторы оценивают величины поперечного сечения изменения объема в предположении некоторой средней молекул и эффективной длины связей в переходном комплексе, относя, таким образом, все изменения объемов за счет частиц растворенного вещества. Такое приближение, исключающее флуктуации плотности в растворе и действующие на большом расстоянии электростатические взаимодействия, не может объяснить различия между растворителями. Заметим, что при диссоциации слабого электролита (МВ М - -В") происходит увеличение объема за счет увеличения числа частиц, которое, однако, перекрывается электростатическими взаимодействиями растворителя, так что этот процесс сопровождается уменьшением объема. [c.442]

    Однако и качественная картина весьма важна и полезна. Очень большие отрицательные значения величин АЗ,АСр и АУ для случая ионизации позволяют высказать предположение о том, что взаимодействие ион — растворитель осуществляется нд больших расстояниях, так как именно электростатическое взаимодействие определяет эти величины (см. табл, XV.7). Зависимость термодинамических величин [см. уравнения (XV.12.2) — (XV.12.5)] от Иг указывает на то, что 90% всей величины локализуется на оболочке из молекул растворителя, радиус которой равен 10 гх. (Здесь гх — расстоя- [c.462]

    Для сравнения в табл. XV.8 перечислены изменения энтропии для ряда ионных равновесий в воде при 25°. Несмотря на то, что в таблицу включены частицы с ковалентными связями, для которых возможность применения электростатической модели весьма сомнительна, общее изменение энтропии симбатно изменению, соответствующему уравнению (XV.12.2). Величины АР° и АЯ° дают гораздо худшее совпадение. [c.464]

    Суммарное влияние смеси различных ионов в растворе на активность каждого из них можно выразить с помощью ионной силы раствора. Ионная сила раствора — это величина, которая зависит от концентраций и нарядов всех ионов, находящихся в растворе, н является мерой электростатического взаимодействия между ними. [c.106]

    Твердые вещества, при растворении которых в воде и других полярных растворителях, образуются электролиты, являются, как правило, кристаллическими телами, имеющими ионные или близкие к ионным решетки. В чисто ионных решетках не существует молекул вещества, и кристалл любой величины можно рассматривать как одну огромную молекулу. Ионы противоположных знаков, составляющие такую решетку, связаны между собой большими электростатическими силами. При переходе ионов Е раствор, энергии электростатического взаимодействия ионов в решетке противопоставляется энергия взаимодействия ионов с дипольными молекулами растворителя, который втягивает ионы решетки в раствор. При этом ионы окружаются молекулами растворителя, образующими вокруг иона сольватную (в частном случае — гидратную) оболочку. Энергия взаимодействия ионов различных знаков, перешедших в раствор и окруженных сольватными оболочками, уменьшается по сравнению с энергией их взаимодействия в решетке (при равных расстояниях г между ионами) обратно пропорционально диэлектрической проницаемости растворителя О в соответствии с законом Кулона  [c.391]

    Таким образом, распределение ионов будет определяться соотношением электростатической энергии и энергии хаотического движения ионов. Оказывается, что эти энергии сравнимы по величине, поэтому реальное распределение ионов в электролите является промежуточным между беспорядочным и упорядоченным. В этом заключается своеобразие, специфичность электролитов и трудности, возникающие при создании теории электролитов, так как прежде всего необходимо выяснить характер распределения ионов. [c.393]


    Таким образом, электростатическое взаимодействие гидрофильных поверхностей на малых расстояниях в водном электролите имеет явно выраженный экспоненциальный характер, причем основной вклад в это взаимодействие вносят поверхностные диполи, а не поверхностные заряды. Легко показать, что ди-польное слагаемое на порядок больше зарядового слагаемого даже для максимально заряженных липидов. Следовательно, такое электростатическое взаимодействие будет значительным и в случае нейтральных гидрофильных поверхностей, так как оно почти не зависит от величины поверхностного заряда. Столь необычный, на первый взгляд, результат является следствием нелокальной поляризуемости среды, благодаря которой поверхностные диполи (в противоположность классической электростатике) создают электрическое поле. Естественно предположить, что именно это взаимодействие измеряется в экспериментах как гидратационные силы. [c.165]

    Следовательно, в предельно разбавленном растворе величина линейно связана с логарифмом моляльности /П . Предположим, что отклонение от уравнения (XVI,43) для более концентрированных растворов обусловлено только электростатическим взаимодействием ионов при их сближении. Это предположение справедливо только для разбавленных растворов (хотя и более концентрированных, чем предельно разбавленные). Величина Ус в таких растворах не равна единице, и уравнение (XVI, 43) примет вид  [c.411]

