Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции ароматических карбоновых кислот

    Конъюгация с глицином и другими аминокислотами является характерной метаболической реакцией ароматических карбоновых кислот, таких, как бензойная и гетероциклические карбоновые кислоты. Механизм пептидной конъюгации заключается в образовании коэнзим-А-производных чужеродных карбоновых кислот, которые взаимодействуют с глицином. В результате образуется гиппуровая кислота и вьщеляется свободный коэнзим А  [c.522]


    Реакции ароматических карбоновых кислот [c.62]

    Авторами на протяжении многих лет изучалась реакция алкилирования карбоновых кислот, ароматических углеводородов, фенолов и их производных этиленовыми углеводородами. Исследования проводились в присутствии катализаторов на основе фтористого бора, который, как известно, за последние десятилетия стал одним из распространенных катализаторов в органической химии [14] и особенно эффективным оказался в процессах алкилирования. Эти наши исследования и составляют основу данной монографии. В связи с тем, что алкилбензолы и некоторые их производные в настоящее время широко используются в качестве исходных продуктов для различных синтезов через гидроперекиси, в монографию включена специальная глава — Автоокисление алкилароматических углеводородов . Эта глава особенно наглядно показывает значение реакции алкилирования ароматических углеводородов. Она написана главным образом на основе литературных данных и включает наши исследования, выполненные за последние годы. [c.5]

    Выход сложных эфиров зависит также от характера карбоновых кислот, например, увеличение константы диссоциации кислоты облегчает присоединение ее по С = С-связи. Легче всего идут реакции с муравьиной и уксусной кислотами. Двухосновные карбоновые кислоты менее активны в реакциях образования нормальных эфиров, чем одноосновные, причем активность их снижается с удлинением углеродной цепи. Ароматические кислоты активнее, чем алифатические. Скорость реакции взаимодействия карбоновых кислот с различными олефинами зависит помимо строения кислоты от времени, скорости размешивания, взаимной растворимости, растворителя, материала аппаратуры и т. д. [c.664]

    Ароматические карбоновые кислоты можно превратить в амины тем же путем, что и карбоновые кислоты жирного ряда, т. е. через их амиды (расщепление по Гофману) или азиды (расщепление по Курциусу). Реакции протекают совершенно так же, как и в жирном ряду (стр. 162). [c.567]

    Раствор исследуемого вещества в воде 10%-ный) наносят на бумажку конго. Алифатические и ароматические карбоновые кислоты окрашивают ее в коричневый цвет, довольно быстро бледнеющий. Аналогичную реакцию дают также сульфокислоты, нитрофенолы и некоторые другие соединения с кислым атомом водорода. [c.116]

    Для эталонной реакционной серии — диссоциации ароматических карбоновых КИСЛОТ Гаммет положил значение р = 1. Как видно ИЗ табл. 13, в различных реакционных сериях р варьирует в широких пределах как по знаку, так и по, абсолютной величине. По физическому смыслу константа р характеризует относительную (в сравнении с эталонной серией) чувствительность данного равновесия или реакционного превраш,ения к структурным изменениям в реагирующих соединениях. Изменения констант реакции при переходе от одной реакционной серии к другой обусловливаются рядом факторов типом реакционного превращения, т. е. механизмом реакции степенью передачи электронных эффектов заместителей на реакционный центр условиями протекания реакции. [c.171]


    ПРОСТЫЕ КАРБОНОВЫЕ КИСЛОТЫ. Алифатические и ароматические карбоновые кислоты декарбоксилируют в присутствии различных катализаторов, содержащих медь. Эти реакции идут с довольно хорошим выходом при проведении их в кипящем хинолине. [c.131]

    Реакция. Синтез ароматических карбоновых кислот окислением алкилароматических соединений перманганатом калия. Этот общий метод применим и для гетероароматических соединений, например а-пико-лин -> пиридин-2-карбоновая кислота. [c.169]

