Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ковалентная связь и геометрия молекул

    Направленность ковалентной связи обусловливает пространственную структуру молекул, т. е. их геометрию (форму). Рассмотрим это на примере образования молекул НС1, Н2О и NH3. [c.68]

    Поскольку орбитали имеют различную симметрию, их взаимное перекрывание может осуществляться разными способами, чем и определяется пространственная направленность ковалентных связей. Данное свойство ковалентной связи определяет геометрию молекул (пространственную структуру). В зависимости от способа перекрывания орбиталей и симметрии образующегося электронного облака различают а (сигма)-и я(пи)-связи. Рассмотрим некоторые примеры. [c.66]


    Результаты первых работ по исследованию карбонилгидридов переходных металлов методами спектроскопии и дифракции электронов позволили сделать следующие выводы 1) атом водорода не влияет на стереохимию этих соединений, 2) атом водорода погружен в орбитали металла. С появлением рентгеноструктурных данных стало очевидно, что в действительности атом водорода проявляет стереохимическое влияние. Оказалось, что связь металл—водород имеет длину порядка 1,7 A, характерную для нормальной ковалентной связи. Геометрия молекул гидридных комплексов в большей мере зависит от числа и размера лигандов степень отклонения от идеальной геометрии увеличивается при возрастании объема лигандов и кратности связи в транс-положении к координированному гидрид-иону. Значительное трансвлияние координированного гидрид-иона очевидно из сравнения длин связей в этих комплексах. Методом дифракции рентгеновских лучей и (или) нейтронов изучены структуры примерно шестидесяти гидридных комплексов переходных металлов. Перечень этих структур включает соединения обширного ряда металлов с разнообразными лигандами геометрия этих комплексов варьируется от плоского квадрата (координационное число четыре) до центрированной тригональной призмы (координационное число девять). Среди комплексов, содержащих мостиковый водород, встречаются структуры, в которых атом водорода связывает два и больше атомов переходных металлов, или переходный металл и бор, или переходный металл и кремний. [c.76]

    Направленность — вал<нейшее свойство ковалентной связи, определяющее геометрию молекулы. Причина направленности заключается в том, что перекрывание электронных облаков, образующих химическую связь, происходит в направлении наибольшей плотности их (наибольшей вытянутости). При этом достигается максимальное перекрывание электронных облаков — наиболее прочная связь. [c.113]

    Направленность ковалентной связи обусловливает пространственную структуру молекул, т. е. их геометрию (форму). Рассмотрим это на примере образования молекул НС1, Н2О и NH3. Ковалентная связь возникает в направлении максимального перекрывания электронных облаков (орбиталей) вдоль линии взаимодействующих атомов. При образовании молекулы НС1 происходит [c.81]


    Связи и геометрия молекул. Гибридизация. Атомы хлора, кислорода и азота могут образовывать ковалентные связи с другими атомами, например с атомами водорода, путем перекрывания их одноэлектронных р-орбиталей с -орбиталями атомов водорода, и этим определяется геометрия образующихся молекул. [c.29]

    Направленность связи — свойство ковалентной связи, обусловливающее пространственную структуру (геометрию) молекул. [c.374]

    Проблемы электронного строения — разных видов гибридизации, образования а- и я-связей и т. д. — рассматриваются в тесной связи с предыдущими. На этой основе раскрываются вопросы о взаимном влиянии атомов, геометрии молекул, даются основные характеристики ковалентной связи в молекулах органических веществ. [c.293]

    Теперь атом Н имеет на своей валентной орбитали два электрона, подобно гелию, а у атома I восемь электронов, как у Хе. Льюис выдвинул следующий принцип атомы образуют химические связи в результате потери, присоединения или обобществления такого количества электронов, чтобы приобрести завершенную электронную конфигурацию атомов благородных газов. Тип образующейся связи-ионный или ковалентный-зависит от того, происходит ли перенос электронов или их обобществление. Валентность, проявляемая атомами, определяется пропорциями, в которых они должны объединяться, чтобы приобрести электронные конфигурации атомов благородных газов. Теория Льюиса объясняет тип связи и последовательность расположения атомов в молекулах. Однако она не позволяет объяснить геометрию молекул. [c.466]