    А. Н. Фрумкиным, который показал, что, с одной стороны, силы электростатического взаимодействия между электродом и ионами вызывают изменение концентрации реагирующих ионов в зоне реакции, а с другой, — наличие двойного слоя сказывается на величине энергии активации электродного процесса, [c.627]

    Исследования, выполненные сотрудниками Московского энергетического института Н. Г. Дроздовым и С. П. Носовым, показали, что возможность образования зарядов статического электричества в жидком кислороде обусловливается наличием в нем твердых частиц. Величина напряженности электростатического поля зависит от скорости движения частиц в жидком кислороде, количества примесей и их природы. Знак электрических зарядов, по данным этой работы, зависит от природы примесей. Наличие в жидком кислороде частиц активного глинозема и двуокиси углерода приводит к электризации жидкого кислорода с отрицательным знаком, тогда как наличие частиц силикагеля приводит к электризации с положительным знаком. Изучение процесса электризации потока жидкого кислорода при его дросселировании показало, что напряженность электрического поля имеет тенденцию к быстрому возрастанию при увеличении скорости жидкого кислорода. [c.28]

    Напротив, повышение по величине или сближение одинаковых по знаку потенциалов поверхностей пленки (г )1 и г[)2) приводит к росту сил электростатического отталкивания. В результате вся изотерма может оказаться в области П>0, что приводит к полному смачиванию (кривая 3 на рис. 13.3). [c.217]

    Чтобы преодолеть электростатическое отталкивание между ядрами водорода, энергия сталкивающихся ядер должна иметь величину порядка [c.426]

    Величина Од определяется многими факторами взаимодействиями, обусловленными электростатическим возмущением, отталкиванием электронов металла и лигандов, а-связью металл — лиганд, п-связью металла с лигандом и п-связью лиганда с металлом. Более подробно все эти вопросы рассматриваются в монографиях [9, 10] и статье [18]. [c.98]

    Как оказалось [39], тетраэдрические металлсодержащие анионы, которые сами по себе не анизотропны, могут давать псевдоконтактный вклад в неметаллическом катионе. Причину и величину /-анизотропии можно в первом приближении объяснить электростатическим возмущением кристаллического поля сферического аниона, вызываемым катионом. Предполагается также, что за время жизни ионной пары тетраэдрическая структура аниона под действием катиона несколько искажается. Поскольку катион лежит на единственной в своем роде оси, он будет подвержен влиянию дипольного сдвига, обусловленного индуцированной в ионной паре анизотропией. Существует много эквивалентных путей, по которым катион может приблизиться к тетраэдрическому или октаэдрическому аниону для образования ионной пары, и все эти пути характеризуются сопоставимыми псевдоконтактными вкладами катиона. Таким образом, динамический процесс подобного вида не усредняет до нуля псевдоконтактный сдвиг катиона. В то же время динамический процесс такого вида усредняет до нуля влияние псевдоконтактного сдвига на положение сигналов атомов тетраэдрического илп октаэдрическою аниона. [c.189]

    Разделение эмульсий. Проблема разделения эмульсий имеет большое значение во многих отраслях промышленности химической, нефтеперерабатывающей, фармацевтической, металлообрабатывающей, кожевенной и др. Состав эмульсий может быть самым разнообразным. Наиболее часто встречаются на практике эмульсии типа масло—вода или какая-либо другая жидкость, причем в зависимости от концентрации компонентов возможна инверсия фаз дисперсная фаза в результате коалесценции капель становится сплошной, а сплошная — дисперсной. Стабильность эмульсии зависит от многих факторов фазового соотношения и различия плотностей фаз, концентрации часто присутствующих в эмульсиях электролитов, химической структуры внешней и внутренней фаз, величины электростатических сил, возникающих вследствие химической реакции или адсорбции ионов, и др. [c.281]

    Интересно отметить, что для средних межмолекулярных расстоя ний в 5 А напряженность электростатического поля даже в среде с высокой диэлектрической постоянной составляет значительную величину (например, для воды 7-10 В/см). [c.34]

