Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярографическое определение железа в присутствии меди

    Интересный способ определения содержания кобальта в солях никеля состоит в предварительном окислении o + до Со " перборатом натрия в аммиачном буферном растворе [16]. После разрушения избытка окислителя сульфатом гидроксиламина раствор полярографируют в пределах от —0,2 до —0,8 в. Потенциал полуволны Со + равен —0,4 в. Определению не мешают мышьяк, кадмий, сурьма, олово, цинк и, если находятся в умеренных количествах, висмут, медь, железо, марганец, молибден. Свинец н хром, присутствующие в больших количествах, удаляют путем осаждения хлоридом бария или сульфатом натрия. При содержании кобальта около 0,1% ошибка определения не превышает 2,6%. В 0,01 М растворе триэтаноламина и 0,1 М растворе КОН было определено содержание свинца и железа в пергидроле и меди, свинца и железа в плавиковой кислоте и фториде аммония в количестве 1.10 —5.10 % [17]. В растворе фторидов проводилось также определение олова, основанное на получении его комплексных ионов [18]. Разработан метод определения растворимой окиси кремния в уранилнитрате, основанный на полярографическом восстановлении кремнемолибденового комплекса [19]. Можно определить 2 мкг ЗЮг с точностью до 10%. Мешают ванадий и железо. [c.83]


    Полярографическое определение железа в присутствии меди [c.153]

    А. А. Сахаровым [162], исследовавшими процесс восстановления ионов иОа в присутствии ванадия (при равных приблизительно концентрациях урана и ванадия и в отсутствие молочной кислоты). При полярографическом определении урана в растворах молочной кислоты мешают железо и медь. Эти элементы необходимо предварительно отделить. [c.197]

    При анализе полярографическим методом определению урана не мешает присутствие до 2°о олова, Ио меди, 0,2 о железа и хрома и 0,1°о никеля. [c.161]

    Никель и кобальт обладают очень близкими химическими свойствами, восстанавливаясь почти при одном и том же напряжении. Для определения никеля в присутствии кобальта, например в продуктах кобальтового производства, удобно полярографировать оба элемента в растворе гидроокиси аммония и хлористого аммония или пиридина и его хлористоводородной соли. Кобальт связывается этими веществами сильнее, чем никель, и на полярограмме получается отдельная волна никеля. Влияние меди и никеля при определении цинка легко устранить прибавлением раствора цианистого калия. Цианидный комплекс меди настолько устойчив, что не дает полярографической волны. Раствор трилона можно применить для раздельного определения железа и меди. [c.219]

    Т. В. Арефьева и А. А. Позднякова уточнили условия полярографического определения железа с различными комплексообразователями и рекомендуют определять железо в виде лимоннокислого комплекса в аммиачной среде при рН=8,4. При таком значении pH определению железа ие мешает присутствие значительных количеств меди и цинка. [c.357]

    В указанных условиях опыта определению молибдена не мешает присутствие вольфрама, никеля, кобальта, цинка и марганца, которые полярографически не проявляются. Мешают висмут, таллий и в большом избытке свинец, железо и медь. На поляро-граммах 2—4 изображены, во-первых, отдельно волны молибдена, во-вторых, волны молибдена в присутствии вольфрама и свинца. [c.225]

    Муравьиная кислота — реактив для выделения платины и палладия, для отделения бериллия от алюминия и железа, для разделения вольфрама и молибдена уксусная кислота применяется для определения молекулярной массы веществ, для приготовления буферных растворов, как среда и ацетилирующее средство пропионовая кислота— для определения ароматических аминов антраниловая кислота — для обнаружения и гравиметрического определения кадмия, кобальта, меди, ртути, марганца, никеля, свинца и цинка бензойная кислота служит эталоном в колориметрии 2,4-диокси-бензойная кислота применяется для колориметрического определения железа, титана и других элементов лимонная кислота — в качестве сильного маскирующего комплексообразователя, для приготовления буферных смесей, определения белка в моче, как растворитель фосфатов при анализе удобрений молочная кислота — при полярографическом определении металлов, при электролитическом осаждении меди в присутствии железа, цинка и марганца нафтионовая кислота — для колориметрического определения нитрат иона, в качестве флуоресцирующего индикатора олеиновая кислота — для определения малых количеств кальция и магния, в титриметрическом анализе для определения жесткости воды пировиноградная кислота — для идентификации первичных и вторичных аминов, в микробиологии стеариновая кислота — для нефелометрического определения кальция, магния и лития сульфо-салициловая кислота — для колориметрического определения железа, в качестве комплексообразователя, для осаждения и нефелометрического определения белков трихлоруксусная кислота — как реактив на пигменты желчи и фиксатор в микроскопических исследованиях. [c.44]