    В данной главе, первой из трех, где излагаются модели ковалентной связи, студенты получают представления о типах связи, порядке связи, о делокализованных связях и молекулярной геометрии на основе описательного, нематематического подхода. Такой подход имеет самостоятельную ценность как средство описания большого числа молекул кроме того, ясное понимание его достоинств и ограничений дает основание для построения более сложных моделей в следующих главах. Эту главу рекомендуется подробно пройти в любых курсах. [c.575]

    Ковалентная связь характеризуется рядом свойств направленностью, поляризуемостью, определяет форму (геометрию) молекул и др. Эти свойства и будут рассматриваться ниже. [c.91]

    В разд. 7.9 было указано, что ковалентные связи между несходными атомами являются полярными и что полярность возрастает с разностью электроотрицательностей связанных между собой атомов. В результате все двухатомные молекулы, состоящие из несходных элементов, оказываются полярными. Однако наличие полярности у более сложных молекул зависит не только от полярности отдельных связей, но и от молекулярной геометрии. Обязательное условие для появления полярности заключается в том, что центры распределений положительных и отрица- [c.139]

    Направленность ковалентной связи обусловливает пространственную структуру молекул, т. е. их геометрию (форму). Рассмотрим это на примере образования молекул НС1, Н2О и NH3. Ковалентная связь возникает в направлении максимального перекрывания электронных облаков (орбиталей) вдоль линии взаимодействующих атомов. При образовании молекулы на происходит перекрывание s-орбитали атома водорода с р-орбиталью атома хлора. Молекула имеет линейную форму (см. рис. 1.7,6). [c.58]

    Карбены — чрезвычайно реакционноспособные нейтральные частицы КгС , в которых углерод соединен с двумя группами ковалентными связями и обладает двумя несвязанными электронами. Карбены являются истинными интермедиатами с характерной реакционной способностью и селективностью, которая не зависит от способа генерации, но зависит от природы заместителей К и электронного состояния частицы в момент реакции. Электронное состояние играет очень важную роль, поскольку реакции синглетных карбенов, в которых два несвязанных электрона спарены [см., например, (46)], по характеру совершенно отличаются от реакций триплетных частиц (45), в которых электроны с параллельными спинами расположены на разных орбиталях (см, разд. 2,8.2,2) [38]. Проведена большая теоретическая работа с целью предсказания электронной структуры н геометрии карбенов [38]. Сам метилен в основном состоянии является скошенным триплетом (45), в котором один нз несвязанных электронов находится на ст-орбитали, обладающей значительным р-характером, а другой электрон занимает р-орбиталь, перпендикулярную плоскости молекулы. [c.586]

    Бартелл [4] указал на другой фактор, который может влиять требуемым образом на эффективный ковалентный радиус углерода. Основываясь на идее Питцера, он отметил, что вандерваальсовы силы между несоседними связями должны изменять геометрию молекул, даже если связи полностью локализованы. Взаимодействия между двумя локализованными связями должны быть качественно сходными вне зависимости от того, находятся ли эти связи в одной молекуле или в разных. Иными словами, между парами локализованных связей одной молекулы  [c.67]


    КОВАЛЕНТНАЯ СВЯЗЬ И ГЕОМЕТРИЯ МОЛЕКУЛ [c.93]

    Ковалентная связь и геометрия молекул [c.97]

