Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры на основе углеводородов

    Для увеличения нефтеотдачи пластов в качестве химически реагентов на основе углеводородов нефти и газа наиболее широко используют поверхностно-активные вещества и водорастворимые полимеры. [c.189]

    ДВОЙНЫХ связей, участки макромолекул с длинными боковыми ответвлениями. Разветвленные макромолекулы образуются в результате реакций передачи цепи через полимер. С повышением температуры полимеризации и количества катализатора или инициатора нерегулярность структуры полимера возрастает, увеличивается количество звеньев, соединенных в положении 1—2 или 3—4, а также разветвленность макромолекул. Наличие неодинаковых по структуре звеньев и различных боковых ответвлений в макромолекуле препятствует кристаллизации полимера и уменьшает подвижность отдельных сегментов макромолекул. Средний молекулярный вес синтетических каучуков обычно меньше среднего молекулярного веса натурального каучука. Все эти структурные различия между синтетическими полимерами и натуральным каучуком определяют более низкую прочность, мень шую морозостойкость и пониженную эластичность резин на основе синтетических полимеров непредельных углеводородов по сравнению с резинами из натурального каучука. [c.237]


    Третья группа — процессы синтеза получение изооктана путем последовательно проводимых полимеризации бутенов и гидрогенизации полимера, алкилирование углеводородов для получения изобутанового алкилата, триптана, кумола и др., прочие процессы. Синтетические процессы осуществляются, как правило, на основе химического катализа. [c.260]

    VI — полимеры типа простых эфиров (в продуктах деструкции присутствует альдегид) VII — полимеры на основе углеводородов. [c.302]

    П. нестойки в конц. к-тах, а при т-рах выше 50 °С-также и в углеводородах. Устойчивость П. к галогеналканам и ароматич. углеводородам, спиртам, кетонам возрастает с увеличением степени кристалличности и при сшивании полимера-основы. П.-гидрофобные материалы, отличающиеся высокой влаго- и водостойкостью. [c.458]

    Большую часть упомянутых выше смазок в настоящее время с успехом заменяют силиконовые полимеры. Преимущество их состоит в абсолютной несмешиваемости с водой или водными растворами, низкой упругости паров и главным образом в незначительном изменении вязкости в зависимости от температуры. При этом температура воспламенения силиконов гораздо выше, а горючесть несравненно меньше, чем у аналогичных смазок на основе углеводородов. При смазывании трущихся поверхностей (ось мешалки и т. д.) вместо минерального масла или глицерина можно употреблять различные сорта силиконового масла, а силиконовые смазки более густой консистенции заменяют вазелин и другие консистентные смазки. [c.44]

    Пластические массы на основе полимеров непредельных углеводородов [c.70]

    ПЛАСТИЧЕСКИЕ МАССЫ НА ОСНОВЕ ПОЛИМЕРОВ НЕПРЕДЕЛЬНЫХ УГЛЕВОДОРОДОВ [c.175]

    Широкое применение в качестве ФГО приобрели алифатические углеводороды (от С5 до С7), получаемые из низкокипящих фракций нефти. Эти углеводороды весьма доступны и обладают низкой токсичностью. Однако их применение ограничено вследствие легкой воспламеняемости и способности оказывать пластифицирующее действие на неполярные полимеры. Алифатические углеводороды используют в основном для производства пенополистирола и пенопластов на основе сополимеров стирола. Жидкий ФГО вводят или на стадии полимеризации или под давлением (100— 140 кгс см ) в расплав полимера в стадии переработки [171]. [c.133]

Таблица 28. Свойства полимеров, полученных на основе углеводородов Таблица 28. <a href="/info/56759">Свойства полимеров</a>, полученных на основе углеводородов

    Свойства полимеров на основе углеводородов представлены в табл. 3, 4, 5, 28. [c.219]

    Идентификация полимеров на основе углеводорода [c.224]

    Получение термоэластопластов на основе а-метилстирола затрудняется малой скоростью его полимеризации в углеводородах 12] и существованием равновесия мономер — полимер в растворе [c.285]

    В промышленности, главным образом в микроэлектронике, широко применяют пленки, полученные в плазме. Плазмохимические пленки могут быть кристаллическими или аморфными. Их толщина колеблется от долей до сотен микрометров. При осаждении в плазме тонких полимерных пленок на пористых основах образуются мембраны, применяемые в мембранной технологии для разделения растворов солей, органических соединений и газовых смесей. Такие пленки получают двумя методами — полимеризацией углеводородов или деструкцией полимеров. Плазмохимической поверхностной обработке можно подвергать различные материалы — от металлов и их сплавов до полимеров. В результате обработки полимеров в неравновесной плазме изменяются смачиваемость, молекулярная масса и химический состав поверхностного слоя (толщиной до 10 мкм). [c.298]