    Успех полярографического определения катионов часто зависит от того, насколько правильно выбран индифферентный электролит. Сделать правильный выбор помогают табличные значения потенциалов полуволн [3—8, 15]. Например, если в качестве индифферентного электролита взят хлорид калия, то железо(1П) и медь(11) мешают определению друг друга. В присутствии фторид-ионов потенциал полуволны железа(III) смещается примерно ка —0,5 В в отрицательную область, тогда как потенциал полуволны меди (И) изменяется всего на несколько сотых долей вольта. Поэтому в присутствии фторид-ионов наблюдаются раздельные волны железа (III) и меди (II). [c.74]

    Удаление мешающих элементов. Для полярографического анализа особенно неудобно наличие в растворе больших концентраций ионов, обладающих более положительным потенциалом восстановления, чем остальные. Например, в растворах сталей, содержащих большие количества трехвалентного железа ( 1/3= =—0,12 в), почти невозможно определить какие бы то ни было другие ионы, так как по сравнению с большой волной железа волны всех остальных катионов ничтожно малы. Такое же вредное влияние оказывает на полярографическое определение медь при анализе бронз, так как ее волна находится почти в начале полярографической кривой. В этих случаях приходится прибегать к отделению мешающего элемента химическим путем. Это можно осуществить, например, действием осадителей. Так, железо при анализе стали отделяют аммиаком. Можно удалить мешающий элемент, связав его в комплекс, и таким образом сдвинуть потенциал восстановления в сторону более отрицательных значений. Можно также восстановить мешающий элемент до меньшей валентности, при которой потенциал восстановления более отрицателен. Так, например, в то время как определение РЬ" " , Зп" " и др. невозможно в присутствии больших количеств трехвалентного железа Ещ=—0,12 в), эти элементы можно с успехом определить после восстановления железа до двухвалентного, для которого Ег1 =—1,30 в. Очень часто полярографическим определениям ме-щает кислород, почти всегда имеющийся в воде в растворенном [c.442]

    Особым преимуществом полярографического метода является то, что он дает возможность проводить определение селена в сере в присутствии примесей меди, железа, мышьяка и теллура. [c.400]

    Определение цинка—одно из лучших применений полярографии. Этим способом можно определять цинк в присутствии железа (III), алюминия, небольших количеств меди, кадмия и свинца. В металлическом алюминии полярографически можно определить до 0,004% цинка. Точность определения 2%. Если проба содержит мало цинка, можно провести предварительное концентрирование его экстракцией дитизоната цинка с последующим прокаливанием для разрушения органического вещества. [c.923]

    З-Оксн-4-карбоксифенилиминодиуксусная кислота предложена ИРЕА в качестве нового комплексона [1]. Это соединение образует ряд прочных комплексов с металлами и представляет интерес для полярографического определения железа в присутствии свинца и меди, а также меди, свинца, висмута и кадмия в присутствии избытка таллия. [c.70]