    До сих пор мы рассматривали ковалентные связи на основании представлений о перекрывании атомных орбит, при неявном предположении, что электроны, не занятые в связях, занимают такие же орбиты, как и в изолированных атомах. Такая картина позволяет объяснить некоторые качественные характеристики валентности, и при учете пространственной ориентации атомных орбит и введении идеи гибридизации удается дать удивительно хорошее описание геометрии молекул. Однако для некоторых молекул такие представления оказываются непригодными. Лучшим и наиболее хорошо известным примером является молекула бензола, для которой уже давно стали ясны недостатки формулы, предложенной Ке-куле. Если бы в молекуле бензола имелись три двойные связи углерод — углерод, как в структуре Кекуле, то по химическому поведению эта молекула должна была бы напоминать этилен, т. е. легко присоединять галогены и галогеноводороды. Хотя и можно получить продукты присоединения к бензолу, эта молекула обычно дает продукты замещения далее, для разрушения бензольного кольца необходимы очень жесткие условия, тогда как три этиленовые связи должны были бы легко разрываться при окислении. Кроме того, связь С—С в этане длиннее связи С=С в этилене, так что бензол со структурой Кекуле должен был бы быть несимметричным шестиугольником, тогда как на самом деле он является плоским правильным шестиугольником. Плоское строение с углами 120 показывает, что углеродный остов и связанные с [c.117]

    Цель настоящей книги — создание теории или, точнее, системы правил для предсказания геометрии молекул главная ее идея состоит в том, что пространственная направленность ковалентных связей, образованных атомом, в основном зависит от расположения электронных пар на валентной оболочке атома, что, в свою очередь, определяется действием принципа Паули. Следует признать, что эти правила достаточно эмпиричны, однако они имеют квантовомеханическое обоснование, заключающееся в принципе Паули, и составляют простую и надежную основу для понимания и предсказания геометрии молекул. В данной книге можно обсудить лишь небольшую часть того огромного числа структур молекул, которые были определены в последние годы. Однако для рассмотрения специально выбраны молекулы, представляющие все наиболее важные типы структур. [c.10]

    Строение и физические свойства. Атом германия в GeF., имеет неподеленную электронную пару это, по-видимому, сказывается па геометрии молекулы. В настоящее время нет экспериментальных данных о строении и состоянии GeFg в газовой фазе. Если в газовой фазе GeFo мономолекулярен, то, согласно представлениям о ковалентности связей Ge—F, молекула должна быть угловой, с углом F—Ge—F, либо близким к 90" (участие в связях только р-электронов германия), либо равным примерно 120° (гибридизация с неподе-ленной парой s-электронов). [c.44]

    Полосы поля лигандов плоского -комплекса все связаны с переносом электрона на орбиталь или dx —y . Должны быть активированы все четыре лиганда, поскольку все они лежат в плоскости ху. Лиганд, который связан наиболее ковалентной связью, должен быть активирован в наибольшей степени. Однако изменение геометрии в фотовозбужденном состоянии имеет важное значение. -Комплекс должен иметь структуру -комплекса. Для молекулы ML 4 это должно давать точечную группу D или сплю- [c.565]

    Простой альтернативой использованию гибридизованных орбиталей для предсказания валентных углов ковалентных связей может служить вполне естественное допущение, согласно которому связывающие пары электронов стремятся расположиться как можно дальше друг от друга вследствие электростатического отталкивания. Так, четыре электронные пары при одном атоме, как, например, при атоме углерода в метане, будут находиться наиболее далеко друг от друга в случае тетраэдрического расположения. При этом отталкивание электронов должно быть минимальным. Такой подход легко может быть использован для предсказания геометрии метил-катиона, образующегося при удалении одного атома водорода вместе со связывающей его электронной парой от молекулы метана. Можно ожидать, что для того, чтобы сделать отталкивание электронов минимальным, оставшиеся три электронные пары углерода примут плоское расположение с углами 120°. [c.168]

