Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

И глубже, и полнее

    Исследование глубокого полного окисления паров муравьиной кислоты, выполненное на катализаторе СТК-1-7, показало (табл. 1.22), что оь исление кислоты протекает значительно интенсивнее, чем паров метилметакрилата, энергия активации равна 19,95 кДж/моль, натуральный логарифм предэкспоненциального множителя уравнения Аррениуса составляет 20,1. [c.39]

    При формировании композиции УДП оксидов металлов, катализирующих процесс глубокого полного окисления органических веществ с целью очистки промышленных отходящих газов, предпочтение следует [c.164]


    Вытравная печать (вытравка) состоит в получении на темно-окрашенной ткани белого или цветного рисунка. В первом случае печатают веществами, разрушающими окраску фона, во втором — теми же веществами в смеси с красителями, устойчивыми к их действию. Такой способ широко применяется для расцветки тканей из различных волокон преимуществами его являются глубокая полная окраска фона, четкость контуров и яркость отпечатков, которую трудно достичь при грунтовой печати. [c.229]

    Следует отметить, что некоторые вопросы освещены недостаточно полно или требуют некоторого уточнения. В частности, при описании методов разделения газовых смесей Ф. Азингер совершенно недостаточное внимание уделяет наиболее современному методу глубокого охлаждения. [c.6]

    Постепенное испарение с водяным паром применяют для отгонки небольшой массы растворителя от практически нелетучих масляных фракций. Однократное испарение с водяным паром применяют в процессе первичной перегонки нефти, а простую перегонку в вакууме —при разделении мазута. Для разделения тяжелых остатков широко используют также однократную перегонку в вакууме с водяным паром. Сочетание глубокого вакуума с водяным паром значительно понижает температуру перегонки и позволяет тем самым вести процесс при почти полном отсутствии разложения углеводородов с получением при этом большого отгона масляных фракций. [c.56]

    Продукты реакции разделяются в три ступени по схеме неглубокой переработки и в четыре ступени по схеме глубокой переработки (рис. IV-15). По схеме а неглубокой переработки продуктовая газожидкостная смесь углеводородов после блока термического крекинга поступает в испаритель высокого давления для грубого разделения на паровую и жидкую фазы при избыточном давлении 1 МПа. Паровая фаза поступает затем на разделение в ректификационную колонну 3, а жидкая фаза — в колонну 4 — испаритель низкого давления. Ис.ходное сырье термического—крекинга в жидкой фазе подается в низ колонны 5 и на верх колонны 4, где оно нагревается потоком пара продуктов реакции из блока 1. Разделение сырья на два потока позволяет более полно использовать избыточное тепло паров колонн 3 и 4. Газойлевые фракции из середины колонны 4 используют как сырье печи глубокого крекинга. Верхние продукты колонн 3 и 4 поступают на стабилизацию и разделение на бензин и газойлевые фракции. Давление в колонне 3 0,8—1,2 МПа, в колонне 4 0,15—0,3 МПа. Повышенное давление в первой колонне позволяет поддерживать высокие температуры керосино-газойлевой фракции и остатка, на- [c.225]


    Для более полного превращения тиофенов и его гомологов необходимы более низкие объемные скорости при высоком парциальном давлении водорода. Обессеривание тиофена может быть глубоким, если получающиеся при гидрогенолизе углеводороды претерпевают гидрокрекинг с образованием метана [5]. [c.10]

    На III ступени экстракцию проводят чистым растворителем при несколько повышенной температуре (—28 --33°). Температуру III ступени экстракции выбирают так, чтобы смесь разделялась на две жидкие фазы. Застывающий компонент III ступени является конечным продуктом процесса и после использования его холода поступает на регенерацию растворителя. Экстракт III ступени, содержащий масло с повышенной по сравнению с целевым продуктом температурой застывания, подают на обработку во II ступень экстракции. Такая система обработки сырья позволяет наиболее глубоко извлекать содержащиеся в нем низкозастывающие компоненты при наиболее полном использовании применяемого растворителя. [c.220]

    Промышленные испытания предлагаемого метода показали, что при отравлении катализатора серой, восстановление его первоначальной активности наступает при прекращении образования сероводорода, т.е. при полной "отмывке" катализатора от серы. При глубоких отравлениях это происходит достаточно долго - от 10 до 20 суток. В это время применение способа восстановления происходит следующим образом  [c.49]