    Во-первых, обратимся к теории Бьеррума о влиянии поля ионного заместителя на равновесие ионизации (гл. XIV, разд. 1,6). Эта теория заключается в том, что электростатический потенциал поля заместителя в точке, до которой должен доходить противоионный реагент с зарядом qi, на конечной стадии реакции будет иметь величину Vi, которую можно вычислить. Инкремент наращивания энергии поля равен и Бьеррум рассматривает его (после статической поправки, входящей в энтропийный член) как добавку к изменению свободной энергии реакции. Это означает, что если бы ионные заместители были различными в том смысле, что имели бы разный заряд (или эффективный заряд) или были бы по-разному расположены относительно друг друга, так чтобы в этой же указанной выше точке возникал потенциал Vo, то дополнительный вклад в полярную энергию был бы равен V qi. Далее, если бы в молекуле присутствовали одновременно первый и второй указанные выше заместители и были бы расположены на достаточном расстоянии друг от друга, чтобы действовать независимо, то дополнительный вклад в свободную энергию был бы равен Vi У ) q . Таков принцип аддитивности в простейшей форме. Это означает также, что если влгесто захвата протона, рассмотренного Бьеррумом, рассмотреть захват какого-либо другого иона, например иона с зарядом то вклады в величину свободной энергии, обусловленные первым заместителем, вторым заместителем и обоими заместителями вместе, составляли бы Viq , V q и (Fi - - Fg) соответственно. Таков простейший принцип пропорциональности. Аддитивность и пропорциональность зависят в основном от составляющих полярного эффекта. Каждая составляющая является произведением двух факторов, один из которых соответствует какой-либо одной физической величине одного реагирующего вещества, а другой — одной простой физической величине другого реагента. Наиболее существенным является то, что-каждый фактор определяет лишь одну электростатическую величину. Для двух реагирующих веществ, рассматриваемых вместе, должны быть две величины, но не обязательно на описанной здесь основе один к одному . Если учитывать сравнимые по величине энергии, получаемые при умножении заряда на потенциал и (точечного) дипольного момента на градиент потенциала, и, таким образом, вычислять величину двучленного выражения, например д У л grad V, то пропорциональность может не получаться. Условия проявления аддитивности и пропорциональности полярных эффектов, влияющих на равновесные реакции, полностью похожи на условия, необходимые для проявления этих же свойств в необратимых реакциях. Согласно теории переходного состояния, конечное состояние, в котором достигается взаимодействие заряда и потенциала, заменяется соответствующим переходным состоянием. Свойства аддитивности и пропорциональности в этом случае приписываются свободной энергии активации. [c.988]

    Природу ионной связи, структуру и свойства ионных соединений можно объяснить с позиций электростатического взаимодействия ионов. Способность элементов образовывать простые ионы обусловлена электронной структурой их атомов. Эту способность можно оценить величиной энергии ионизации и сродства атомов к электрону. Понятно, что легче всего образуют катионы элементы с малой энергией ИОНИЗЯИ.ИИ -Ц- тттрлпцнпчрмрлкныо металлы. Об- [c.86]

    Лейдлер [291 пытался объяснить отрицательное значение АУ АУ = = —6 см /молъ в Н2О) в этом случае тем, что увеличение заряда в оболочке активированного комплекса вызывает большие электростатические взаимодействия. Автору кажется, что это предположение противоречит наблюдаемому факту, так как в этом случае Д7= оказывается по абсолютной величине слишком малой. Так как 0Н является одним из самых маленьких ионов 7(С1 ) — У(ОН ) = 23 см (результат большого электростатического взаимодействия) следует учитывать множество других эффектов. Один из них — уменьшение размеров благодаря образованию связи — уже обсуждался ранее. Второй эффект — увеличение электростатического взаимодействия активированного комплекса благодаря тому, что заряд его равен 2, и третий — компенсирующее влияние большого эффективного радиуса активированного комплекса. Простая теория электростатического взаимодействия, естественно, пе может описать такое сложное взаимодействие. [c.443]

    Во всех расчетах не принимаются во внимание довольно значительные силы взаимодействия, возникающие из-за аффекта поляризации. Так, если нейтральную молекулу, не имеющую ио своей природе постоянного диполя,, поместить в электростатическое поле, у нее появляется наведенный дшюль Для изотропной молекулы с поляризуемостью а в однородном электрическом поле наведенный диполь будет противоположен по направлению Е и равен по величине — иЕ. Работа, которую необходимо затратить для [c.446]

    Рассмотрим агрегатную форму процесса кристаллизации парафинов. Явление агрегатной кристаллизации наблюдается в основном для высококипящих мелкокристаллических парафинистых нефтяных продуктов главным образом остаточного происхождения и заключается в следующем. Высококипящие высокомолекулярные парафины дают при кристаллизации весьма мелкую кристаллическую структуру. По величине образуюпщеся кристаллики парафина приближаются, особенно для многих тяжелых продуктов остаточного происхождения, к размерам мицелл коллоидных растворов. Поэтому продукты, содержащие взвесь из таких мельчайших кристалликов парафина, проявляют ряд свойств, присущих коллоидным системам, — нанример аномалию вязкости, дают явления, аналогичные гелеобразованию, и др. К числу таких свойств относится способность микрокристаллической взвеси собираться нри определенных условиях в скопления или агрегаты, как это происходит нри коагуляции коллоидных растворов. Одной из причин такой коагуляции (точнее агрегации) является выделение на поверхности кристалликов парафина вязких масляных компонентов, способствующих ч оединению отдельных кристалликов в агрегаты. Возможно, что в процессе агрегации кристаллов парафина существенную роль играют такж . и электростатические явления. [c.74]

