Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм агентов

    Термическое алкилирование проходит по механизму радикально-цепной реакции, поэтому добавка агентов образования радикалов (например, хлорорганических соединений) вызывает понижение температуры реакции с 500 до 400 °С. [c.253]

    В задачу настоящего раздела не входит изложение теории образования азеотропов, классификации жидкостей, с точки зрения формирования молекулярных связей, методов предсказания отклонений растворов от идеальности или избирательных свойств добавляемых агентов, механизма изменения относительной летучести об этом можно прочесть в специальной литературе, посвященной данным вопросам. [c.328]


    Ингибиторы асфальтосмолистых и парафиновых отложений,. способные предотвратить отложения, более перспективны, чем растворители. По механизму действия они подразделяются иа три группы смачивающие агенты, депрессаторы и модификаторы. [c.191]

    Эти результаты наводят на мысль о возможности механизма бимолекулярного замещения с ароматическими углеводородами, ведущими себя как нуклеофильный замещающий агент. [c.438]

    Уменьшение концентрации карбкатиона приводит к снижению скорости диспропорционирования. Существует мнение, что на цеолитсодержащих катализаторах, в частности на мордените в катионзамещенных формах (Н, Мо, Са, 5г), диспропорционирование протекает за счет реакций трансметилирования [46]. По нашим данным, наиболее существенную роль играют отщепление и масс-межмолекулярный перенос С2-фрагментов [47]. Некоторые исследователи высказываются за механизм реакций по схеме конденсация - крекинг, т. е. без образования низкомолекулярных алкилирующих агентов [48]. [c.31]

    Для отверждения эпоксидных полимеров можно использовать амины и полиамины, кислоты и ангидриды кислот и другие агенты. Механизм действия одних отвердителей заключается в каталитическом воздействии на функциональные группы, причем сам отверди-тель не входит в цепь полимера другие отвердители взаимодействуют с эпоксидными или гидроксильными группами и сами включаются в полимерную цепочку. [c.39]

    Механизм образования дифенилолпропана в присутствии щелочных катализаторов противоположен катализу кислотами. Если роль кислот, как показано выше, заключается в активации электрофильного компонента, то действие щелочных агентов сводится к активации нуклеофильного компонента, т. е. молекулы фенола. Эта активация протекает, вероятно, путем отрыва протона и образования фенолят-аниона [c.93]

    По существующим представлениям электроокисление может происходить или при помощи промежуточных окисляющих агентов — адсорбированного кислорода, кислородных соединений металлов и свободного гидроксила, получающихся при разряде ионов ОН", или путем отщепления электрона от самой окисляемой молекулы. Так, показано, что механизм электроокисления сульфат-иона в персульфат-ион является электронным  [c.634]

    Механизм перемешивания ожижающего агента в псевдоожиженных системах является сложным и не может быть описан уравнением диффузионного типа. Действительно, уже в неподвижном слое небольшие перемещения частиц внутри крупных пустот могут вызвать отклонения от диффузионного механизма даже при скоростях, значительно уступающих скорости начала псевдоожижения [c.64]


    Так, например, для разработки технологических процессов гидрирования сырья без его изомеризации и расщепления удобнее применять окислы, а не сульфиды переходных металлов, наносить гидрирующий агент на носители, лишенные кислотных свойств, устранять примеси, могущие быть акцепторными добавками (сера,, вода, кислород). В этих условиях реакции изомеризации и расщепления, протекаюш ие по ионному механизму, будут подавлены. Для максимальной изомеризации и расщепления сырья будут выгодны противоположные меры использование сульфидов вместо-окислов, применение кислотных носителей, добавка электроноакцепторных веществ. Многие из этих приемов, как это видно из таблиц первой главы, уже применяются на практике. [c.274]

    Кратко сформулируем итоги предварительного рассмотрения физико-химических особенностей процесса сульфирования а) механизм процесса в первую очередь зависит от свойств растворителя, использующегося на стадии предварительного набухания сополимера б) при наличии тормозящего агента в виде ограниченно растворимого в кислоте дихлорэтана гипотеза квазистационарности может быть применена к брутто-процессу сульфирования в) равновесные условия процесса должны определяться по воде, выделяющейся в результате реакции сульфирования. [c.348]

