Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неорганические молекулы и радикалы

    Тем не менее, теория радикалов должна была пасть, и она пала, уступив место унитарным взглядам и теории типов Жерара, Дело в том, что теория радикалов основывалась на дуалистическом принципе, согласно которому органические соединения всегда состоят из кислорода (а также его аналогов или иной кислородсодержащей группы неорганической природы) и бескислородного углеродистого остатка. Этот принцип явно выдает свое происхождение, поскольку в начале-прошлого века частичное или полное, прямое или косвенное окисление было почти единственной формой преобразования органической материи. Дуалистическая концепция поддерживалась и фактами из неорганической природы, где известные в то время вещества (окислы, соли и т. п.) можно было рассматривать как бинарные, т. е. построенные из положительно и отрицательно заряженных частиц. Отмеченные факты объясняют позицию Берцелиуса, который был убежден, что, вычленяя в органической молекуле радикал и электроотрицательный кислородсодержащий остаток, химики познают ее истинную конституцию. [c.7]


    Как мы видели выше, теория радикалов принимала во внимание главным образом ту часть молекулы органических веществ, которая при обычных химических превращениях остается неизменной. Меньше внимания уделялось легко изменяющейся части молекулы и причинам ее изменений. Сменившая теорию радикалов теория типов, наоборот, сосредоточивала внимание именно на наиболее изменчивых частях молекулы и на причинах, от которых зависит эта изменчивость. После многих исканий (законы замещений, механическая теория типов, теория ядер и др.) было найдено следующее объяснение изменчивости и характера изменений органических молекул. В реакциях органических веществ обнаруживается глубокое сходство с реакциями простейших неорганических соединений органические вещества можно считать происшедшими от простейших неорганических веществ замещением в молекулах последних одного или нескольких атомов на группы атомов, названные остатками (чтобы не употреблять отвергнутого слова радикал ). Соответствующие простейшие неорганические вещества являются для происшедших от них органических веществ типами, и молекулы органических веществ обладают характерными ( типическими ) реакциями тех неорганических молекул, к типу которых они относятся. [c.51]

    Теория типов. Как мы видели выше, теория радикалов обращала внимание на ту часть молекулы органических веществ, которая при обычных химических превращениях остается неизменной. Меньше внимания уделялось легко изменяющейся части молекулы и причинам ее изменений. Сменившая теорию радикалов теория типов, наоборот, обратила внимание именно на наиболее изменчивые части молекулы и причины этой изменчивости. Теория типов подчеркивала, что в реакциях органических веществ обнаруживается сходство с реакциями простейших неорганических соединений. Органические вещества предлагалось рассматривать образовавшимися из простейших неорганических веществ замещением в последних одного или нескольких атомов на разные органические группы, названные остатками (чтобы не употреблять отвергнутого слова радикал ). При этом простейшие неорганические вещества являлись для образовавшихся из них органических веществ типами в том смысле, что молекулы этих органических веществ обладали характерными, типичными , реакциями исходных неорганических молекул. [c.9]

    Радикал может отрывать один электрон от электронодонорной молекулы или терять электрон за счет переноса его на электроноакцепторную молекулу. При этом радикал превращается в анион (К ) или катион (Я+) соответственно. Электронный перенос такого типа довольно часто происходит между органическими и неорганическими молекулами, сильно различающимися по электроотрицательности. Примеры этому можно найти среди каталитических окислительно-восстановительных реакций с участием некоторых неорганических реагентов [25]. [c.74]


    Реакции передачи (переноса) валентности (реакции отщепления отрыва радикала). При взаимодействии с органическими молекулами радикал может оторвать от них атомы водорода, хлора, брома, иода, но почти никогда не отрывает атом фтора из-за высокой прочности связи С—Р [64]. Отрыв атома водорода может происходить и от неорганических водородсодержащих соединений. Перенос групп атомов встречается редко. Наиболее подробно изучено отщепление атома водорода (табл. 2.18). Для одного и того же радикала и разных алканов выполняется правило Семенова — Поляни  [c.98]

    Неорганический радикал С1 отрывает от молекулы метана атом водорода с одиночным электроном, образуя НС1 и свободный радикал -СНз  [c.119]