    Огромное число химических соединений (например, практически все органические молекулы) образованы ковалентными связями, которые являются направленными. Благодаря этому молекулы с ковалентной связью имеют вполне определенное геометрическое (пространственное) строение. Геометрию (структуру) молекул в первую очередь определяют электронные конфигурации атомов, образующих молекулу для объяснения структуры многих молекул оказывается очень важным понятие гибридизации атомных орбита-лей (зр , зр , зр и др.). Структура молекул, в свою очередь, определяет полярность молекулы (не путать с полярностью отдельной химической связи ), количественно выражаемую диполъным моментом. Для оценки полярности связи очень полезным оказалось понятие электроотрицательности (ЭО) атомов. Л. Полинг определил ЭО как способность атомов в молекуле притягивать электроны. [c.31]

    Одним из наиболее выдающихся достижений квантовомеханического подхода к строению молекулы был его успех в области молекулярной геометрии. Рассматривая связи между атомами в молекуле как результат перекрывания атомных орбиталей, следует ожидать от молекулы определенной пространственной структуры. Существует много различных путей объяснения строения молекулы. Стерео-химический метод, описываемый в гл. 6, отличается от излагаемого здесь, но использование понятия локализованных атомных орбиталей в теории валентных связей оказалось настолько удачным, что есть смысл это обсудить. Согласно теории валентных связей, ковалентную связь можно представить как результат спаривания двух электронов на атомных орбиталях двух разных атомов. Связь должна расположиться в направлении перекрывания атомных орбиталей. Наиболее прочная связь образуется в том месте, где возможно наибольшее перекрывание двух орбиталей. [c.160]

    Данная глава посвящена физическим и химическим свойствам чистьк элементов и сходных с ними веществ. Строение этих веществ существенно отличается от рассмотренного нами ранее строения соединений с ионными и ковалентными связями. Металлические и неметаллические элементы существуют вследствие образования химической связи между одинаковыми атомами, что ограничивает число возможных молекулярных образований и способов расположения атомов в твердых веществах. Неметаллические элементы образуют неполярные ковалентные молекулы, начиная от двухатомных молекул типа Н2, О2, N2 или 2 и кончая гигантскими молекулами элементарного углерода и кремния. Ко всем этим системам вполне применимы те критерии, определяющие устойчивость молекул, которые были изложены в гл. 7 и 8. В этих системах все валентные атомные орбитали с достаточно низкой энергией заполнены связывающими или несвязывающими электронами а, геометрия молекул определяется отталкиванием валентных электронных пар. Поскольку атомы благородных газов обладают устойчивым электронным строением, эти элементы существуют в виде одноатомных молекул. Многие неметаллические элементы способны существовать в одной из двух или даже нескольких аллотропных форм в качестве примера можно привести углерод, существующий в виде алмаза и графита, а также кислород, элементарными формами которого являются О2 и О3 (озон). Размеры и строение молекул неметаллических элементов определяются теми же факторами, которые рассматривались в гл. 7 и 8. Некоторые из этих веществ будут подробно обсуждаться в разд. 22.5. [c.387]

    Итак, суммируя, можно сказать, что высокая каталитическая способность ферментов обусловлена, во-первых, тем, что ферменты сближают субстраты и связывают их с активным центром в подходящей ориентации. Во-вторых, ферменты содержат кислотные и основные группы ориентированные так, что становится возможным перенос протонов а субстрате. В-третьих, определенные группы в молекуле фермента (особенно нуклеофильные) могут образовывать ковалентные связи с суб-стратом, что приводит к формированию более реакционнослособных структур, чем субстрат. В-четвертых, фермент способен индуцировать напряжение, или искажение молекулы субстрата, которое часто сопровождается конформационным изменением в белковой молекуле. Нередко спрашивают почему молекулы ферментов такие большие Отчасти это, очевидно, связано с тем, что образование поверхности, комплемен-тарной поверхностям субстратов и обладающей необходимой жесткостью, возможно лишь при достаточно сложной геометрии скелета поли-пептидной молекулы. Кроме того, чтобы функциональные группы фер-мента могли принимать непосредственное участие в катализе, они должны быть расположены соответствующим образом. Иногда для этого тре-буется, чтобы в определенном объеме была создана среда с более низкой диэлектрической постоянной. Наконец, имея в виду, что в ходе каталитического процесса происходят конформационные изменения, мы можем только удивляться тому, что природе удалось создать машину -столь малых размеров. [c.63]