    Индустриальные масла применяются главным образом на промышленных предприятиях для смазки станочного оборудования, механизмов и машин. Несмотря на различные условия эксплуатации, индустриальные масла (за исключением цилиндровых, используемых для смазки цилиндров паровых машин) применяются при сравнительно невысоких температурах окружающей среды и при отсутствии непосредственного их контакта с водяным паром, горячим воздухом и другими агентами, способствующими физико-химическим превращениям углеводородов, входящих в состав масла. Загрязнение индустриальных масел происходит в основном вследствие попадания в них атмосферной пыли, частиц металла (особенно при смазке металлообрабатывающих станков) и волокон (преимущественно при смазке текстильного оборудования). [c.50]

    МЕХАНИЗМ ДЕЙСТВИЯ РАЗДЕЛЯЮЩИХ АГЕНТОВ И КРИТЕРИИ [c.39]

    Уравнение (121) определяет условие, которому должен удовлетворять разделяющий агент для того, чтобы он увеличивал коэффициент относительной летучести заданной смеси. Это уравнение не позволяет, однако, установить, распространяется ли это увеличение на весь диапазон концентраций. компонентов заданной смеси. Кроме того, оно не отражает влияния свойств и состава смеси, подвергаемой разделению, на степень Изменения ее коэффициента относительной летучести. Для решения этих вопросов следует выяснить механизм действия разделяющих агентов. С этой целью необходимо обратиться к анализу имеющихся опытных данных о равновесии между жидкостью и паром в трехкомпонентных системах. [c.39]

    В заключение необходимо остановиться на допущениях, лежащих в основе приближенного уравнения (123), использованного для вывода приведенных положений. Легко видеть, что влияние указанных выше двух факторов, определяющих механизм действия разделяющих агентов, должно проявляться во всех системах. Несоблюдение сделанных допущений может приводить лишь к отклонению истинных значений коэффициентов относительной летучести, а также величин, характеризующих каждый из этих факторов, от значений, вытекающих из уравнения (123). Принимая во внимание приближенный характер уравнений (123) и (125), они могут быть использованы лишь [c.44]

    Рассмотренный в предыдущем разделе механизм действия разделяющих агентов является общим для процессов азеотропной и экстрактивной ректификации. Поэтому во всех случаях для определения применимости того или иного вещества в качестве разделяющего агента следует исходить из оценки степени неидеальности бинарных систем, образованных этим веществом и компонентами заданной смеси. Как уже указывалось, специфика разделяющих агентов, применяемых в процессах азеотропной ректификации, заключается в том, что они должны образовывать азеотропы с компонентами исходной смеси. В связи с этим дополнительно возникает необходимость определения наличия и свойств азеотропов. [c.45]

    Появление сольватированных электронов переносит зону электрохимической реакции восстановления с границы раздела электрод — электролит в раствор, т. е. превращает ее из поверхностной, гетерогенной, в объемную, гомогенную, реакцию, с катодно генерируемым восстанавливающим агентом. В связи с этой основной особенностью нового механизма восстановления роль транспортных ограничений становится несущественной реакция теперь не локализована в определенном месте, а распределена в объеме подвижность электронов выше, чем большинства других частиц кроме того, появление электронов в растворителе приводит к возникновению градиента плотности, а следовательно, к конвективному перемешиванию объема раствора, примыкающего к катоду. Эта особенность оказывается наиболее существенной в случае электровосстановления труднорастворимых органических соединений, которые при обычных условиях из-за крайне медленной доставки восстанавливаются с ничтожными выходами. В водных средах для ускорения подобных процессов применяются медиаторы потенциала — ионные редокси-пары, которые переносят мектроны от катода к восстанавливаемым частицам или от окисляющихся частнц к аноду, а затем сами восстанавливаются или окисляются на соответствующих электродах. Эффективность восстановления сольватированными электронами должна быть существенно выше, чем при применении медиаторов по уже указанным ранее причинам, а также потому, что ионам медиатора приходится проходить двойной путь — до реакции с частицей и после иее. Действительно, найдено, что токи генерации сольватиро-вапных электронов больше чем на три порядка превышают токи диффузии органических соединений к катоду. [c.444]