    Окись этилена является соединением, весьма склонным к химическим превращениям и взаимодействиям с многочисленными органическими и неорганическими веществами. В реакцию вступает молекула окиси этилена в впде ненасыщенной группировки двухвалентного радикала -СН2-СН2-О-. [c.288]

    Металлорганическими (элементорганическими) соединениями называют соединения, в которых имеется, по крайней мере, одна связь между атомом органической молекулы, иона или радикала и атомом металла. При составлении названий таких соединений используются комбинации номенклатуры органических соединений, рассматриваемой в настоящей книге, и номенклатуры неорганической химии, включая бинарную, заместительную и координационную. [c.370]

    Если радикал в молекуле магнийорганического соединения объемистый и не содержит атомы водорода у Р-углеродного атома, то восстановление по приведенной выше схеме невозможно, а присоединение по обычному пути идет медленно (особенно если карбонильная группа в кетоне пространственно экранирована). В этом случае основным направлением реакции является образование алкоголята соответствующего винилового спирта (енола). В процессе такой реакции, которую называют енолизацией, неорганическая часть реактива Гриньяра проявляет [c.234]

    В приведенных формулах Н — длинный углеводородный радикал (обычно С 2 — С 8) К, К", Я "—алкилы с короткой цепью, арилы или арилалкилы Аг — бензольное кольцо X — неорганический анион (С1 , Вг и др.) п — среднее число оксиэтильных групп в молекуле неионного ПАВ. [c.98]

    Облучение органических веществ. Процессы, происходящие при облучении органических веществ, значительно сложнее, чем у веществ неорганических, и детально изучены только для относительно просто построенных органических веществ. Например, показано, что при облучении метана СН4 молекулы его расщепляются на радикалы СНз и атомы водорода. При облучении более длинных молекул высших углеводородов в них также образуется водород и углеводородные радикалы. Атом водорода Н может оторвать другой атом Н от соседней молекулы КН и образовать молекулу Нг и радикал Н по реакции  [c.428]

    Таким образом, энергия диссоциации первой связи в молекуле трифторида азота оказывается меньше энергии диссоциации второй связи, что отличает трифторид азота от аммиака и других неорганических соединений [52]. Это обстоятельство, характеризующее энергетическую устойчивость радикала МРг, имеет чрезвычайно большое значение в химии трифторида азота. [c.34]

    Выделение органической химии в самостоятельный раздел химической науки вызвано многими причинами. Во-первых, это связано с многочисленностью органических соединений (в настоящее время известно около 5 млн. органических веществ, а неорганических — около 600 тыс.). Вторая причина состоит в сложности и своеобразии органических веществ по сравнению с неорганическими. Например, их температуры плавления и кипения имеют более низкие значения они легко разрушаются при воздействии даже сравнительно невысоких температур (часто не превышающих 100°С), в то время как неорганические вещества выдерживают высокие температуры. Большинство химических реакций с участием органических соединений протекает гораздо медленнее, чем ионные реакции, характерные для неорганических веществ, что обусловлено природой основной химической связи в органических веществах — ковалентной связи. Следует подчеркнуть, что выход продукта в органических реакциях, как правило, ниже, чем в реакциях с участием неорганических веществ. Углерод, входящий в состав органических веществ, обладает особой способностью соединяться не только с несколькими другими углеродными атомами, но и почти со всеми элементами периодической системы (кроме инертных газов). Кроме того, в органической химии приходится сталкиваться с новыми понятиями и явлениями органический радикал, функциональная группа, изомерия и гомология, а также взаимное влияние атомов и атомных групп в молекуле. [c.5]


    На месте, оставшемся после крушения теории радикалов, Жерар начал строить новое здание, подойдя к органической молекуле не со стороны ее углеродистого радикала, а как бы с противоположной точки зрения со стороны функциональной группы. Не претендуя на познание строения молекулы, опираясь лишь на известные аналогии в поведении веществ, Жерар сформулировал теорию типов, согласно которой органические соединения можно сопоставлять с простейшими неорганическими веществами (водород, хлористый водород, вода, аммиак) и рассматривать их как аналоги неорганических молекул, в которых вместо водорода помещены органические остатки. Теория типов содействовала становлению учения о валентности, поскольку стало ясным, какое число атомов или групп может быть связано с водородом, кислородом, азотом. Максимальной вершины теория типов достигла в работах Кекуле, который установил тип метана и тем самым открыл четырехвалент-ность углерода. Кекуле принадлежит также огромная заслуга в том, что он обнаружил способность атомов углерода насыщать валентность друг друга, т, е. образовывать цепи. И все же Кекуле не сделал решающего шага, необходимого для того, чтобы стать творцом принципиально новой теории последователь Жерара, он продолжал считать химическую конституцию тел непознаваемой, а свои формулы — лишь удобным способом описания некоторых превращений и аналогий веществ. [c.8]