    Первый член выражает только электростатическое взаимодействие между двумя атомами, несущими формальный заряд и г. Второй и третий члены выражают частичный перенос электронов соответственно от орбитали ткпяотт кпи являются мерой стабилизации, которой сопровождается результирующее образование ковалентной связи. Важным требованием для ковалентных членов является обеспечение некоего канала для перемещения электронов (хотя бы частичного) от системы 5 к Т. Это достигается в том случае, если Р не равно нулю, что может быть только в случае адекватного перекрывания между атомными орбиталями атомов 5 или 5 и или 1. что в свою очередь, очевидно, будет зависеть от способности реакционного интермедиата принять подходящую геометрию. Если молекула может достичь требуемого положения, то между взаимодействующими орбиталями будет наблюдаться расщепление, что, как правило, приводит к стабилизации промежуточного продукта (рис. 4-7). [c.68]

    У воды много аномалий (подробнее о них можно прочитать в книге И. В. Петрянова Самое необыкновенное вещество в мире . М. Педагогика, 1981). Аномально и изменение плотности воды при ее кристаллизации или плавлении. Объясняется это тем, что молекулы воды не линейны, а изогнуты под углом около 104°. Кроме того, в кристалле воды каждьш атом кислорода связан не только с двумя атомами водорода ковалентными связями, но и образует две дополнительные водородные связи с двумя соседними молекулами воды. В результате каждая молекула Н2О оказывается связанной с четырьмя другими молекулами, причем связи эти располагаются в пространстве не хаотично, а строго определенным образом. Такая неудобная геометрия не дает возможности молекулам воды в кристалле упаковаться достаточно плотно лед имеет ажурную кристаллическую решетку с относительно крупными пустотами. Этим объясняется и низкая плотность льда (0,92 г/см при О °С), и существование множества так называемых клатратных соединений льда, в которых полости кристаллической решетки заполняются молекулами соверщенно посторонних веществ с образованием таких необычных соединений без химических связей, как Хе -5,75 Н2О или СН4 6Н2О. [c.133]

    Главный дефект МТ-модели в расчетах полной энергии состоит в том, что в таком приближении плохо передается накопление электронной плотности вдоль линии, соединяющей соседние атомы в молекуле, т. е. образование ковалентных связей. Наиболее простой и удобный в расчетном отношении путь частичного исправления этого недостатка — введение перекрывающихся МТ-сфер, что эффективно приводит к увеличению электронной плотности в области перекрывания. Действительно, расчет с перекрывающимися МТ-сферами приведет к существенно лучшим результатам. Так, в случае молекул N2 и р2 введение перекрывающихся МТ-сфер меняет рассчитанные равновесные длины связей (в а. е.). с 4,1 и 4,3 до 2,4 и 2,8 соответственно, экспериментальные значения— 2,07 и 2,68 [229] предсказывается угловая конфигурация Н2О [228]. В целом расчеты с перекрывающимися МТ-сферами доказали свою практическую эффективность. Вместе с тем следует отдавать себе отчет в том, что это еще одна лазейка для введения полуэм-пиричностн в расчетную схему. Фактически в расчетах по методу Ха — РВ необходимо в качестве исходных данных задать, помимо геометрии молекулы, значения р, разные для атомов разного сорта, а в области II (обычно оно берется как усредненное по атомам, входящим в молекулу) и радиусы МТ-сфер, которые теперь уже не определяются из условия касания. Имеющийся здесь произвол может быть, конечно, использован для улучшения согласия теории с экспериментом (что обычно и делается), однако это общеизвестное достоинство полуэмпирических методов имеет и негативную сторону — не-универсальность метода. Это, в частности, может особенно сильно сказаться в расчетах зависимости энергии от геометрии молекулы, т. е. в расчетах потенциальных поверхностей. Вообще следует иметь в виду, что метод [c.103]