    Газовая адсорбционная хроматография отличается большей термической стабильностью неподвижных фаз — адсорбентов и может успешно применяться как при высоких температурах для анализа высококипящих соединений, так и при низких — для анализа природных и нефтяных газов. Для анализа слабо адсорбирующихся молекул газон и легкокипящих углеводородов используют адсорбенты с большой удельной поверхностью— цеолиты, тонкопористые силика ели. ГТо мере увеличения объема анализируемых молекул необходимо применять все более макропористые адсорбенты с менее развитой поверхностью. Выпуск однородных адсорбентов, в частности цеолитов и пористых полимеров, так называемых пор ап а ков, на основе сополимеров стирола, этилстирола и дивинилбензола позволил уменьшить несимметричность пико и расширить область применения ГАХ. [c.89]

    Изучение реакций термического крекинга предельных углеводородов имеет большое научное и практическое значение. Реакции термического распада алканов —путь к получению различных классов непредельных углеводородов, составляющих основу для большого химического синтеза самых разнообразных продуктов (спиртов, альдегидов, кислот, галоидопроизводных, полимеров, пластиков и т. д.). С другой стороны, пиролиз, или крекинг-процесс, является в настоящее время основным промышленным методом химической переработки нефтяных продуктов и газов с целью получения жидкого топлива и непредельных углеводородов, а термический крекинг — одной из распространенных форм этого метода. [c.3]

    Растворы кремнийорганических полимеров в ароматических углеводородах и других органических растворителях используются как лаки, на основе которых производят влаге- и теплостойкие эмали, Силоксановые эмали, имеющие красивые тона и оттенки, применяют для окрашивания фасадов зданий, сооружений и конструкций, а также для покрытий по шиферу. Эти эмали используют в качестве антикоррозионных покрытий. [c.189]

    Для получения низших мономеров могут использоваться процессы пиролиза газообразных углеводородов с Сг—С4 (компоненты природных и попутных газов) и нефтяных фракций — от бензиновых (Сб— 12) до газойлевых ( ia—С25). Основным продуктом пиролиза является этилен, который производится в огромных количествах. Это связано, прежде всего, с ростом производства полимерных материалов на его основе. Так, если в 1955 г. на производство полимеров было затрачено около 35 /о производимого во всем мире этилена, то к 1980 г. эта доля составит уже не менее 75%. Пропилен по значению и объему производства занимает второе место. [c.384]

    Общность химической природы полимеров и однотипных низкомолекулярных соединений является основой общности их химических свойств и типов химических реакций и превращений. Поэтому понятие химия полимеров делится на две большие и несколько разноплановые составляющие — химия получения полимеров (о чем уже шла речь в ч. 1 книги) и химия превращений макромолекул, т. е. химические реакции макромолекул. Последней цели посвящена ч. 3 книги. Полимерным макромолекулам присущи все химические реакции, которые известны в органической химии для насыщенных и ненасыщенных алифатических и ароматических углеводородов и их производных, других низкомолекулярных аналогов соответствующих полимеров. [c.214]

    В основе теоретических представлений об окислении низкомолекулярных углеводородов и полимеров лежит теория цепных химических реакций академика Н. Н. Семенова. В развитие теории цепных реакций окисления полимеров и разработку эффективных мер защиты от него внесли большой вклад труды советских ученых — Н, М. Эмануэля, А. Н. Баха, М. Б. Неймана, А. С. Кузьминского и др. [c.257]


    Теоретические основы. Процесс протекает с выделением тепла. Расчетный тепловой эффект реакции алкилирования изобутана составляет 125—135 кДж/моль прореагировавших олефинов фактический тепловой эффект (с учетом побочных реакций) равен 85—90 кДж/моль. В условиях процесса имеют место реакции алкилирования изобутана олефинами, олигомеризации олефинов, расщепления продуктов олигомеризации, перераспределения водорода, образования и разложения алкилсульфатов. В результате этих реакций, протекающих большей частью по карбкатионному механизму, в продуктах образуется пять основных групп углеводородов триметилпентаны, диметилгексаны, легкая фракция (С4—Се), тяжелая фракция (Сд и выше), растворенные в кислоте высокомолекулярные углеводороды (полимеры). Названные углеводороды получаются нз общих для каждой группы одного или нескольких промежуточных веществ. Установлено, что в продуктах алкилирования содержится 17 изопара-финовых углеводородов С5—С и 18—20 изопарафиновых углеводородов Сд и выше. Наиболее важные химические стадии процесса алкилирования изобутана бутиленами следующие. [c.167]

    Все каучуки, являющиеся полимерами диеновых углеводородов, за исключением наирита, при нагревании химически взаимодействуют с серой. При этом сера присоединяется по месту двойных связей каучука. Такое взаилмодействие каучука с серой лежит в основе процесса в у л к а н и з а ц и и. [c.66]