    Фильтруя нефть или нефтепродукты через отбеливающую глину, можно добиться полного их обесцвечивания. Осветление нефти в природных условиях происходит при ее миграции из глубоких недр земли в верхние горизонты через толщи глин. Это подтверждается нахождением смолисто-органических соединений в глинистых пластах. [c.96]

    Перегонка, проводимая под очень низким давлением (10" мм рт. т.), причем так, что молекулы, переходящие в паровую фазу, непрерывно удаляются, называется молекулярной дистилляцией. В аппаратах для молекулярной дистилляции параллельно поверхности испарения располагают холодную конденсирующую поверхность. Между этими поверхностями молекулы, перешедшие в паровую фазу, движутся с минимальным числом столкновений (вследствие глубокого вакуума) в одном направлении от испаряющей поверхности к конденсирующей. Для полной конденсации паров между конденсирующей поверхностью и поверхностью испарения поддерживается перепад температур 100° С. [c.118]

    При неглубокой гидроочистке сырья более или менее полно удаляются сернистые соединения, непредельные углеводороды гидрируются. При глубокой гидроочистке происходит также частичное гидрирование ароматических углеводородов до нафтеновых полициклические ароматические и нафтеновые углеводороды превращаются в углеводороды того же ряда с меньшим числом колец. Причем даже при неглубокой гидроочистке, осуществляемой при 3—5 МПа, наблюдается образование углеводородного газа и фракций, выкипающих ниже начала кипения сырья, т. е. продуктов гидрокрекинга. —- [c.61]

    Осушка газа при высоких температурах особенно важна в процессах повторного использования технологического газа (например, при восстановлении катализаторов, циркуляции реакционной смеси и т. д.). Замена обычных адсорбентов цеолитами позволяет в ряде случаев сократить стадию охлаждения осушаемого газа, т. е. значительно снизить энергозатраты. Адсорбционная способность цеолитов сравнительно мало меняется с повышением температуры, поэтому тепло, выделяющееся в процессе поглощения паров воды, не оказывает существенного влияния на активность адсорбента. При использовании адсорбентов в стадии регенерации полное удаление влаги, как правило, не достигается и остающаяся влага оказывает сильное влияние на их осушающую способность в стадии адсорбции. В этом отношении цеолиты могут быть использованы для глубокой осушки газа, недостижимой другими осушителями. [c.109]

    Цеолиты являются прекрасными поглотителями сернистых соединений, одновременно с удалением которых можно осуществить также глубокую осушку газа. Цеолиты адсорбируют преимущественно сероводород. В области очень малых концентраций сероводорода адсорбционная способность цеолитов остается достаточно высокой для их практического применения, так как при этом достигается полное обессеривание. [c.111]

    Раствор, приготовленный из ацетата целлюлозы, растворителя (ацетона и воды) и агента набухания (перхлората магния, иногда формамида) в соотношении 22,2 66,7 10,0 и 1,1% (масс.), поливается тонким слоем на стеклянную пластину, подсушивается в течение нескольких минут и затем погружается в холодную воду при температуре около О °С, где выдерживается в течение 1 ч до отделения пленки от подложки. За это время происходит практически полное формование мембраны. В начальной стадии формования ацетон быстро испаряется с поверхности отлитой пленки и на ней образуется гелеобразный слой, препятствующий испарению растворителя с более глубоких слоев раствора полимера Таким образом, в момент погружения в воду, являющуюся осадителем для данного раствора, система представляет собой желированную оболочку, внутри которой находится раствор. В момент соприкосновения с водой гель затвердевает, сохраняя очень тонкую структуру пор поверхностного слоя. Раствор полимера, находящийся внутри оболочки, коагулирует медленнее, так как диффузия воды сквозь поверхностный слой затруднена. При этом водой вымывается как растворитель, так и порообразователь. [c.48]