    В я-комплексах я-связь в направлении своей наибольшей протяженности (перпендикулярно плоскости расположения заместителей) перекрывается с s- или р-орбиталью кислоты [1 на схеме (7.1)], так что образуется некое подобие диффузной ст-связи символы такой связи см. (7.1, 2 и 3). Поскольку двойная связь выступает в роли донора электронов, а кислота — в роли акцептора электронов, говорят также о донорно-акцепторных соединениях или комплексах с переносом заряда (англ. harge transfer omplex) [1]. В результате переноса заряда я-комплексы имеют повышенные по сравнению с исходными веш ествами дипольные моменты. Пространство, в котором происходят колебания я-электронов, увеличено, возникает новая полоса при более длинных волнах в УФ- или видимой области спектра. Эта полоса часто слаба и наблюдается лишь при высоких концентрациях исходных веществ ( полоса переноса заряда ). Эту полосу можно использовать для измерения констант образования комплекса. Межатомные расстояния здесь гораздо больше, чем при обычной о-связи, и лишь Немного меньше суммы ковалентных радиусов участвующих атомов. Энергия связи составляет соответственно обычно лишь несколько ккал/моль, геометрия молекулы олефина (межатомные расстояния, валентные углы) существенно не изменяется [1, 2]. В противоположность карбкатионам [о-комплексам, схема (7.3)], я-комплексы при разбавлении регенерируют неизмененные исходные продукты. [c.438]

    Обратимся теперь к современной стереохимии. Рассмотрим в первую очередь ее, если можно так сказать, параметрический аспект. Методы изучения геометрии молекул дали очень много материала по межатомным расстояниям и валентным углам. В связи с этим появились феноменологические обобщения этого материала при помощи эмпирических формул, путем установления зависимостей между этими параметрами и типами и подтипами связей, а также посредством аддитивных схем, построенных на понятиях ковалентного и вандерваальсова радиуса. Те же физические методы исследования позволили установить, например, и строение наиболее устойчивых поворотных изомеров, обусловленных существованием потенциалов торможения вокруг простой С — С- связи, и даже величину этих потенциалов. С другой стороны, те же методы вместе с совокупностью данных, полученных химическими способами исследования, позволили далеко продвинуть вперед учение о конформациях циклогексана, его производных и других алициклов и подготовить почву для введения конформационного анализа, занимающегося изучением Зависимости свойств молекул от строения преимущественных конформаций. Далее, было установлено искажение требуемого классическими или даже электронными теориями копланарного строения многих типов соединений. Сюда относится отступление от копланарности алициклов — циклобутана и циклопентана — и молекул с сопряженной системой связей, причем характер такого искажения,например,в случае дифенила,бензфенантрена,гексаметилбензола и их аналогов неодинаков и обусловлен игрой различных структурных факторов. Характерной чертой, в буквальном смысле слова, современной стереохимии является также изучение пространственного строения органических радикалов и ионов, а также, хотя и в меньшей степени — здесь больше гипотез, и переходных комплексов. [c.353]

    Первый фактор доминирует в случае соединений элементов И, П1 и IV групп, в которых валентность (число ковалентных связей) равна числу валентных электронов. Такие соединения можно описать с потмощью структур, где все валентные электроны находятся на ЛО их взаимное отталкивание приводит для молекул двухвалентных элементов И группы (например, Н (СНз)2) к линейной геометрии, для соединений трехвалентных [c.187]


Смотреть страницы где упоминается термин Ковалентная связь и геометрия молекул: [c.187]    [c.190]    [c.109]    [c.77]    [c.133]    [c.88]    [c.210]    [c.552]   
Смотреть главы в:

Химическая связь и строение -> Ковалентная связь и геометрия молекул




ПОИСК





Смотрите так же термины и статьи:

Ковалентность

Молекулы связь

Связи ковалентные Связи

Связь ковалентная



© 2025 chem21.info Реклама на сайте