    Влияние окиси азота на разложение этана являлось предметом многих исследований. Стэвли [81] нашел, что с увеличением концентрации окиси азота скорость разложения снижается до минимума, достигая величины 8% от неингибированной скорости. Изучая реакции, ингибированные окисью азота, Стэвли и Гиншельвуд установили, что средняя длина цепи значительно короче предполагавшейся на основе механизма свободных радикалов. Упомянутые авторы приходят к выводу, что в рассматриваемой реакции действуют оба механизма молекулярный и свободнорадикальный. Такой же вывод был сделан Стици и Шейном [85], которые нашли, что энергия активации полностью ингибированной реакции равна 77,3 ккал, в то время как у Стэвли последняя равна 74 ккал. Любое из этих значений превышает величину, принятую для неингибированной реакции — 69,8 ккал. Ингольд и другие [43] исследовали влияние окиси азота и пропилена на разложение этана. Пропилен действует аналогично окиси азота, хотя но является окисляющим агентом. Ингольд приходит к тому же выводу, что в рассматриваемой реакции действуют оба механизма. [c.83]

    Механизм реакции не вполне ясен. Реакция протекает на поверхности анода и, по-видимому, включает стадию образования переходного состояния, в котором органическая молекула присоединена к поверхности анода в окисленном состоянии. Поскольку применяется потенциал ниже того, который необходим для образования фтора, возможно, что в процессе реакции образуется в качестве промежуточного соединения активный фторид металла, который и является фторирующим агентом. Дальнейшим доказательством в пользу этого предположения является наблюдение, что идущий в некоторой степени крекинг углеродной цепи аналогичен крекингу при применении СоГ или АдГа при значительно более высоких температурах. [c.73]

    В предложенном механизме электрофильный агент показан как уже образовавшийся в условиях реакции и принимающий в ней участие. Так происходит, по-видимому, при меркурировании, где реакция, вероятно, включает участие иона двухвалентной ртути (до некоторой степени сольватированного), и при нитровании смесью кислот, где в качестве промежуточного соединения, как было показано, должен участвовать питроний-ион NOj . Галоидирование при обычных условиях, по-видимому, не включает участие положительно заряженных промежуточных соединений, как С1 и Вг" , но вместо них, вероятно, включает образование поляризованных молекул галоидов, которые переносят эти промежу- [c.410]

    Карбоний ионный механизм. Под влиянием серной кислоты олефины подвергаются различным реакциям гидратации, образованию сложных эфиров, нолиморизации и конденсации с ароматическими углеводородами. Наиболее просто механизм различных реакций можно понять с точки зрения нродстаплений об образовании в качестве промежуточного продукта карбопнй-иопа [1381. Так, нанример, в разбавленных растворах кислот третичные олофины подвергаются гидратации в третичные спирты [78, 196, 204, 205 . С бо. гое концентрированными кислотами образуется сложный эфир сорной кислоты [170]. В разбавленных водных растворах кислот вода является главным нуклеофильным агентом, в то время как в 67%-ной серной кислоте концентрация свободной воды ничтожно мала и бисульфат-ион присутствует в очень большой концентрации (ЬХХУП)  [c.435]

    Из этих двух схем вторая предпочтительнее [2], хотя, по-видимому, нет никакого физического различия между ними в водном растворе серной кислоты, так как было показано наличие SO3 в концентрированной серной кислоте. Тем не менее увеличение скорости сульфирования с повышением концентрации серной кислоты до 100 % и с увеличением содержания олеума хорошо объясняется при помощи этих двух механизмов. Однако Лоер и Ода на основании изучения кинетики сульфирования антрахинона олеумом пришли к выводу, что моногидрат кислоты является активным сульфирующим агентом, а SO3 просто связывает реакционную воду в виде моногидрата кислоты. [c.528]

    Распыливающая дисковая сушилка (рис. 61) распыляет продукт в потоке теплоносителя с помощью быстровраща-ющегося диска, приводимого в движение от привода 2. Диски вращаются со скоростью 5000—20 ООО об мин и распыляют суспензии и вязкие продукты. При попадании на вращающийся диск жидкость разбрасывается мельчайшими частицами, которые нри контакте с горячим сушильным агентом высыхают в полете. Осевший на дно сушилки сухой материал гребковым механизмом 3 удаляется через специальный люк. [c.100]

    Однако в некоторых случаях мицеллярный катализ может наблюдаться. Например, аликват 336 (метилтриоктиламмонийхлорид) является очень эффективным липофильным МФ-катализатором (см. ниже). Сам по себе он мицеллы не образует. В водных растворах в отсутствие органических растворителей он суш,ествует в виде масляной суспензии. Однако, если добавить в смесь какой-либо неионный мицеллообразующий агент (например, полиоксиэтиленгликоль), аликват уходит внутрь или на поверхность неионной мицеллы. Образующийся таким способом катализатор оказывается очень эффективным во многих процессах [39]. В воде при очень низких концентрациях (10 —10 М) аликват 336 образует самоассоциаты. И хотя они существенно меньше, чем обычные глобулярные мицеллы, они катализируют нуклеофильный гидролиз и реакции декарбоксилирования 40]. Совершенно ясно, что механизм гидролиза нуждается в дальнейшем тщательном изучении. [c.66]

