Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волокна синтетические, определение

    Дело в том, что избыточное количество оптического отбеливающего вещества может вызвать нежелательную окраску. Оптические отбеливающие вещества дают высокую белизну при очень низких концентрациях, но при накапливании их на ткани отбеливающий эффект пропадает и ткань окрашивается в светлые цвета (розовый, зеленоватый, голубоватый и др.) за счет собственного цвета отбеливателя , являющегося в данном случае прямым красителем. Обладая высокой прочностью к стирке и сильным химическим сродством, оптический отбеливатель от стирки к стирке будет накапливаться на бельевой ткани и даст в конце концов нежелательную окраску. Поэтому химическое сродство и стойкость к стирке должны быть согласованы так, чтобы после многократной обработки создавалось определенное равновесие между удаляемым количеством оптического отбеливающего вещества и количеством его, наносимым на волокно в процессе стирки белья. Оптические отбеливающие вещества, применяемые при стирке белья, должны быть стойки к синтетическим моющим средствам, щелочи, перекиси водорода, к теплу и нагреву в процессах стирки, сушки и глажения. [c.205]


    Синтетические волокна имеют ряд недостатков по сравнению с природными, как то низкую гигроскопичность, что важно для соблюдения определенных гигиенических условий. Полиэфирное волокно плохо окрашивается и требует подбора специальных красителей. Основные физикохимические свойства волокон приводятся в табл. 70. [c.226]

    Собственно процесс окрашивания (т. е. выбор красителя и способ крашения) в значительной степени зависит от типа взятого волокна. Так, например, волокна животного происхождения, такие, как шерсть или шелк, т. е. волокна белкового характера, красят кислотными или основными красителями, которые реагируют с основными или кислотными группами белковых -макромолекул. Напротив, целлюлозные волокна, например хлопок, лен или коноплю, часто окрашивают красителями, которые образуют водородные связи с молекулами волокна. Такие красители называют субстантивными. Активные красители— это те, которые реагируют с помощью одной из своих групп с определенной группой окрашиваемого волокна, например образуя эфирные связи на макромолекулах целлюлозы. Все четыре названных типа красителей, т, е. кислотные, основные, субстантивные и активные, относятся к так называемым прямым красителям. Для синтетических полиамидных волокон (силон или найлон), полиэфирных волокон (тесил) или полипропилена используются другие красящие средства, которые в отличие от рассмотренных, не образуют химических связей с волокнами. [c.300]

    Основным направлением международного разделения труда в химической промышленности является специализация стран на производстве готовой химической продукции определенных групп, видов и марок. Номенклатура таких продуктов чрезвычайно широка— это пластические массы, синтетические смолы, химические волокна, синтетический каучук, фармацевтические товары. [c.139]

    Возможно, что в ближайшие годы будут разработаны. методы получения синтетических волокон из других гетероцепных полимеров, в частности поликарбонатов и полиформальдегида. Учитывая некоторые специфически ценные свойства этих полимеров, можно ожидать, что получаемые из них волокна представят определенный практический интерес. [c.18]

    Процесс полимеризации капролактама может осуществляться и непрерывно. Полученную ленту дробят на рубильных машинах в крошку (7—8 мм). Затем экстрагируют горячей умягченной водой (95—98°С) непрореагировавший мономер и другие низкомолекулярные соединения. После отжима и сушки крошка расплавляется при 260—270°С и при помощи дозирующего насосика определенными порциями под давлением приблизительно 6 МПа подается через фильтр в фильеру. Струйки расплава из фильеры попадают в высокую шахту, где они обдуваются холодным воздухом, застывают, и образовавшиеся волокна наматываются на бобину. Полученное волокно подвергают вытяжке, крутке, промывке, сушке, перемотке с одновременным замасливанием. Скорость прядения капрона и других синтетических волокон до 1500 м/мин, т.е. много выше, чем вискозного (75—100 м/мин). [c.213]