    Дотя знания об органических веществах накапливались постепенно еще с глубокой древности, органическая химия как самосгоя-тельная наука возникла лишь в начале XIX в. Оформление самостоятельности органической химии связано с именем Я. Берцелиуса. В 1808—1812 гг. он издал свое большое руководство по химии, в котором первоначально намеревался рассмотреть наряду с минеральными также и вещества животного и растительного происхождения. Однако в дальнейшем Я. Берцелиус от своего намерения отказался, мотивируя это необходимостью отсрочить написание раздёлов, посвященных растительным и животным веществам, до тех пор, ...пока мы не будем иметь по крайней мере некоторых надежных результатов исследований, касающихся основных законов состава органических соединений и отношений между составляющими их неорганическими элементами . Отсрочка оказалась довольно длительной часть учебника, посвященная органическим веществам, появилась лишь в 1827 г. По мнению Я. Берцелиуса, одно из различий между органическими и неорганическими веществами состоит в том, что органические вещества содержат оксиды со сложным радикалом, в то время как в неорганических соединениях радикал, связанный с кислородом, более прост. Я. Берцелиус считал далее, что в молекуле органического вещества должно содержаться не менее трех различных элементов и что органические молекулы ( сложные атомы , как он их называл) обязательно должны иметь большую молекулярную массу. Я. Берцелиус не рассматривал еще углерода как основы органических соединений. [c.5]

    Во всех приведенных примерах атом галоида, соединяясь с водородом или металлом, образует галоидоводородную кислоту или, соответственно, галоидный металл (соль), радикал же (алкил) соединяется с остатком неорганической молекулы (аммиака, цианистого калия и т. п.). Реакции, приводящие к соединению алкила с каким-либо другим остатком молекулы, называются реакциями алкилирования. Благодаря легкому отщеплению алкила галоидопроизводные углеводородов являются хорошими алшлирующими средствами и поэтому широко применяются в заводской и лабораторной практике. [c.65]

    Рассмотренные в данной главе модели среднестатистических молекул-относительно грубое приближение к молекулярной структуре нефтяных остатков, карбонизующихся масс, пеков и их групповых компонентов, коксов и углеродных волокон, поскольку реальные системы содержат, кроме углерода и водорода, множество других элементов от микроколичеств до нескольких процентов с соответствующими им химическими внутри- и межмолекулярными связями, структурами молекулярных фрагментов и т.д., состоят не только из нейтральных молекул, ко и из органических и неорганических свободных радикалов, ионов и радикал-ионов. Сотообразные ароматические фрагменты молекул могут быть незавершенными из-за образования внутренних и краевых дырок (см. табл. 1.9), относиться к различным гомологическим рядам и отличаться типом связи меж- [c.59]

    Химические свойства. В молекулах галогенпроизводных атомы галогенов связаны с углеродными атомами при помощи ковалентных связей (стр. 28.) Поэтому галогенпроизводные не способны к электролитической диссоциации и не образуют ионов галогенов, как это имеет место в случае неорганических галогенсодержащих веществ (Na l, КВг, Nal и т. п.), в которых галогены соединены с металлами при помощи ионной связи. Тем не менее галогенпроизводные, как уже указано, представляют собой весьма реакционноспособные вещества, и атомы галогенов в них могут замещаться другими атомами и группами. Это объясняется тем, что ковалентные связи между атомами углерода и галогенов поляризованы (стр. 33). Прочность этих связей в разных соединениях неодинакова она зависит как от строения углеводородного радикала, так и от связанного [c.93]