    Как известно, сульфидные и тиолатные анионы являются сильными нуклеофилами. Кроме того, они легко переходят с четвертичным ониевым противоионом из водной фазы в органическую. Таким образом, они должны быть идеальными субстратами в МФК-реакциях. Действительно, в фундаментальных работах Херриота и Пиккера [28, 201], посвященных изучению механизма МФК и влиянию структуры катализаторов, была использована система тиофенол/алкилирующий агент. [c.142]

    Для понимания механизма очень важным является тот факт, что очень активные алкилирующие агенты (например, бензилхлорид) реагируют с фенилацетонитрилом даже в отсутствие катализатора, хотя реакция идет и намного медленнее, чем в условиях МФК. При повышенных температурах (80 С) алкилиодиды также реагируют довольно быстро без катализаторов [298]. Эти наблюдения, как и результаты конкурентного алкилирования, указывают на важную роль поверхности раздела фаз при алкилировании [298]. Работы по эиантиоселективному алкилированию фенилацетонитрилов с хиральными катализаторами рассмотрены в разд. 3.1.5. Применение фенилацетонитрилов для нуклеофильного ароматического замещения описано в разд. 3.17. [c.181]

    Записывая структуры подобного типа, принято опускать в них атомы Н, присоединенные к циклическим атомам углерода каждая вершина шестиугольного кольца обозначает атом С с присоединенным к нему атомом Н.) В первой из указанных выше реакций серная кислота помогает протеканию реакции, превращая НЫОз в N0 , частицу, которая атакует бензольное кольцо. Кроме того, серная кислота играет роль поглотителя влаги, удаляя из реакционной системы образующуюся в качестве продукта воду. Соединения РеВгз и А1С1з во второй и третьей реакциях являются катализаторами. Чтобы уяснить их роль, необходимо познакомиться с механизмом реакции. Ароматические циклы особенно восприимчивы к атаке элек-трофильными группами, или льюисовыми кислотами, которые имеют большое сродство к электронным парам. В реакции бромирования бензола Вг, не является электрофильным агентом, в отсутствие катализатора РеВгз эта реакция не осуществляется даже за достаточно большое время. Однако молекула РеВгз способна присоединить еще один ион Вг , акцептируя его электронную пару, и поэтому она разрывает молекулу Вг2 на ионы Вг и Вг +  [c.302]

    Термин режимы псевдоожижения можно рассматривать в узком и широком аспектах. Оба они тесно связаны, поэтому их различие дли серьезного исследователя весьма проблематично. Заводской инженер подразумевает под этим термином плотности и скородти движения смесей ожижающего агента и твердых частиц в аппарате в целом. Лая кинетиков, рассчитывающих химические реакторы, рассматриваемый термин имеет более глубокий и широкий смысл механизм движения газа и твердых частиц внутри псевдоожиженного слоя, т. е. в пределах отдельных его зон. Оба аспекта получили подробную, теоретическую и экспериментальную трактовку в литературе. В данной главе проблема трактуется в широком аспекте при.атом демонстрируется, что. чакроскопически рассматриваемое физическое явление может быть описано на основе известных принципов гидромеханики, [c.15]

    Обмен газа между газовыми пробками и непрерывной фазой в реакторах с поршневым псевдоожиженным слоем определяет количество байпассирующего газа, а значит, и общую конверсию. В связи с этим изучение механизма межфазного массообмена и его зависимость от различных параметров (высоты и диаметра псевдоожиженного слоя, диаметра твердых частиц, скорости ожижающего агента и скорости реакции в непрерывной фазе) представляется весьма важным. [c.200]

    Случай 1 относится к очень быстрым реакциям. Можно видеть, что даже при очень больших значениях к отношение j асимптотически приближается к некоторой конечной величине Ze . Таким образом, в случае быстрых реакций (согласно этому уравнению) доля непревраш,енного реагента определяется только механизмом движения ожижаюш,его агента (поскольку X полностью зависит от свойств пузырей), но не природой самой реакции. [c.338]