    Необходимо отметить, что процесс, обратный первой стадии (адсорбции углеводорода) приводит к изомеризации (миграции двойной связи), что и наблюдали на опыте, а скорость восстановления катализатора, измеренная в отсутствие кислорода, достаточна для объяснения скорости окислительной дегидрогенизации [81]. Но эти модели не дают ключа к решению вопроса о происхождении различий в селективности у разных окислов, т. е. эти модели не раскрывают причин, заставляющих окислы отдавать предпочтение одному из возможных реакционных путей (через альдегид или диен). Начальный выход первичных продуктов окисления никогда не равен 100%, и всегда присутствует какое-то количество продуктов деструкции. Этот новый тип селективности связан с легкостью десорбции первичных продуктов, которые очень часто адсорбируются сильнее, чем олефин, как показывает их влияние на кинетику реакции. В экстремальных случаях не десорбируется ни одно из промежуточных соединений между олефином и СО или СОг, и единственной реакцией, которую удается наблюдать, является полное сгорание, и притом не только на неселективных катализаторах, но и на селективных, таких, как В1— —Мо—О (например, циклопентен) [83]. По той же причине при работе со всеми этими катализаторами следует избегать микропористости, поскольку из-за медленной диффузии в порах удлиняется время контакта, что приводит к глубокому разрушению желательных продуктов. [c.165]

    При больших значениях АЯ (процессы частичного и полного окисления, глубокого гидрокрекинга) различие Та я Т может достигать нескольких сотен, а иногда и тысяч градусов. В этих случаях найденное приближенное решение удобно использовать в качестве угловой точки отрезка для сканирования (см. [7]). [c.121]

    Среди способов очистки отходящих газов на заверщающей стадии п ред сбросом их в атмосферу наибольщее распространение получили окислительные методы. Они осуществляются путем глубокого полного о-сисления органических примесей - углеводородов и кислородсодержа-ц ей органики - до углекислого газа и воды непосредственным прямым сжиганием и с использованием катализаторов процесса окисления [3-5]. Термический способ более прост в аппаратурно-технологическом оформлении и не имеет специфических ограничений по составу и концентрациям загрязняющих примесей в очищаемом газе. Однако проведение этого процесса при температурах 600-900°С делает его весьма энергоемким (габл. В.З) расход условного топлива составляет 25-40 кг на 1000 м выбросов при рабочей температуре процесса 600-900°С.  [c.7]

    При высоких температу рахпо этому методу можно достигнуть глубокого полного х л о р и р о в а н и я [c.335]

    Для нефтяных образцов, испарить которые полностью в источник ионов при указанных режимах ввода не удается, фракционирование состава газовой фазы в процессе масс-спектрального эксперимента значительно больше и пренебрегать им нельзя. Наличие второго высокотемпературного максимума полного ионного тока может быть обусловлено процессами более или менее глубокой деструкции компопентов исследуемого образца. Процессы глубокой, полной деструкции легко идентифицируются по появлению в масс-спектре интенсивных линий в области легких масс с лг/г 27, 28, 29, 39, 41, 43, 44. Однако при анализе высокомолекулярных и гетероатомных нефтяных компопентов чаще мы встречаемся с более сложным вариантом деструктивных процессов, которые не проявляются столь очевидно. Иногда и сам вторичный деструктивный максимум полного ионного тока не проявляется столь явно, как на рис, 1, 2. Но если графически изобразить характер изменения групповых масс-снектральных характеристик отдельных классов нефтяных соединений, становится очевидной многостадийность процессов, происходящих в источнике иопов при программированном прямом вводе неиспаряющихся полностью нефтяных смесей. [c.117]

    Для возможно полного использования света в реакции хлорирова ния вся аппаратура заключена внутри цилиндрического экрана 4 играющего роль рефлектора. В таком аппарате можно вырабатывать около 1000 кг/сутки хлороформа. В данном случае не требуется сравнительно большого избытка углеводородного сырья, необходимого обычно для предотвращения чрезмерно глубоко о хлорирования, так как дальнейшее хлорирование хлороформа протекает значительно медленнее, чем хлорирование хлористого метилена до хлороформа. [c.148]

    Далее оказалось, как это нашли Пайне и Уеккер [4] при глубоком изучении изомеризации, что только хлористый алюминий и хлористый водород не могут вызвать изомеризацию, для которой необходимы еще следы олефинов. При полном отсутствии олефинов эту реакцию может катализировать также кислород. Облад и Горин [5] установили, что достаточно меньше 1 моля кислорода на 10 000 молей бутана, чтобы началась изомеризация последнего в присутствии хлористого алюминия и хлористого водорода. [c.513]