    Наконец, мы должны рассмотреть эффект чередования — безусловно наиболее интересное и неожиданное свойство реакционных способностей мономеров, обнаруживаемое при сополимеризации. Как уже было показано, на это свойство пар мономеров указывает величина произведения г г , и, как видно из табл. 8, 1 меющиеся для ряда йономеров данные располагаются в правильную систему, в которой мономеры могут быть сгруппированы в такие ряды, что Г Г2 будет уменьшаться с разделением. Если такие ряды сгруппированы как в табл. Ю, то, очевидно, они идут параллельно способности заместителей в мономере отдавать или отрывать электроны (донорноакцепторным свойствам), причем алкильные и фенильные группы сдвигают мономеры влево, а карбонильные и аналогичные им группы — вправо по ряду. Это наблюдение с самого начала привело к предположению о том, что эффект чередования, по существу имеет полярный характер [14, 86, 122], хотя много раз дискутировался вопрос о том, возникает ли о вследствие простого электростатического взаимодействия нормально распределенных электронов реагирующих мономеров и радикалов или же является результатом более сложного явления [1, 101]. [c.150]

    Точность полученной величины определяется погрешностью наименее точно известного слагаемого, каким является сродство к электрону атома хлгрл. Эга величина часто находится из того же цикла Борна—Хабера в этот цикл подставляется величина эиергии кристаллической решетки, вычисляемая пе уравнению Борна, которое учитывает энергию электростатического взаимоден-стния ионов в кристаллической решетке. [c.66]

    Было предложено уточнить простую электростатическую модель с помощью теории кристаллического поля [51 пять (-орбиталей переходных металлов расщепляются в поле лигандов, и заполнение нижних уровней /-электронами уменьшает потенциальную энергию на величину, названную энергией стабилизации кристаллическим полем (ЭСКП). [c.17]

    В отличие от ковалентной связи, ионная связь не обладает направленностью. Это объясняется тем, что электрическое поле иона обладает сферической симметрией, т. е. убывает с расстоянием по одному и тому же закону в любом направлении. Поэтому взап-модействие между ионами осуществляется одинаково независимо от направления. Как уже отмечалось выше (см. рис. 29 на стр. 125), система из двух зарядов, одинаковых по абсолютной величине, но противоположных по знаку, создает в окружающем пространстве электрическое поле. Это означает, что два разноименных иона, притянувшиеся друг к другу, сохраняют способность электростатически взаимодействовать с другими ионами. В этом состоит еще одно различие между ионным и ковалентным типами связи ион-нал связь не обладает насыщаемостью. Поэтому к данному иону может присоединиться различное число ионов противоположного [c.150]

    Для физиков проблема структурных сил привлекательна тем, что эти силы являются, по-видимому, наиболее яркой демонстрацией пространственной дисперсии диэлектрического отклика в водном электролите. Д. Грюен и С. Марчелья [450] впервые показали, что гидратационные силы в фосфолипидных системах могут быть представлены как результат влияния пространственной неоднородности электрических полей на взаимодействие сближающихся фосфолипидных бислоев. В работах [451, 452] непосредственно использовали аппарат нелокальной электростатики для описания природы гидратационных сил. Отметим, что были предложены и другие теории гидратационных сил [453, 454]. Однако подход, основанный на нелокальной электростатике, представляется физически более достоверным, поскольку он позволяет представить эти силы как результат электростатического взаимодействия сближающихся фосфолипидных бислоев. Это, в свою очередь, позволяет независимо исследовать влияние электролита и параметров поверхности на величину гидратационных сил. Опишем кратко развитый нами подход, следуя [438]. [c.163]

    Если пренёбречь сцин-орбитальным взаимодействием, имеющим гораздо меньшую по сравнению с электростатическими эффектами величину, то каждую спин-орбиталь можно представить в виде произведения пространственной и спиновой частей  [c.67]

    При учете спин-орбитального взаимодействия моменты и 5 по отдельности уже не сохраняются, интегралом движения остается лишь полный момент I. Но мы пока будем пренебрегать спин-орбитальным взаимодействием (точнее, считать его,,пренебре-жимо малым по сравнению с электростатическим) и рассматривать I и 8 как сохраняющиеся величины модель Ь8-связи). [c.92]


Смотреть страницы где упоминается термин Электростатические величины: [c.393]    [c.400]    [c.401]    [c.403]    [c.268]    [c.428]    [c.460]    [c.461]    [c.23]    [c.60]    [c.250]    [c.53]    [c.232]    [c.602]   
Смотреть главы в:

Неразрушающий контроль Т5 Кн1 -> Электростатические величины




ПОИСК







© 2024 chem21.info Реклама на сайте