    Важность перехода полимеров при определенной температуре в вязкотекучее состояние видна из того, что большинство синтетических волокон формуется из расплавов полимеров (стр. 484). Кроме того, это состояние широко используется для ориентации пачек макромолекул в процессе формования и вытяжки синтетических волокон. При вытяжке пачки макромолекул ориентируются, приобретают правильное расположение, при котором они наиболее сближены друг с другом, а это значительно повышает прочность полимера. Кроме того, в процессе ориентации создаются оптимальные условия межмолекулярного взаимодействия полярных группировок и обрааования (в подходящих случаях) водородных связей между молекулярными цепями. Например, прочность волокна из сополимера хлористого винила и винилацетата в результате вытяжки повышается с 10 до 40 кг/мм , т. е. в четыре раза, а для некоторых полимеров — в 8—10 раз. [c.487]

    Таким образом, переработка полимеров через растворы имеет определенные ограничения, связанные с формой изделия (пленки и волокна пли подобные нм тонкослойные изделия). С другой стороны, существуют полимеры, которые могут быть переработаны только чер з растворы (целлюлоза и другие природные полимеры, некоторые виды синтетических термостойких полимеров). Естественно, что высокая производительность и экономичность процессов переработки через расплав выгодно отличают этот метод от метода переработки через раствор, когда требуется рекуперация растворителя, более сложная аппаратура и, как правило, значительные объемы ироизводственных помещений. Тем ие менее через растворы ежегодно перерабатывается свьппе 3,5 млн. т полимерных материалов в волокна и около 0,2 млн. т в упаковочные и изоляционные пленки. Количество полимерных материалов, перерабатываемых через растворы в пленки-подложки для светочувствительных слоев, достигает также сотен тысяч тонн. Кроме того, очень большие количества полимеров используются в виде растворов в качестве пленкообразующего материала для покрытий (пленки, эмали, краски)и в качестве основы для клеев. [c.12]

    Часто для улучшения свойств целлюлозных волокон их смешивают с синтетическими волокнами. Другим способом изменения свойств целлюлозных волокон является их модификация химическая (например, ацетилирование), физическая (например, мерсеризация) или сополимеризация целлюлозы с виниловыми мономерами [3, 4, 9, И, 17]. Рядом исследователей были получены привитые и блоксополимеры целлюлозы. При определенных условиях молекулярный вес винилового полимера, связанного с целлюлозой ковалентной связью, оказывался равным или даже большим, чем молекулярный вес целлюлозы [ 2, 42]. Механизм этой реакции изучался и ранее [1, 2, 8, 10, 19, 20, 25, 40]. [c.223]

    В зависимости от спектра излучения отбеливатели обладают определенными оттенками красноватым, синеватым или зеленоватым. Это отмечается в названиях белофоров буквами К, С, 3 (см. номенклатуру красителей, стр. 253). Главные области применения белофоров отмечаются следующим образом А — ацетатное волокно Б —бумага В — вискоза (в массе) Д — детергенты (моющие средства) Л — лавсан М — синтетические волокна (отбеливание в массе) Н — нитрон П — полиамидные волокна (капрон и др.) Ц — целлюлозное волокно Ш — щерсть. [c.453]

    Имелись определенные разногласия в вопросе о характере совмещения молекул красителя и волокна. Одно время предполагалось, что в оптимальной структуре красителя расстояние между звеньями, образующими Н-связи, должно соответствовать таковому для целлюлозы (около 10,3 Л). Ошибочность этой точки зрения была доказана Робинсоном на молекулярных моделях [1732]. Некоторые из диаграмм в его статье особенно наглядно показывают, какое значение имеет вращательная подвижность молекул и те разнообразные возможности в отношении образования Н-связей, которые при этом открываются. Робинсон предположил также, что крашение идет только в некристаллических частях синтетического полипептида, где в связи с менее совершенной упорядоченностью имеется больше групп, свободных для образования Н-связей (см. также [1202] и рис. 96). [c.284]

    ОПРЕДЕЛЕНИЕ МАРГАНЦА В СИНТЕТИЧЕСКОМ ВОЛОКНЕ [c.191]