    Часто имеет большое значение качественное или количественное определение в растворах перекиси водорода различных небольших добавок, например стабилизаторов, или примесей, особенно каталитически действующих ионов металлов. На стр. 467 указано, что при этом можно использовать полярографические методы [97], например для открытия присутствия таких каталитически действующих ионов, как окисного железа, двухвалентной меди или свинца, или же для установления присутствия стагшатного стабилизатора. Вместо этого можно поступить еще следующим образом выпаривают и разлагают достаточно большую пробу перекнси в таких условиях, чтобы получающийся остаток был загрязнен лишь минимальным количеством материала стенок сосуда, и то только известного состава, после чего остаток исследуют спектроскопически. Если в процессе выпаривания раствора возможно разложение пробы перекиси, необходимо принимать меры против уноса в брызгах заметных количеств растворенных веществ, возникающих при разложении в противном случае эти вещества будут потеряны для последующего анализа остатка. Совершенно очевидно, что, если даже сосуд сделан из столь инертных материалов, как алюминий высокой чистоты или боросиликатное стекло, все же небольшое попадание этих веществ в раствор неизбежно. Этот вопрос обсуждается в литературе [46]. [c.469]

    Полярографическое определение следов железа в присутствии меди сильно затруднено вследствие большой близости потенциалов выделения обоих элементов. В присутствии комплексона в слабощелочных растворах (1 М К2СО3 и 0,1 М комплексон II, pH около 9,5) потенциал полуволны трехвалентного железа составляет —0,125 в, а двухвалентной меди —0,4 в, что позволяет легко различать обе волны и весьма точно определять железо. Если содержание меди не слишком велико, то ее также можно одновременно определить. В случаях, когда отношение железа к меди больше чем 1 100, авторы рекомендуют выделить железо в виде гидроокиси (гидроокись адсорбирует всегда некоторое количество меди), растворить в небольшом объеме соляной кислоты и раствор после добавления комплексона полярографировать.  [c.153]


    Портнов М. А. и Козлова А. А. Систематизация анализа катионов полярографическим методом. [Сообщ.] 3. Определение элементов подгрупп меди, мышьяка и железа при совместном присутствии. ЖАХ, 1949, 4, вып. 2, с. 89—95. Библ. 10 назв. 5280 Портнов М. А. и Повелкина В. П. Систематический анализ катионов полярографическим методом. [Сообщ.] 2. Условия определения элементов подгруппы мышьяка [олово, сурьма, мышьяк]. ЖАХ, 1948, [c.204]

    В кислых средах для отделения вольфраматов и молибдатов от других ионов удобно пользоваться лимонной кислотой, образующей с молибдат- и вольфрамат-ионами прочные комплексы. Клемент [53] изучал отделение молибдат-ионов от таких металлов, как медь, свинец, никель, железо, хром и ванадий (IV), которые в лимоннокислой среде при pH 1 могут быть поглощены катионитами в Н-форме. Как показали И. П. Алимарин и А. М. Медведева [3], при более высоких значениях pH поглощение катионов затрудняется вследствие образования цитратных комплексов. Методика Клемента была тщательно проверена и слегка видоизменена Уоткинсопом [118 ], который установил, что она пригодна также для удаления элементов (железа, меди, олова и ванадия), мешающих спектрофотометрическому определению вольфрама (вольфрам и молибден оказываются в вытекающем растворе). Метод применялся для определения этих элементов, а также ванадия, в почвах и растениях. Аналогичный метод использовался для удаления иопов, мешающих полярографическому и снектрофотометрическому определению молибдена в сталях [17. 84] и минералах [51]. Если в растворе присутствует ванадий в виде ванадата, то перед катионообменным отделением от молибдата он должен быть восстановлен двуокисью серы [56]. [c.352]

    Получение концентрата для полярографического определения меди, цинка и кадмия. Сорбент, содержащий поглощенные ионы меди, кадмия и цинка, переносят из сборника концентратора в стакан и обрабатывают 3 порциями по 8—10 мл горячим раствором соляной кислоты, декантируя на стеклянный или бумажный фильтр. С последней порцией кислоты сорбент переносят на фильтр и промывают двумя порциями воды по 5 мл. Собранные вместе фильтраты переносят в делительную воронку и нейтрализуют раствором аммиака или карбоната натрия до перехода окраски метилового оранжевого из красной в желтую. В присутствии заметных количеств железа (1П) перед нейтрализацией добавляют к раствору 3—5 мл раствора тартрата калия-натрия. Затем к нейтрализованному раствору добавляют 1 мл раствора диэтилдитиокарбамината натрия, 5 мл четыреххлористого углерода и встряхивают в течение 2 ммн. Отстоявшийся слой четыреххлористого углерода, в котором содержатся растворимые в нем карбама-ты меди, цинка и кадмия, сливают в стакан из жаростойкого стекла емкостью 50 мл, обсушив носик делительной воронки фильтровальной бумагой. В стакан добавляют 1 мл концентрированной соляной или азотной кислоты и раствор выпаривают досуха. При выпаривании следует избегать прокаливания. [c.360]