    В последнее время большое внимание уделяется использованию в органической химии двухвалентных соединений лантанидов, в частности лантанидных гало-генидов, являющихся сильными восстановителями [169,178]. Применение подобных соединений в качестве инициаторов реакций и сореагентов часто способствует протеканию органических реакций в мягких условиях с большой скоростью и высокой селективностью. Из двухвалентных лантанидных галогенидов иодистый самарий является наиболее реакционноспособным соединением, что обусловлено его высоким окислительно-восстановительным потенциалом, необычным для соединений, растворимых в органических растворителях. Так, в присутствии иодистого самария в растворе ТГФ при комнатной температуре из хлорангидридов ароматических карбоновых кислот в течение нескольких минут образуются а-дикетоны с выходом 70-80% [173]. [c.39]

    Наиболее важные ароматические карбоновые кислоты — бензойную и фталевые — синтезируют в промышленности по реакции, которая рассматривалась в разд. 12.11, окислением алкилбензолов. Необходимые для этого толуол и ксилолы легко получаются из каменноугольной смолы и каталитическим реформингом алифатических углеводородов (разд. 12.4) нефти другим источником фталевой кислоты (орто-изомера) может служить ароматический углеводород нафталин, также содержащийся в каменноугольной смоле. При этом используют дешевые окисляющие агенты, такие, как хлор или даже воздух (в присутствии катализаторов). [c.557]

    В подобных реакциях сульфохлориды менее активны, чем хлорангидриды ароматических карбоновых кислот. Для ускорения реакции и предотвращения образования побочных продуктов реакцию со спиртами или фенолами проводят в присутствии основания (метод Шоттена — Баумана, разд. 20.8). (Важная реакция сульфохлоридов с аминами, приводящая к замещенным амидам сульфокислоты, обсуждена в разд. 23.13.) [c.673]

    Ароматические карбоновые кислоты так же, как и арены, способны к реакциям электрофильного замещения Н-атома на галогено-, сульфо- и нитрогруппы. Однако реакции идут медленнее из-за дезактивирующего действия -СООН на бензольное ядро. Как сильный ст-электронный акцептор -СООН, особенно в сильнокислой среде, проявляет -/-эффект и сильно понижает электронную плотность в орто- и иара-положениях бензольного ядра. Поэтому -СООН-группа является л<еша-ориентантом  [c.501]

    Ароматические карбоновые кислоты также могут вступать в реакции поликоиденсации с образованием высокомолекулярных полиэфиров. [c.195]

    Ароматические карбоновые кислоты легко получаются из соответственных альдегидов действием водного или спиртового растворов едкого кали при комнатной температуре. При этом половина молекул альдегида окисляется за счет другой половины, восстанавливающейся до алкоголя (реакция Канниццаро) [c.383]

    Существуют два основных подхода к синтезу альдегидов Оба они уже были рассмотрены ранее Это-введение альдегидной группы в ароматическое ядро с помощью реакции электрофильного замещения-так называемое формилирование аренов (см разд 12 1 3 2) и преобразование заместителей, уже имевшихся в ароматическом ядре (окисление метильных групп-см разд 13 1, восстановление хлорангидридов ароматических карбоновых кислот-см разд 18 12) [c.285]

    Галоид- и нитрозамещенпые ароматические карбоновые кислоты труднее реагируют с олефинами, причем реакция идет только в сторону образования эфиров, как и с бензойной кислотой. Папример, о-хлорбензойная кислота с пропиленом в присутствии ВРз в изопропилацетате дает изопропиловый эфир о-хлорбензойпой кислоты с выходом 14,5%. [c.9]