    Наиболее распространенным видом текстуры является аксиальная, или осевая. В этом случае одинаковые оси у всех кристаллитов направлены параллельно прямой, называемой осью текстуры, а две другие оси расположены произвольно. В большинстве ориентированных полимеров ось текстуры совпадает с осью макромолекулы, хотя на промежуточных стадиях вытягивания неориентированных образцов это условие может не соблюдаться. При этом оси всех макромолекул в ориентированном образце параллельны одна другой, а повороты кристаллитов вокруг оси текстуры беспорядочны. В реальных случаях не удается осуществить строгую параллельность осей всех макромолекул. Всегда имеется определенный разброс в ориентациях макромолекул и кристаллитов. Поэтому ось текстуры дает среднее направление, а направления осей макромолекул относительно нее характеризуются большей или мепьшей дисперсией. При большой дисперсии ориентаций структура образца становится почти изотропной. Аксиальной кристаллической текстурой обладают все природные и синтетические текстильные волокна. [c.593]


    При вытягивании пленки в одном или в двух направлениях при поддержании определенных температурных режимов происходит ориентация материала. Высокая прочность синтетического волокна (например, из найлона, полипропилена и других материалов) связана именно с его ориентацией. [c.212]

    Доступность исходного сырья, ценные свойства полиэфирного волокна, превосходящего по отдельным показателям другие синтетические волокна, обусловили широкое развитие нроизводства этих волокон для изготовления определенного ассортимента технических изделий и предметов народного потребления. [c.123]

    Красители кубовые, колориметрированне растворов 6634 основные, применение в качеств. анализе 5071 пищевые, анализ 7716 серннстые, определение на волокне 8451 синтетические, определение в пищевых продуктах 6608 Краски, определение летучих 8259 Краски литографские и офсетные 7379, 8278 Крахмал определение 6869, 6944, [c.367]

    Синтетические моющие средства, особенно соли сульфокислот и алкилсульфлты, пе обладают способностью удерживать смытую грязь в растворе, т. е. способностью предотвращать товторное поглощение волокном окрашенной грязи — свойством, которым мыло обладает в очень высокой мере. Окрашенные загрязнения, состоящие из пыли и прочих неорганических составных частей, частично удерживаются на ткани органическими веществами, именно как жиры, масла и пот. Если эти вещества моющим средством извлекаются из ткани, переходя в эмульгированное состояние, то загрязнения в значительной мере теряют свою связь и также отделяются от волокна и связываются с мицеллами натурального мыла, что препятствует их обратному поглощению волокном. В случае синтетических средств типа солей сульфокислот, у которых вследствие слабовыраженного коллоидного характера мицеллы образуются лишь в меньшей мере, способность удержания смытой грязи в растворе выражена значительно слабее. Синтетические моющие средства обладают большой диспергирующей способностью, в результате чего грязь, переходя в раствор, оказывается сильно диспергированной и в таком виде вновь частично поглощается хлопчатобумажным волокном. Это приводит к тому, что со временем наблюдается посерение белья, которое, правда, становится заметным лишь после повторных стирок. Чтобы предупредить такое посерение белья, необходимо к синтетическим моющим веществам, не обладающим способностью удержания смытой грязи в растворе, прибавлять вещества, способные выполнить роль мицелл мыла. Такие вещества были найдены, -например, в виде тилозы НВК (эфира целлюлозы и гликолевой кислоты, являющегося продуктом реакции алкилцеллюлозы с моно-хлоруксуснокислым натрием — карбоксиметилцеллюлозы), применяемой либо самостоятельно, либо в смеси с силикатом натрия. В настоящее время их прибавляют в определенном количестве к каждому синтетическому моющему средству, особенно к мыльным порошкам. [c.409]

    Взаимодействие полимеров с растворителем имеет большое значение при переработке полимеров, их применении, в биологических процессах и др. Например, белки п полисахариды в живых организмах и растениях находятся в набухшем состоянии. Многие синтетические волокна и пленки получают из растворов полимеров. Растворами полимеров являются лаки и клеи. Определение свойств макромолекул, в том числе молекулярных масс, проводят, как правило, в растворах. Пластификация полимеров, применяемая в производстве изделий, основана на набухании полимеров в растворителях (пластификаторах). Вместе с тем для практического применения полимеров важным их свойством является устойчивость в растворителях. Для решения вопросов о возможном набу-ханни, растворенпи полимера в данном растворителе или об его устойчивости по отношению к этим процессам необходимо знать закономерности взаимодействия полимеров с растворителями. [c.312]