    Как уже было отмечено, неполярные вещества (парафин, парафиновое масло и др.) не обнаруживают измеримого угла потерь. Это в одинаковой степени относится и к многочисленным синтетическим продуктам химической промышленности, получаемым, например, на основе углеводородов. Синтетические масла, вазелин, озокерит и парафин совершенно не имеют потерь, если из них удалены примеси и остатки катализаторов или эмульгаторов. Практически не имеют потерь такие полимеры, как полистирол тролитул), по.чиинден, полиизобутилеи (оппанол), полиэтилен и политетрафторэтилен. Во многих случаях фактор потерь можно рассматривать как иеиосредственную меру применимости вещества. Масла заметно изменяют свои свойства с течением времени под воздействием электрического поля или кислорода воздуха. Эти изменения можно точ1ю и относительно просто определить измерениями диэлектрических потерь. На рис. 33 четко видно влияние старения на свойства изоляционного масла. [c.655]

    Вязкостными присадками чаще всего служат соединения на основе полиметакрилатов (высокомолекулярные полимеры эфиров метакриловой кислоты и алифатических спиртов) и полиизобути-лена. В последнее время используют также новые соединения — полимеры на основе стирола и диеновых углеводородов и полимеры на основе этилена и пропилена [46, 47]. [c.170]

    В промышленном производстве используются, как правило, более простые и эффективные катализаторы на основе тетраиоди-да или смешанных иодидхлоридов титана и триизобутилалюминия. При использовании в качестве растворителя ароматических углеводородов эти системы обеспечивают высокую скорость полимеризации и почти количественный выход полибутадиена. Практическое использование таких катализаторов облегчается тем, что зависимость скорости процесса от мольного отношения алюминий титан имеет плато в области отношений 4—6 [38]. Молекулярная масса образующегося полимера определяется температурой процесса, [c.181]

    Стойкость к растворителям вулканизатов жидких тиоколов, полученных на основе полимеров, содержащих 2% 1,2,3-трихлорпропана, аналогична вулканизатам тиокола 5Т. Несколько более высокая степень набухания в углеводородах и хлорированных углеводородах объясняется тем, что вулканизация низкомолекулярных полимеров проIекает менее эффективно, чем твердых каучуков, что приводит к образованию эластомеров с более редкой сеткой. [c.569]

    В своем развитии промышленность органического синтеза разделилась на ряд отраслей (технология красителей, лекарственных веществ, пластических масс, химических волокон и др.), среди К(Зторых важное место занимает промышленность основиого органического и нефтехимического синтеза. Термин основной (или тяжелый ) органический синтез охватывает производство много-тоннажных продуктов, служащих основой для всей остальной органической технологии. В свою очередь, термин нефтехимический синтез появился в связи с перебазированием технологии органических веществ на нефтяное сырье и в обычном смысле слова (исключая получение неорганических веществ и полимеров) охватывает первичную химическую переработку углеводородов нефтяного происхоладения. В этом плане он является частью основного срганического синтеза, чем и обусловлено их объединенное название. [c.8]

    Для улучшения пластичности твердых парафинов их применяют в виде композиций с нефтяными церезинами и восканш, которые имеют повышенное содержание кристаллизующихся углеводородов изомерного и циклического строения, являщихся носителями пластических свойств, а также с канифолью и различными полимерами (пшшпропилен, бутил-каучук, сополимер этилена с винилацетатом и др.). Типичными примерами ВОСКОВ нефтяного происхождения являются защитные воски ЗВ-1, ЗВ-1у [I], получаемые на основе фильтрата обезмасливания тяжелого дистиллятного сырья, а также воски "Омск-1" и "Оаск-7" [c.61]

    Автоокисление алкилароматических углеводородов в гидроперекиси [36] все более становится самостоятельным разделом органической химии, который находится в стадии широкого и интенсивного развития. Это объясняется прежде всего тем, что гидроперекиси алкилбензолов уже на данном этапе получили важное промышленное значение как таковые, или в качестве промежуточных продуктов, например, в синтезе фенолов, жирных и жирноароматических кетонов и спиртов. Гидроперекиси моно- и диизопропил-бензолов используются в качестве гербицидов [37] добавок к растворитедя М при очистке аппаратуры от полимеров при производстве холодного каучука [38] добавок, улучшающих воспламеняемость моторных топлив [39—42] окислителей при -отбелке тканей эффективных инициаторов низкотемпературной сополимеризации дивинила со стиролом и других непредельных соединений [43—51]. Особый интерес в качестве инициаторов полимеризации представляют гидроперекиси циклогексилбензола, п-изопропилциклогексил-бензола, несимметричного дифенилэтана, ге-трет.бутилизопропилбензола и 1,3,5-триизопропилбензола. Нам представляется, что в будущем масшта производства гидроперекисей будут обусловливаться только потребностями тех продуктов, которые будут производиться на их основе, так как технология их получения сравнительно простая, а сырьевая база неограниченная. Синтез алкилбензолов, необходимых для производства гидроперекисей, как [c.245]