    Эта простая реакция впервые описана Г. Яном [20], который пропусканием паров уксусной кислоты над цинком при 300° получил ацетон, а из масляной кислоты—дипропилкетон. Далее Сквибб [21] подробно изучил превращение уксусной кислоты над ВаСО.. при 500—600 и получил ацетон с выходом 80—90%. П. Сабатье, Ж. Сандеран и М. Мэйл [22] исследовали кетонное расщепление различных жирных, ароматических и жирно-ароматических карбоновых кислот над разными катализаторами. Наилучшими оказались МпО, ThOj и ZrO.2, которые при 400—450° из уксусной и про-пионовой кислот образуют ацетон и диэтилкетон с теоретическими выходами, а из других алифатических кислот образуют кетоны с выходом 70—80%. [c.465]

    Ароматические карбоновые кислоты этерифицируются медленнее, чем алифатические, но реакции можно ускорить введением больших количеств катализатора. В отдельных случаях скорость образования сложных эфиров у ароматических кислот близка к нулю. Зависимость между скоростью реакции и строением кислот изучена достаточно хорошо. Было найдено, что введение заместителей в ароматические кислоты снижает скорость образования сложных эфиров. Наличие заместителя в орто-положении наиболее сильно тормозит реакцию при заместителях в мета- и пара-положении скорость несколько возрастает. На основании экспериментальных исследований было выведено следующее эмпирическое правило метиловые эфиры ароматических кислот не образуются, если в кольце, рядом с карбоксильными группами, стоят заместители Alk, Аг, С1, NO2. NHa, СООН и т. д. Это можно пояснить рядом примеров. Меллитовая кислота (I) совершенно не дает эфира, пиромелли-товая же (II) образует 90% эфира, так как в ней орто-положения свободны  [c.468]


    Анализ ИК-спек гров окисленных образцов ятелыюго топпива показал наличие сложной с.меси кислородсодержащих ароматических структур, состояитих из гидропероксидов, спиртов, фенолов, ароматических и арилароматическнх. эфиров (ароматических альдегидов и карбоновых кислот), сложных эфиров ароматических карбоновых кислот, которые легко. могут вступать в реакции уплотнения (этерификации, конденсации, полимеризации) с образованием высокомолекулярных соединений, часть которых коагулирует в нерастворимые соединения, вызывая осадко- и смолообразование [6]. [c.117]

    Во МПУГИХ случаях можно проводить амидирование дихлорангидридов как одной, так и по двум функциям. Хлорангидриды карбаминсвои кислоты, образу щпеся из фосгена и аммиака или аминов в строго определенных условиях [559], цр менялись для синтеза амидов ароматических карбоновых кислот по реакции Фр деля — Крафтса и для получения Бесишдатрично замещенных мочевин. [c.435]

    Обычно перекиси ароилов и арены образуют с низкими выходами ароматическую карбоновую кислоту и соответствующий бифенил. При использовании ароматических нитросоединений выходы существенно возрастают [18, 19]. Например, в случае л -динитробен-зола в качестве добавки выходы бифенилов увеличиваются с 50 до 80—90%. Этот метод применим к синтезу арилбензолов, в которых арильная группа содержит только галоген, алкильный или арильный заместитель. В некоторых случаях и в отсутствие добавок замещенные бензолы (СеНдВг, СаНаЫОа) вступают в реакцию с перекисями ароилов и дают с приемлемыми выходами соответствующие диарилы [20, 19]. [c.71]

    Обзор по реакции Кольбе см. в работе [62]. Состав продуктов реакции зависит от условий эксперимента. Для получения алкана в водном растворе необходим платиновый (или иридиевый) анод, высокие анодные плотности тока, кислая среда, низкая температура и высокая концентрация соли карбоновой кислоты. Если в качестве растворителя применять метанол с добавкой или без добавки воды, то в этом случае природа анода, изменения плотности тока, концентрации и температуры уже не столь важны. В результате побочных реакций образуются алкены, спирты и сложные эфиры. Наилучшие выходы, алканов получаются из карбоновых кислот с нормальной цепью, содержащих шесть или большее число атомов углерода. Из смесей двух карбоновых кислот получают один ожидаемый несимметричный и два симметричных алкана. а-Разветвлепные, а,р-иенасыщенные и ароматические карбоновые кислоты, реагируют с трудом или совсем не вступают в реакцию. Двухосновные карбоновые кислоты от малоновой до себациновой не дают алканов однако из их моноэфиров с успехом можно получать диэфиры. [c.80]