    Ксилолы (диметилбензолы) СбН4(СНз)2. Технический ксилол — смесь трех изомеров (орто-, мета- и пара-). Применяется в качестве растворителя. Разделение технического кси.лола на индиЕшдуаль-ные изомеры связано с определенными трудностями их температуры кипения различаются между собой на незначительную величину (см. табл. 15). орго-Ксилол используется для получения фта-левого ангидрида пара-ктпол — для синтеза терефталевой кислоты (см. с. 324), которая служит исходным сырьем для производства синтетического волокна — лавсана. [c.285]

    Доктор Уинфилд позднее рассказал [6] об открытии полиэтилентерефталата Мысль о том дне, когда мною будет открыто синтетическое волокно, прочно сидела в моей голове с 1923 г., когда я сотрудничал с Кроссом. Я возвращался к этой мысли снова и снова на протяжении последующих 18 лет. В 1935 г. я даже пытался получить волокно из крахмала, но к тому времени я уже хорошо ознакомился с работой Карозерса... Первым провел конденсацию терефталевой кислоты с этиленгликолем Диксон. Я предполагаю, что он воспользовался масляной баней с температурой около 200 С просто для того, чтобы отогнать избыток гликоля после начальной стадии реакции, ускорить и завершить полимеризацию. Так или иначе, но он вскоре прибежал ко мне и сообщил, что прп этой температуре вся масса неожиданно затвердела. Это, по-моему, была неожиданная н большая удача, и я в свою очередь рад был видеть, что застывшая масса непрозрачна — факт, дающий твердое основание предполагать микрокристаллическую структуру. Мы постепенно повышали температуру до тех пор, пока при температуре около 260 °С не произошло расплавление массы. Через несколько часов мы закончили эксперимент, получив почти бесцветный полимер, который, однако, имел хотя и слабую, но вполне определенную тенденцию к вытяжке на холоду. А немного позднее были получены рентгеновские снимки вытянутого терилена. [c.10]

    Для других полупродуктов синтеза капролактама Турьян с сотрудниками разработали косвенные полярографические методики, в частности, для определения гидроксиламина, цикло-гексаноноксима и нитроциклогексана. Методики основаны на реакции определяемых веществ с формальдегидом, в результате которой образуются полярографически активные вещества. Изучалось также электровосстановление 6,6-нитрогидроксиими-ногексановой кислоты — промежуточного продукта реакции окисления циклогексанола азотной кислотой до адипиновой кислоты, применяющейся для получения АГ-соли в производстве синтетического волокна [236]. [c.151]

    При определении химической устойчивости большое значение имеет удельная поверхность волокон, поэтому образцы синтетических асбестов, подвергаемые воздействию агрессивных растворов, тщательно подготавливались. Для этого растворимые в воде примеси удаляли длительным неоднократным кипячением в воде, после чего волокна распушивали и отмывали, наиболее мелкие волокна отмучивали. Таким образом, для исследования химической устойчивости синтетических амфиболов использовались волокна толщиной 0,01—0,1 мкм и длиной до 0,5 мм. Толщина фторамфиболовых волокон, выделенных из поверхностей щетки продукта синтеза, составляла 1—20 мкм при длине 15—20 мм. [c.135]