    Четные степени окисления для азота сравнительно мало характерны. Однако некоторые из них исключительно интересны и важны в неорганической химии и технологии. К числу таких соединений относится оксид азота (+2) (см. табл. 6). Молекула N0 содержит нечетное число электронов и по существу представляет собой обладающий малой активностью радикал. Молекула N0 достаточно устойчива и мало склонна к ассоциации. Только в жидком состоянии оксид азота (+2) незначительно ассоциирован, а его кристаллы состоят из слабо связанных димеров N2O2. Несмотря на эндотермичность и положительнуго величину энергии Гиббса образования NO из простых веществ, оксид азота (+2) не распадается на элементы и химически довольно инертен. Дело в том, что согласно ММО порядок связи в N0 высок и равен 2,5. Молекула N0 прочнее молекулы [c.257]

    При отнятии от молекулы углеводорода двух атомов водорода получаются двухвалентные радикалы. Их названия также производятся из названий соответствующих предельных углеводородов с заменой окончания -ан на -илиден (исключение составляет двухвалентный радикал, производный от метана, который имеет название метилен). Радикалы образуются не только органическими, но и неорганическими соединениями. Так, если от азотной кислоты отнять гидроксил ОН, то получится одновалентный радикал —ЙОг, называемый нитрогруппой, и т. д. [c.339]

    В связи с особой актуальностью охраны окружающей среды от загрязнения химическими реагентами большое внимание уделяется изучению способности ПАВ к биологическому разрушению в водной, почвенной и других средах. Биологическим разложением называют любое изменение (трансформацию) молекулы химического соединения, ведущее к упрощению структуры и изменению его различных свойств (физико-химических, токсикологических и др.) под влиянием живых организмов. Различают первичное и полное биологическое разложение. Так, гидрологическое отщепление от молекулы ПАВ активной сульфогруппы приводит к утрате веществом поверхностной активности, а с ней и способности к пенообразованию. В данном случае приемлемое для окружающей среды биоразложение совпадает с первичным разложением. Полное биоразложение — это распад вещества до простых неорганических соединений с образованием воды, углекислого газа, азота, аммиака и др. Известно, что алкилсульфаты разрушаются в результате гидролиза с образованием соответствующих спиртов которые окисляются до жирных кислот. В свою очередь последние подвергаются деструкции путем а- и р-окисле-ния. Вторичные жирные спирты (ВЖС) могут разлагаться по такому механизму ВЖС- спирт->кетон->оксикетон- дион альдегид-V кислота. Деструкция анионных ПАВ,, ведущая к потере поверхностной активности, может происходить либо путем отщепления от молекулы вещества гидрофильной группы, либо в результате последовательного окисления алкильного радикала. Отщепление гидрофильной, группы у синтетических алкилсульфатов, алкилсульфена-тов и алкиларилсульфенатов осуществляется в результате каталитического воздействия ферментов сульфатаз. [c.93]

    Введение галогена в молекулу кислоты усиливает кислотные своис на, например, трихлоруксусная кислота имеет константу диссоциации 2- 10 , близкую к сильным неорганическим кислотам. С удалением галогена от карбоксильной группы в цепи проявляется влияние углеводородного радикала и диссоциация кислоты ослабляется. Большое значение приобрели йодпроизводные жирных кислот, которые получают присоединением йода [c.153]

    А. Лавуазье вводят термин радикал (теория радикалов, 1832). В 1839 Дюма, Л. Тенар и О. Лорин уподобляют св-ва орг. в-в неорганическим простые эфиры они относят к типу воды, амины — к типу аммиака, галоидные алкилы — к тину хлористого водорода. А. Кекуле вводит четвертый тип — метана, к к-рому он относит все углеводороды. Так формируется теория типов. В 1852 Э. Франкланд на основе полученных им металлоорг. соединений (2п, 5Ь, 5п, Нд, Ах и др.) определяет валентности мн. элементов. В 1857 Кекуле доказывает четырехвалентность углерода и утверждает возможность сцепления атомов углерода друг с другом с образованием цепей. Первым от теории типов отходит А. Купер (1858) — он вводит обозначение связей черточками между атомами, образующими молекулы, а также графич. изображения последних, близкие к современным. В 1830 Берцелиус вводит термин изомерия для явления, связанного с различием св-в у в-в одинакового состава. Явление изомерии не находило объяснения вплоть до создания Бутлеровым теории строения орг. в-в (1861), к-рая определила диалектич. связь между строением орг. соед. и их св-вами. На этой основе Бутлеров вскрыл явление изомерии, предсказал существование изобутана и синтезировал его в 1866. См. также Химия. [c.413]