    Наибольишй интерес эта перегруппировка представляет с препаративной точки зрения, поскольку она позволяет проводить прямое превращение кислот в амины. При нагревании ароматических карбоновых кислот с гидроксиламином и полифосфорной кислотой (обычно при температуре 150—170 °С) через 5—10 мин после начала выделения углекислого газа in situ образуется гидроксамовая кислота, которая затем перегруппировывается [22]. Этот метод синтеза проще, чем реакция Шмидта (разд. Ж-5), хотя он и не находит столь общего применения, как реакции разложения Курциуса (разд. Ж-3) или Гофмана (разд. Ж-2). Выходы составляют около 82%, но в некоторых случаях, особенно для алифатических соединений, при взаимодействии с полифосфорной кислотой удается получить лишь следы амина. [c.567]

    ГИПОГАЛОГЕНИТНАЯ РЕАКЦИЯ ГОФМАНА. Амиды алифатических и ароматических карбоновых кислот реагируют со щелочными растворами иода, брома или хлора, давая первичные амины. Эта так называемая гипо-галогенитиая реакция Гофмана позволяет не только синтезировать первичные амины, но и укорачивать углеродную цепь иа один атом. [c.213]

    Общеизвестный способ этерификации ароматических карбоновых кислот спиртами в присутствии концентрированной серной кислоты неприемлем для получения высших алкил-нитробензоатов по той причине, что высшие спирты под действием серной кислоты легко окисляются и дегидратируются [3]. В связи с этим сложные эфиры нитробензойных кислот получают обычно взаимодействием хлорангидридов этих кислот с абсолютными спиртами. Эта реакция протекает настолько легко и гладко, что рекомендована для идентификации спиртов [4], однако применение ее для промышленного получения алкилнитробензоатов осложняется ядовитостью и сравнительно высокой стоимостью тионилхлорида, необходимого для синтеза исходных нитробензоилхлоридов. [c.90]

    Во многих реакциях восстановления па свинцовом катоде образуются те же продукты, что и на ртутном электроде. Вместе с тем эффективность процесса восстановления па свинцовом катоде может быть выше или ниже, чем на ртутном. Например, восстановление ароматических карбоновых кислот в серной кислоте до соответствующих спиртов лучше протекаег на свинцовом катоде. В этом случас специфическая адсорбция исходного соединения на электроде может частично подавить разряд ионов водорода и, таким образом, способствовать переносу электронов на вещество, однако природа этой (предполагаемой) адсорбции не до конца ясна. [c.185]

    Для ароматических карбоновых кислот возможны и два других типа реакции восстановления. Довольно интересен первый из них. Имеются даиные [30], что основным продуктом восста-нопления бензойной кислоты на освещенном германиевом катоде в 80 %-м водном ЕЮН является бензил. Этот результат может быть если и не объяснен, то по крайней мере описан уравнением (11.5)  [c.374]

    Более реален механизм реакции второго типа, т. е. полное четырехэлектронное восстановление. Эта реакция протекает в сильнокнслых растворах на свинцовых или ртутных катодах в этих условиях неактивированные ароматические карбоновые кислоты восстанавливаются с хорошим выходом до соответствующих бензиловых спиртов [18, 31—33]. Указанная реакция может быть легко реализована в промышленном масштабе. Так, например, опнсан [34] фильтропрессный электролизер для непрерывного процесса восстановления бензойной кислоты. [c.374]

    В мягких условиях Сбо проявляет высокую реакционную способность по отношению к электрофильной атаке ионом нифония в присутствии нуклеофильных реагентов - ароматических карбоновых кислот. Что касается дальнейшей функционализации, то нуклеофильность фуллеренов, проявляемая в реакциях элекфофильного присоединения в реакторе, компенсирует трудности, возникающие при элекфонном окислении молекул Сбо-Разработана удобная синтетическая методология введения в молекулу фуллерена разнообразных функциональных групп, в частности, гидроксильных и сложноэфирных. [c.139]