    Главное требование к волокнообразующему полимеру заключается в том, что длина его вытянутой молекулы должна быть не менее 1000А (100 нм), т. е. его молекулярный вес должен быть не ниже 10 000. Эта величина, разумеется, может быть и выше например, молекулярный вес необработанной (не-деструктированной) хлопковой целлюлозы достигает 500000. В случае синтетических волокон молекулярный вес исходного полимера намеренно ограничивают, поскольку прядильный раствор или расплав должен иметь не слишком высокую вязкость. У большинства волокон, сформованных из расплава, молекулярный вес составляет 10 000—20 000. Волокна, получаемые формованием из раствора, могут иметь более высокий молекулярный вес. Для текстильных волокон характерна также определенная степень кристалличности и (или) ориентации молекул вдоль оси волокна. Эти свойства, присущие природным волокнам, придаются искусственным и синтетическим волокнам в процессе их формования, вытягивания и термической обработки. Точность соблюдения параметров этих процессов оказывает существенное влияние на физико-механические и отчасти на химические свойства готового волокна. В свою очередь, регулярная структура волокна возможна лишь при определенной степени регулярности строения макромолекул, достаточной для их плотной упаковки, которая необходима для возникновения сильных меж-цепных взаимодействий (за счет водородных связей, ассоциации диполей или сил вандерваальсова притяжения). Однако при слишком высокой степени крист алличности волокно не только становится очень прочным, но и делается слишком жестким и теряет способность растягиваться в процессе его получения и эксплуатации. Кроме того, такое волокно чрезвычайно трудно окрасить, поскольку реакционноспособные группы почти целиком находятся в неупорядоченных участках. Степень кристалличности наиболее прочных синтетических волокон, по-видимому, не превышает 50—60%. Исключение составляют полиакрилонитрильные волокна, которые обнаруживают мало признаков истинной кристалличности, но вместе с тем обладают высокой однородностью структуры по всему сечению волокна. В неупорядоченных участках силы межцепного взаимодействия [c.284]

    Метод искры использован для определения галл1ия е алюминии, титане и цирконии [972], индии [1131], в сплавах золота [910], а также в сплавах индий — галлий [1001, 1148, 1149], индий — галлий — свинец (1001J, плутоний — уран — цирконий [906], в реакторных материалах [737, 786], золе синтетического волокна [972], зернах пшеницы и кукурузы [184. [c.160]

    Смесь пирролидиндитиокарбамината и дитизона в хлороформе использована для экстрагировани1Я галлия и других примесей из раствора с pH 3 при определении их в цирконии [175, 955, 971, 972], титане [175, 955, 972], алюминии, [970, 972], селене [175, 955] и в золе синтетического волокна [972]. [c.163]

    Разработан спектральный метод определения следовых количеств галлия и некоторых других элементов в маслах и биологических материалах [81, 184, 1221, 1823], а также в золе синтетического волокна [972] Концентрирование в последнем случае проводят экстрагированием хлороформом комплексов элементов с пиролидиндитиокарбаматом и дитизоном Чувствительность анализа [c.191]

    Гидрофобные синтетические волокна отличаются от гидрофильных природных и химических волокон прежде всего тем, что они не набухают в воде и водных растворах, поэтому требуются какие-то иные способы повышения восприимчивости гидрофобных синтетических волокон к красителям, например повышение температуры. В обычных условиях (20—25 °С) макромолекулы термопластичных синтетических полимеров находятся как бы в замороженном, застеклованном состоянии и не способны к каким-либо перемещениям. При повышении температуры в определенный момент происходит расстекловывание полимера, т. е. возникает явление сегментальной подвижности макромолекул, что приводит к образованию в аморфных областях волокна свободных пространств, достаточных для прохода молекул красителя. Температура, при которой происходит изменение сегментальной подвижности макромолекул волокнообразующего гидрофобного полимера, называется температурой стеклования. О том, насколько эффективен температурный фактор при краш1ении гидрофобных синтетических волокон в водной среде, можно судить по следующим экспериментальным данным. При 100 °С коэффициент диффузии красителя в полиэфирном волокне, характеризующий скорость проникновения красителя в волокно, составляет 10 —10см /с. Повышение температуры до 150—230°С приводит к увеличению этого показателя до 10 °—10 см /с. С примерно такими же скоростями диффундируют красители в набухшие в воде гидрофильные волокна при 100°С. [c.48]

    Капролактам — мономер, служащий сырьем для получения по-ликапролактама, из которого готовится синтетическое волокно капрон. Количественное определение капролактама важно для оценки качества готового продукта его приходится также проводить при анализе различных производственных растворов, сточных вод, сульфатных щелоков и др. [c.253]