    Замечательно, что рвотный камень далеко не так склонен к гидролизу, как неорганические СОЧИ сурьмы. Уже это указывает на то, что рвотный камень не является антимонилтартратом, т. е. солью винной кислоты и радикала [SbO], связанного как катион, как это в большинстве слуяаев предполагали раньше наоборот, можно считать, что сурьма тесно связана именно с радикалом винной кислоты. Уже Шиф (S hiff, 1863) высказал предположение, что сурьма в винной кислоте, помимо атома водорода карбоксильной группы, замещает также оба атома водорода в спиртовых гидроксильных группах. Это предположение было позднее основательно экспериментально подтверждено Рейленом (Reihlen, 1931). Для объяснения кислой реакции, винного камня в водном растворе полагают что с сурьмой комплексно связана молекула воды, которая способна отщеплять ион водорода, так что в водном растворе существует следующее равновесие  [c.723]

    Какой бы значительный прогресс по сравнению с эмпирическими эти (формулы ни представляли, Вернер выдвинул еще проблему определения. способа соединения различных групп, заключенных в квадратные скобки, и попытался установить отношения между этими группами, т. е. внутрен-июю структуру комплексных радикалов, которые играют столь важную роль в неорганических соединениях. Опыты, проведенные Вернером с этой щелью на большом числе соединений, дали ему в руки доказательства, что все атомы и группы, объединенные скобками, непосредственно связаны с центральным атомом, который тем самым становится центральным атомом комплексного радикала. Констатация этого факта дала возможность установить, что центральный атом металла может удерживать большее, число групп по сравнению с числом, которое предсказывает его нормальная валентность. Атомы или группы, соединенные с атомами металлов, обладают, одпако, настолько своеобразным характером, что их нельзя сопоставить с атомами или радикалами, которые, согласно обычной тео- рии валентности, определяются как одно- или многовалентные. Это следует из того факта, что между единицами насыщения этих необычных групп и валентностями, соединяющими одно- и многовалентные радикалы, нет соответствия. В самом деле, группы, связанные этой новой единицей насыщения, обладают функциями индивидуальных молекул, как, например, 1ЧНз, НаО, КаС1, КР. Поэтому Вернер принял, что элементарные атомы, кроме обычных валентностей первичные валентности), могут проявлять другие силы притяжения вторичные валентности). Первичные валентности свойственны атомам и радикалам, и значение их может быть получено сравнением с атомом водорода вторичные валентности — это такие валентности, при помощи которых устанавливаются связи с индивидуальными молекулами. О всех группах, непосредственно связанных с центральным атомом, можно, сказать, что они координированы с этим атомом и число координированных групп выражается посредством координационного числа. Между различными координационными числами, которыми может обладать центральный атом, максимальное число приобрело большое теоретическое значение было найдено, что оно равно шести для большого числа элементов, как это видно из следующих формул  [c.317]

    Не умея определять молекулярные веса, химики считали, что газообразные простые неорганические вещества, например водород, кислород, хлор и т. д., имеют формулы Н, О, С1, а не Нг, О2, I2. По той же причине считали, что при нагревании цианистой ртути образуется свободный радикал N, а при реакциях иодистого метила и иодистого этила с натрием — свободные радикалы метил и этил. После того как было доказано, что указанные соединения не являются свободными радикалами, а имеют удвоенный молекулярный вес, отвечающий молекулам ( N)2, (СНз)2, 2Ho)2 и т. д., теория радикалов в значительной мере уже была поколеблена .  [c.43]


Смотреть страницы где упоминается термин Неорганические молекулы и радикалы: [c.11]    [c.478]    [c.89]    [c.89]    [c.243]    [c.157]    [c.169]    [c.488]    [c.413]    [c.2160]    [c.14]    [c.195]    [c.10]    [c.157]    [c.341]    [c.677]    [c.253]    [c.238]   
Смотреть главы в:

Экспериментальные основы структурной химии -> Неорганические молекулы и радикалы




ПОИСК





Смотрите так же термины и статьи:

Неорганические молекулы



© 2025 chem21.info Реклама на сайте