    Реакция с карбоновыми кислотами. Хейгемейер [105] сообщил, что при действии дикетена на карбоновые кислоты жирного и ароматического рядов на холоду образуются ангидриды кислот, [c.242]

    Ароматические карбоновые кислоты, содержащие различные функциональные заместители, восстанавливают в альдегиды через стадии получения арилсульфо-нилгидразидов и разложения последних карбонатом натрия (реакция МАК-ФЕИ-ДИЕНА — СТИВЕНСА)  [c.88]

    Ароматические карбоновые кислоты синтезируют той же последовательностью реакций, исходя из 2-фенил-5,6-дигидро 1,3-оксази на (6), который получают из бензонитрила и 2,4-диметилнентандиО ла-2,4 в 96%-НОЙ Н ЗО, [8]. [c.254]

    Ароматические карбоновые кислоты восстанавливаются до бен-зилтрихлорсиланов, которые расщепляются основаниями, давая соответствующие толуолы, Таким образом, этой реакцией можио в две стадии восстановить карбоксильную группу в метильную [3]  [c.299]

    Образование метильных групп в результате восстановления ароматических карбоновых кислот Т. — три-и-пропиламииом [2]. Синтез следует проводить в хорошо действующе вытяжном шкафу для удаления образующегося в ходе реакции газообразного. хлористого водорода и захватываемого нм Т. Прибор состоит нз трехгорлой круглодоиноп колбы на 300 мл, снабженной магнитной мешалкой, термометром, стеклянным краном [c.567]

    Прежние исследователи нашли, что многие сложные эфиры реагируют с гидроксиламином при комнатной температуре. Поэтому первым исследованным параметром была продолжительность реакции при 25 °С 12,57о-ные концентрации метанольных растворов гидрохлорида гидроксиламина и щелочи были выбраны до некоторой степени произвольно, просто потому, что такими растворами пользовался Томпсон [14]. Было установлено, что для ацетатов, растворенных в абсолютном этиловом спирте, максимальная интенсивность окрашивания достигается минимум за 15 мин (рис. 3.1). Для других же эфиров, например, эфиров жирных или ароматических карбоновых кислот, максимальная интенсивность окрашивания не достигалась и за 30 мин в щелочном растворе при 25 °С. Поэтому было изучено влияние на реакцию образования гидроксамовой кислоты температуры и продолжительности взаимодействия в широких пределах (табл. 3.5). При повышенной температуре реакция образования гидроксамовой кислоты протекает быстрее, но продолжительное воздействие повышенной температуры может вызвать разложение гидроксамовой кислоты. Было установлено, что вообще кипячение в течение 5 мин (температура около 72 °С) вполне достаточно и применимо во всех случаях, в которых возможно образование окрашенного железо-гидроксаматного комплекса. Комнатная температура допустима для анализа ограниченного числа сложных эфиров. [c.144]

    Азолкарбоновые кислоты в обычных реакциях ведут себя подобно ароматическим карбоновым кислотам. Однако они гладко декарбоксилируются при температуре 200° и выше. Следует отметить, что карбоксильные группы у атомов углерода, находящихся рядом с гетероатомом, декарбоксилируются легче, чем другие карбоксилы. [c.189]


Смотреть страницы где упоминается термин Реакции ароматических карбоновых кислот: [c.99]    [c.248]    [c.420]    [c.569]    [c.1101]    [c.351]    [c.477]    [c.479]    [c.294]   
Смотреть главы в:

Основания глобального анализа -> Реакции ароматических карбоновых кислот




ПОИСК





Смотрите так же термины и статьи:

Ароматические кислоты

Карбоновые кислоты ароматические

Карбоновые реакции



© 2025 chem21.info Реклама на сайте