    Сравнительно недавно полиэтилентерефталат начали использовать в качестве материала для изготовления синтетического волокна это вызвало определенный интерес к процессам деструкции полиэфиров, содержащих ароматические кольца в главной цепи [47, 48]. Полиэтилентерефталат нестоек при повышенных температурах, при которых производится его пря-чение из расплава. Однако циклические структуры рассмотренных выше типов при этом не образуются. Вместо этого образуются осколки полимера, сильно отличающиеся химически от исходных веществ. Поль [47], используя скорость выделения газообразных продуктов, усиление окраски и кислотность оставшегося полимера как меру скорости разложения, показал, что стабильность терефталевых эфиров диолов уменьшается в ряду эфир 2,2-диметилпропан-1,3-диола (1), эфир этиленгликоля (2), эфир декаметилен гликоля (3), эфир диэтиленгликоля (4). [c.117]

    Теоретические основы в этой области впервые были дагпл А. М. Бутлеровым, который открыл в 1870 г. явление полимеризации изобутилена. В настоящее время синтезировано несколько тысяч различных каучукообразных веществ и примерно двести из них вырабатываются промышленностью. Широкое и разнообразное применение получили пластмассы. и синтетические волокна. Все же техника и другие области жизни предъявляют к промышленности синтетических материалов все большие запросы. От полимеров требуется совмещение самых разнообразных качеств. Последние обусловливаются не только свойствами соответствующих мономеров, но и методами их переработки. До недавнего времени достаточно полно были разработаны и внедрены в производство два основных способа получения высокомолекулярных соединений полимеризация и поликонденсация. Однако химическая наука О полимерах и химическая технология на этом не остановились. Научная работа по изысканию новых методов синтеза макромолекул полимеров с заранее заданной структурой, обусловливающей определенные свойства, привела к созданию новых способов и новых полимеров. [c.275]

    Для повышения растворимости красителей такого типа их конденсируют по первичным аминогруппам с окисью этилена, причем получаются производные, содержащие группы NH Hj HjOH (красители дисперсол ). Применяются также серные эфиры этих соединений, содержащие группы NH Hj HgOSOgNa (красители солацет ). На том же принципе основывается крашение синтетических волокон, таких, как найлон, орлон и терилен (в случае найлона возможно также крашение кислотными красителями, образующими соли с концевыми NH2-группами, а волокно орлон может окрашиваться определенными кубовыми красителями). [c.476]

    Многие компании, производящие синтетические волокна, используют метод атомной абсорбции для определения содержания элементов в волокнах. Часто данные этих анализов являются секретом фирм, и их публикуют очень неохотно. Однако некоторая информация по этому вопросу опубликована Славиным [350]. Было указано, что следы металлов можно определять в волокнах после кипячения 1 г образца в 0 мл концентрированной Н2804. Разбавление полученной вытяжки до 50 мл и применение метода добавок позволяет, по-видимому, получить надельные результаты. Во избежание засорения горелки рекомендуется использовать трехщелевую горелку или горелку с широкой щелью. [c.190]

    Сочетание с эмиссионной и атомно-абсорбционной спектрофото-метрией пламени. Непосредственное распыление экстрактов в пламя позволяет определять многие элементы методами эмиссионной и атомно-абсорбционной фотометрии пламени [47, 1833]. В этом случае окраска металлгалогенидного комплекса не имеет значения. Описан, например, способ атомно-абсорбционного определения сурьмы в меди, олове, сплавах алюминия и синтетическом волокне, включающий экстракцию ее комплекса Sb lei метилизобутилкетоном и распыление экстракта в пламя [1859]. Аналогичный метод определения As, Fe и Mo в никеле и уране основан на экстракции определяемых элементов амилацетатом из [c.320]


Смотреть страницы где упоминается термин Волокна синтетические, определение: [c.531]    [c.127]    [c.39]    [c.245]    [c.16]    [c.141]    [c.319]    [c.26]    [c.88]    [c.533]    [c.381]    [c.223]   
Аналитическая химия молибдена (1962) -- [ c.0 ]

Аналитическая химия молибдена (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Волокно определение

Синтетические волокна



© 2025 chem21.info Реклама на сайте