    Весьма важным для установления границ аналогии является характер движения частиц в нсевдоожиженном слое. В термостатированной капельной жидкости ее состояние определяется пульсационным движением молекул. В однородном псевдоожиженном слое механизм диффузии твердых частиц подобен молекулярному . При псевдоожижении газом твердые частицы также совершают нульсационные перемещения , но с увеличением скорости газа начинает доминировать движение не отдельных частиц, а их агрегатов > , что аналогично движению турбулентных вихрей в капельной жидкости. Вихревой механизм переноса в нсевдоожиженном слое обусловлен движением газовых пузырей и граничными эффектами. Вблизи поверхностей и деталей (даже в отсутствие пузырей) нарушается равномерность распределения скоростей ожижающего агента и возникает направленная циркуляция твердого материала, аналогично конвективным токам в нетермостатированном сосуде с капельной жидкостью. Следует подчеркнуть, что граничные эффекты в псевдоожиженном слое выражены резче, чем в капельной жидкости. [c.495]

    Механизм псевдоожижения заключается в следующем. При подаче вертикального восходящего потока псевдоожижающего агента (газа или жидкости) через слой зернистого материала, лежащий на перфорированной решетке аппарата, на его частицы действуют аэродинамические силы. При малых скоростях слой остается неподвижным, с увеличением скорости отдельные частицы начинают двигаться одна относительно другой, и слой расширяется. При более высокой скорости потока достигается состояние, когда почти все частицы совершают сложное относительное движение, слой переходит во взвешенное (псевдоожиженное) состояние. Началу псевдоожижения соответствует равенство сил гидродинамического сопротивления слоя весу всех его частиц. В действительности требуется еще учитывать силы сцепления между частицами. Началу псевдоожижения соответствует некоторая скорость при которой преодолеваются силы сцепления и перепад давления становится равным весу частиц, приходящемуся на единицу поперечного сечения слоя. Зависимости перепада давления на высоте слоя с учетом архимедовых сил имеют следующий вид  [c.119]

    Несмотря на различную физико-химическую природу рассмотренных выше процессов, разработка математических моделей каждого из них и методология определения параметров во многих аспектах имеет много общего. Прежде всего для каждого из процессов характерны такие этапы, как исследование условий химического и фазового равновесия, причем для большинства из пих по единой методологии и одним и тем же моделям оценка гидродинамической структуры систем с двумя (и более) фазами применительно к выбранному типу оборудования оценка параметров кинетических закономерностей (коэффициентов массопередачи, площади поверхности раздела фаз, коэффициентов диффузии и т. д.) для учета реальных условий массоиереноса установление механизма химических реакций и оценка параметров (для процессов химического превращения, хеморектификации, хемосорбции), выбор разделяющего агента (для комплексов с разделяющими агентами). [c.94]

    Рассмотрим сначала результаты моделирования процесса с предварительным набуханием в дихлорэтане. Эксперимент показывает, что как и при получении Р-содержащих ионитов (фосфорили-рование), скорость, а следовательно, и длительность процесса сульфирования зависят от температуры, гранулометрического состава, количества сшивающего агента (см. рис. 5.17, 5.21, 5.22, 5.27—5.29). Наряду с этим для процесса сульфирования оказалась существенной зависимость скорости превращения от параметров, которые могут быть использованы для интенсификации процесса. Интенсификация гидродинамической обстановки в аппарате (см. рис. 5.29), как это и следует из внешнедиффузионного механизма [c.365]

    Приведенные выше представления о механизме действия разделяющих агентов и возникающие из них следствия основывались на рассмотрении условий разновесия между жидкостью и паром в трехкомпонентных системах. Поэтому они являются общими для процессов азеотропной и экстрактивной ректификации. [c.44]

    В зависиь1ости от степени увлажнения поверхности корродирующих металлов различают сухую и влажную атмосферную коррозию. При сухой атмосферной коррозии разрушение металла идет по чисто химическому механизму, когда агрессивные агенты (например, кислород воздуха, сероводород и др.) взаимодействуют с поверхностью металла. Влажная атмосферная коррозия представляет собой особый случай электрохимической коррозии, когда коррозионные процессы идут под пленкой влаги, выполняющей роль электролита. [c.182]


Смотреть страницы где упоминается термин Механизм агентов: [c.555]    [c.148]    [c.249]    [c.173]    [c.179]    [c.185]    [c.102]    [c.156]    [c.277]    [c.20]   
Принципы структурной организации белков (1982) -- [ c.260 , c.280 ]

Принципы структурной организации белков (1982) -- [ c.260 , c.280 ]




ПОИСК







© 2025 chem21.info Реклама на сайте