    На основе фундаментальных исследований характеристик и свойств высокомолекулярных составлящих нефтяных остатков Институт химии нефти СО АН СССР совместно с БашНИИНП предложил использовать в качестве стабилизатора полимеров концентрат нефтяных асфальтенов и смол в оцраделенном их соотношении,характеризующийся температурой размягчения по КиШ 120-130°С. Бшш подобраны условия экстрактивного выделения соответствующих концентратов асфальтенов и смол из нефтяны остатков углеводородными растворителями (цроцесс Добен). Метод разделения тяжелых нефтяных остатков на асфальтено-смолистые и масляные компоненты экстракционной обработкой парафиновыми углеводородами основан на их различной растворимости в растворителе. [c.124]

    Значительный интерес в последнее время приобретают комбинированные депрессоры, включающие поверхностно-активный и полимерный компоненты. Предлагается следующий вариант теоретического обоснования действия комбинированых депрессорных присадок. При понижении температуры наличие молекул поверхностно-активного вещества способствует двум взаимно независимым процессам. Во-первых, возможно образование новых центров кристаллизации, которые активно связывают молекулы кристаллизующихся твердых углеводородов, уменьшая их локальную концентрацию и нарушая налаживание прочных связей между ними. Во-вторых, молекулы поверхностно-активного вещества могут сорбироваться на поверхности растущего кристалла, что приводит к образованию в системе более рыхлых пространственных структур дендритного вида. При отсутствии в системе второго компонента на полимерной основе образующиеся в присутствии поверхностно-активного вещества структуры в определенных нефтях тем не менее склонны к интенсивным взаимодействиям посредством связей кристалл-кристалл, кристалл-ПАВ-кристалл, кристалл-ПАВ-П( В-кристалл. Крупные молекулы полимера создают стерические затруднения для подобных взаимодействий, во всяком случае сдвигают их в область более низких температур, при достижении структурными образованиями в системе размеров, соизмеримых с сосуществующими полимерными молекулами. Введение в рассматриваемые системы только присадок на полимерной основе оказывает некоторое депрессорное действие, однако высокая концентрация частиц кристаллизующейся фазы способствует их интенсивному взаимодействию и росту с образованием прочной структурной сетки, окклюдирующей в некоторой степени молекулы полимера и купирующей тем самым его депрессорное действие. [c.243]

    ГИДРАТАЦИЯ И ДЕГИДРАТАЦИЯ КАТАЛИТИЧЕСКИЕ —реакции присоединения (гидратация) или отщепления (дегидратация) воды от органических соединений. Г. и Д. к.— одни из основных реакций органической химии. Основными видами реакций гидратации являются гидратация олефинов в спирты, ацетиленовых углеводородов в альдегиды и кетоны, нитрилов в амиды. На этих реакциях основываются промышленные способы производства важнейших продуктов органического синтеза. Реакции дегидратации составляют основу большинства реакций поликонден-сацин, играющих огромную роль при получении полимеров, алкидных или гли-фталевых смол, полиамидных волокон (найлона), мочевиноформальдегидных смол 1 др. [c.72]

    Первые исследования по изысканию путей синтеза мономеров принадлежат английскому профессору В. Тильдену, который в 1884 г. впервые получил изопрен высокотемпературным пиролизом скипидара. В 1889 г. русский химик Н. Н. Мариуца впервые получил 2,3-диметилбутадиен-1,3 из диметилизопропенилкарби-нола и наблюдал полимеризацию этого непредельного углеводорода под влиянием минеральной кислоты. Через год И. Л. Кондаков получил этот мономер из тетраметилэтилендихлорида. В теоретическом аспекте значение этих работ заключалось в доказательстве возможности синтеза каучукоподобных материалов не только из изопрена — структурного звена натурального каучука. Их важность в прикладном отношении была подтверждена организацией в Германии уже в первую мировую войну производства полимера на основе диметилбутадиена под названием метилкаучука (мягкий) и метилкаучука Н (твердый). Однако из-за низких технических свойств этого каучука и очень высокой стоимости его производство после войны было прекращено (всего было выпущено 2350 т метилкаучука и около 600 т метилкаучука Н). [c.7]


Смотреть страницы где упоминается термин Полимеры на основе углеводородов: [c.77]    [c.31]    [c.5]    [c.254]    [c.10]    [c.138]    [c.74]    [c.5]    [c.96]    [c.9]   
Смотреть главы в:

Качественный анализ полимеров -> Полимеры на основе углеводородов




ПОИСК





Смотрите так же термины и статьи:

Углеводороды полимеры



© 2024 chem21.info Реклама на сайте