    В последнее время для более полного удаления из топлива сернистых соединений применяют каталитическую гидроочистку. Этот процесс проводится в среде водорода под давлениСхМ 10—70 ат и температуре 390—420° С в присутствии алюмо-кобальт-молибдено-вого катализатора. В этих условиях происходит гидрирование сернистых соединений с образованием сероводорода, а также кислород-и азотсодержащих соединений. Гидроочистка является наиболее перспективным методом глубокой очистки авиационных топлив. [c.10]

    Четыре рассматриваемых типа реакторов связаны между собой как в физическом, так и в математическом отношении. Реактор с принудительным перемешиванием, или реактор идеального смешения, отличается от трубчатого реактора как по конструкции, так и по описывающим его уравнениям однако трубчатый реактор с достаточно интенсивным продольным перемешиванием потока приближается к режиму идеального смешения. Периодический реактор представляет собой реактор идеального смешения, в котором существует проток реагентов, но описывается он теми же уравнениями, что и простейшая модель трубчатого реактора. Термин адиабатический относится скорее к режиму реактора, чем к его конструкции, так как и реактор идеального смешения, и трубчатый, и периодический реактор могут быть адиабатическими. При исследовании различных типов реакторов нельзя в равной мере дать характеристику каждого реактора — частично из-за того, что различные вопросы изучены неодинаково полно, а частично из-за того, что некоторые проблемы трудно изложить на том доступном уровне, которого мы собираемся придерживаться в этой книге. Например, нестационарные уравнения для реактора идеального смешения являются обыкновенными дифференциальными уравнениями, и мы можем провести их анализ достаточно полно. Стационарный режим трубчатого реактора уже описывается обыкновенными дифференциальными уравнениями, а для описания его поведения в нестационарном режиме требуются дифференциальные уравнения в частных производных, анализ которых представляет весьма трудную задачу. Там, где это возможно, мы стараемся представить результаты более глубокого лнализа сложных задач в виде качественных описани11 и графиков, [c.10]

    Давление в зоне питания колонны составило 20 — 30 мм рт.ст. (27 — 40 ГПа), а температура верха — 50 — 70 °С конденсация вакуумного газойля была почти полной суточное количество конденсата у егкой фракции (180 —290 °С) в емкости — отделителе воды — соста — 1.ило менее 1 т. В зависимости от требуемой глубины переработки мазута ПНК может работать как с нагревом его в вакуумной печи, так и без нагрева за счет самоиспарения сырья в глубоком вакууме, с также в режиме сухой перегонки. Отбор вакуумного газойля ограничивался из-за высокой вязкости Арланского гудрона и (оставлял 10-18 % на нефть. [c.198]

    В секции изомеризации принята двухреакторная схема со ступенчатым снижением температуры от первого реактора ко второму. Повышенная температура в первом по ходу сырья реакторе 2 обеспечивает более полное разложение чегы-реххлористого углерода и протекание изомеризации с образованием изопентана и монозамещенных гексанов, во втором реакторе 3 происходит изомеризация до вы-сокоразветвленных гексанов, обладающих высокими октановыми характеристиками. Принятый способ низкотемпературной изомеризации определяет включение в схему установки системы глубокой осушки и очистки от сероводорода водородсодержащего газа, поступающего в систему изомеризации, а также узлов хлорирования катализатора и улавливания продуктов хлорирования. [c.143]

    Каталитический крекинг сопровождается достаточно полным обессериванием полученного бензина, но это обессеривание часто осуш ествляется ценой быстрого старения катализатора. Синтетические алюмосиликатные катализаторы более устойчивы к сернистым соединениям, чем активированные природные глины устойчивость последних к действию серы может быть повышена. Вследствие глубокого обессеривания бензины сравнительно легко поддаются очистке. Значительная часть серы удаляется в виде тиофенолов (ср. с тиофенами при термическом крекинге) при ш елочной промывке. [c.325]

    Основными путями повыше тя экономической э([)фективнос1 и использования этих ресурсов на химических предприятиях следует считать экономию сырья, основных и вспомогательных материалов, топлива, различных видов энергии за счет более глубокой их переработки, ликвидации брака, сокращен1 я отходов и потерь совершенствование технологии, конструкций аппаратов и машин замену дефицитных материалов менее дефицитными более полное использование вторичных сырьевых и тоиливно-энергетических ресурсов. [c.288]