    Г1олярографическое микроопределение перекиси водорода [95—97] основано на том, что при растворении кислорода в воде получаемая полярограмма имеет два плато, из которых одно обусловлено восстановлением кислорода до перекисного состояния, а второе—восстановлением перекиси. Этим путем можно открыть еще 10 мг в пробе 2 мл. Жигер и Жайе [96] изучили полярографический анализ разбавленных растворов перекиси водорода в основном с целью выяснения применимости капельного ртутного электрода с неподвижным платиновым электродом для непрерывного анализа движущихся растворов они пришли к заключению, что твердые микроэлектроды мало подходят для этой цели. Полярографический метод использован также для контроля чистоты растворов перекиси водорода путем открытия в 1шх таких примесей, как соединения железа, свинца и меди [97], и для определения содержа1шя стабилизаторов, например станната. Реймерс [98] разработал полярографический метод для открытия перекиси водорода в присутствии перекиси эфира. [c.467]

    А. С. Тихонов и Н. К. Витченко [4] на основании различных потенциалов восстановления железа и меди из салицилатных комплексов предложили полярографический метод определения меди и трехвалентного железа при их совместном присутствии. [c.25]

    Ион кобальта (II) характеризуется способностью образовывать растворимые комплексные соединения в избытке аммиака, экстрагирующиеся органическими растворителями комплексные соединения с роданид-ионом. Селективными реактивами, позволяющими определять кобальт в присутствии других элементов (меди, никеля, железа), являются оксинитрозосоедпнения. В зависимостп от содерл<ания кобальта в анализируемом объекте (оно колеблется от десятых долей до десятков процентов) применяют титриметрические, фотометрические, полярографические и атомно-абсорбционные методы. Сравнительно редко прибегают к гравиметрическим п люминесцентным методам определения содержания кобальта. [c.68]

    С практической точки зрения лучше всего полярографиро-вать кобальт в растворе смеси пиридина и хлорида пиридиния при рн 5,4, так как на этом фоне волны никеля и кобальта хорошо разделены (потенциалы полуволн отличаются приблизительно на 0,3 в) и при равных или соизмеримых концентрациях обоих элементов их легко измерить. Железо при указанной величине рн осаждается в виде гидроокиси и не мешает определению также не мешают небольшие количества меди и марганца. Применяя пиридиновый фон, можно полярографировать не только в водных, но и в этанольных растворах, где волны кобальта и никеля хорошо выражены кобальт восстанавливается на 0,22 в раньше никеля. Исследование полярографического поведения кобальта в растворах оксикислот [148, 150] показало, что в растворе тартрата при pH 6,3 волна кобальта хорошо выражена и что этот фон пригоден для совместного определения кобальта и никеля волны обоих элементов хорошо разделены. При увеличении концентрации тартрата натрия волна никеля вообще не появляется, что дает возможность определять кобальт в присутствии больших количеств никеля. [c.165]


Смотреть страницы где упоминается термин Полярографическое определение железа в присутствии меди: [c.189]    [c.99]    [c.91]    [c.85]   
Смотреть главы в:

Комплексоны в химическом анализе -> Полярографическое определение железа в присутствии меди




ПОИСК





Смотрите так же термины и статьи:

Железо III в присутствии меди

Железо определение полярографическое

Медь, определение

Определение железа в присутствии меди



© 2025 chem21.info Реклама на сайте