    Во многих случаях МФК состоит в экстракции ионных молекул органическим растворителем или их растворении в нем. В связи с этим полезно иметь необходимые данные о структуре и свойствах таких растворов. Полный обзор этого предмета выходит за рамки настоящей книги. Однако в данном разделе будет представлено его краткое качественное изложение. Для более глубокого ознакомления с физико-химическими концепциями, методами и полученными результатами читатель может воспользоваться учебниками по физической химии, физической органической химии (например, [21]) или последними монографиями [22, 23, 39]. Структура и реакционная способность карбанионов в ионных парах и карбанионоидных металлоорганических соединениях рассмотрены в обзоре [40] и специальных монографиях [41—43]. [c.16]

    До недавнего времени с этой целью кинетические методы использовали в весьма ограниченном масштабе. Объясняется это, вероятно, тем, что только в последние десять — пятнадцать лет в полной мере проявились широкие возможности использования методов для изучения окисления и управления окислением органических соединений. Другая причина, видимо, в том, что при применении бензинов, прямогонных реактивных и дизельных топлив основной целью было предотвращение в них осадко- и смолообразования, т. е. образования продуктов глубокого окисления, в то время как кинетические методы наиболее информативны при изучении начальных стадий окислительного процесса. При использовании реактивных топлив, получаемых гидроге-ннзационными процессами, самое главное — предотвратить образование первичных продуктов окисления топлив — активных радикалов и гидропероксидов. Для этого необходимо знать механизм и закономерности окисления на начальных стадиях следовательно кинетические методы становятся незаменимыми. [c.24]

    Впоследствии в своих работах по квантовой химии Лондон, пожалуй, первым отметил методологическое значение создания теории химической связи. Он указал, в частности, что задача квантовой химии состоит не только в том, чтобы определить, достаточно ли полны наши знания, чтобы разгадать смысл правил, найденных химиками полуэмпирическим путем, подвести под эти правила более глубокое теоретическое основание, установить их пределы и по возможности построить также количественную теорию , но и в том, чтобы выяснить, достаточны ли вообще те ггринципы описания природы, которые применялись до сих пор при исследованиях атомов, не проявляются ли в химических действиях совершенно новые силы, которые никакими математическими ухищрениями не удается вывести из известных допущений . [c.156]

    Коррозионное растрескивание возникает внезапно без предшествующих изменений структуры и свойств металла. Поэтому коррозионные трещины обычно обнаруживаются после того, как они разовьются насквозь. Появление сквозной трещины вызывает необходимость внеплановой остановки оборудования для устранения дефекта. Наряду с глубокой основной трещиной развивается сетка расположенных рядом микротрещин. Попытка заварить сквозную трещину приводит к раскрытию соседних микротрещин. Поэтому успен1ный ремонт оборудования при коррозионном растрескивании возможен только путем полного удаления всего дефектного участка. [c.48]

    В настоящее время существует мнение, что С Н образуется в качестве побочного продукта при разрушении крупных молекул ОВ сульфат-редуцирующими микроорганизмами до ацетата, который уже потом используется метангенерирующими микроорганизмами. Это значит, что от интенсивности процесса сульфатредукции зависит более или менее глубокое разрушение крупных молекул ОВ, в результате которого отщепляются не только ацетат, но и другие органические соединения, в частности тяжелые УВ или такие органические соединения, которые в дальнейшем в результате жизнедеятельности еще плохо изученных микроорганизмов превращаются в У В различных типов. Однако в действительности все обстоит не так. О степени сульфатредукции можно судить по большей или меньшей редукции сульфатов из поровой воды. При изучении же изменения содержания сульфатов в поровой воде, иногда до полного исчезновения их, как, например, в поровой воде отложений, вскрытых скв. 5 Булла-море (см. рис. 28), не наблюдается какой-либо зависимости между количеством сульфатов и составом УВГ. Такой зависимости не отмечается и по колонкам современных осадков, поднятых в Черном и Каспийском морях. [c.93]


Смотреть страницы где упоминается термин И глубже, и полнее: [c.654]    [c.18]    [c.197]    [c.170]    [c.98]    [c.127]    [c.95]    [c.151]    [c.591]    [c.688]    [c.452]    [c.452]    [c.258]    [c.108]    [c.361]   
Смотреть главы в:

Соперники нефти и бензина -> И глубже, и полнее




ПОИСК







© 2025 chem21.info Реклама на сайте