Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диоксид углерода газовый

    Ниже приводятся рекомендации и порядок расчета абсорбера для очистки углеводородного газа от кислых компонентов, десорбера для регенерации раствора моноэтаноламина и теплообменника для нагревания насыщенного водного раствора моноэтаноламина на установке одновременной очистки углеводородной газовой смеси от сероводорода и диоксида углерода. [c.6]


    На рис. УП1-3 изображена схема выбросов в окружающую среду крупнотоннажным агрегатом производительностью 1360 т/сут. Крупнотоннажное производство аммиака дает следующие выбросы в окружающую среду 1) жидкие стоки, состоящие из конденсата, продуктов продувки систем охлаждения и промывки растворов 2) газовые выбросы, содержащие аммиак, диоксид углерода и другие газы 3) невосполнимые потерн низкопотенциальной энергии в системах воздушного и водяного охлаждения, которые сами по себе не оказывают заметного влияния на окружающую среду, однако приводят к косвенному увеличению расхода энергии на технологические процессы и увеличивают тепловые потери процессов, производящих энергию. [c.209]

    ПЛОДОВ и овощей в течение длительного времени оказалось хранение их в регулируемой газовой среде (РГС), содержащей 2— 5% (об.) кислорода, 2—5% (об.) диоксида углерода и 90— 95% (об.) азота. В среде такого состава, который способствует понижению температуры в результате снижения интенсивности дыхания, резко замедляется скорость процессов жизнедеятельности [117]. [c.327]

    При нормальных условиях 1 моль газообразного диоксида углерода занимает объем 22,2 л (нормальный молярный объем идеального газа составляет 22,4 л), а то же количество сухого льда (кристаллического СО ) имеет объем всего 28 см (в предположении, что плотность сухого льда 1,56 г-см ). Столь большой объем газа по сравнению с твердым состоянием вещества, а также то обстоятельство, что газ легко сжимается и расширяется в зависимости от внешних условий, убедительно свидетельствуют, что большая часть объема газа представляет собой пустое пространство. Но каким же образом система, большая часть которой-всего лишь пустое пространство, способна оказывать давление на окружающую среду Эксперименты, подобные изображенному на рис. 3-7, указывают, что молекулы газа перемещаются в пространстве, причем они совершают прямолинейное движение. Движущиеся молекулы газа сталкиваются со стенками сосуда, друг с другом и с любыми другими предметами, которые могут находиться в сосуде с газом (рис. 3-8). Как мы убедимся, столкновения газовых молекул со стенками сосуда приводят к возникновению давления. Чтобы объяснить наличие этого давления, вов- [c.132]

    Природными называют газы, добываемые из чисто газовых месторождений. Иногда они содержат большие количества диоксида углерода, азота, гелия, но горючие углеводородные газы имеют в своем составе не менее 50% (об.) углеводородов. Попутными называют газы, выделяющиеся с нефтью при ее добыче из нефтя- [c.24]


    Капиллярный перенос, столь существенный в процессах сущ-ки, в мембранах не оказывает заметного влияния, поскольку в изотермических условиях при изотропной поровой структуре градиент капиллярного потенциала Ч , определяемый уравнением (2.41), равен нулю, однако капиллярная конденсация сужает сечение пор, снижает свободное сечение для газового потока, что приводит к падению проницаемости мембран. При больших значениях относительного давления Р Ру возникает фильтрационный перенос жидкой фазы под действием общего градиента давления, вычисляемый также по уравнению Козени— Кармана. Поскольку рж>Рг, проницаемость пористых мембран резко возрастает, как это отмечено для диоксида углерода и других веществ при проведении процесса вблизи линии насыщения [3]. [c.64]

    Лазеры можно изготовить на основе многих активных материалов. Из твердых веществ применяются стекла с добавкой нескольких процентов неодима или другого лантанида, а также гранат, содержащий иттрий и алюминий (ИАГ). Многие газы при пропускании через них мощного электрического импульса способны быть активной средой. Стоит отметить лазеры на основе гелия—неона, аргона, азота и диоксида углерода. Газовые лазеры могут давать как непрерывный, так и импульсный потоки излучения. [c.29]

    Пирогидролиз проводят при 1000—1200°С в присутствии воды. В этих условиях фторпроизводные разлагаются с образованием фтористого водорода и диоксида углерода. Газовый поток после печи сжигания проходит через насадочный скруббер, орошаемый циркулирующей водой. При этом фтористый водород извлекается из газового потока и утилизируется, а диоксид углерода и пары воды выбрасываются в атмосферу. Фтористый водород можно не утилизировать, а обезвреживать, промывая газовый поток известковым молоком. [c.499]

    Примером газовой смеси является воздух, который состоит из растворенных друг в друге азота (78% по объему), кислорода (21%), инертных газов (около 1%), диоксида углерода, паров воды и некоторых примесей. [c.126]

    При аэрации отбросов образуется газ, содержащий около 65% метана СН4 и 25% диоксида углерода СО2. Метан - хорошее горючее природный газ, который вы сжигаете в бытовой газовой плите, в основном состоит именно из него. На некоторых станциях очистки канализационных вод этот газ собирают и используют для нагрева и высушивания отбросов. [c.89]

    Проводимые ниже простейшие расчеты, касающиеся твердого и жидкого диоксида углерода, позволяют проиллюстрировать важные различия между расположением молекул в газовой и конденсированной фазах вещества. [c.140]

    В закрытой 2,00-литровой колбе при 27°С находится 4,40 г диоксида углерода и 1,00 г газообразного азота. Какое давление внутри колбы Каковы парциальные давления каждого из газовых компонентов (Выразите давления в атмосферах.) [c.160]

    Рассчитать абсорбер для очистки углеводородного газа от кислых компонентов (сероводорода и диоксида углерода) регенерированным водным рас-створом моноэтаноламина (МЭА). Состав газа приведен в табл. 1.1. Температура газового сырья при вводе в аппарат i = 42° . Температура регенерированного водного раствора МЭА равна ia=44° . Давление в аппарате [c.6]

    Диоксид углерода и сероводород — неизбежные спутники природного, нефтяного (попутного) и биологического газа ( биогаза ), а также разнообразных технологических газовых смесей, причем содержание СО2 и Нг5 в них может достигать высоких значений — до 40—45% (об.) [47—50]. [c.285]

    Тепловая энергия химической реакции в агрегате синтеза рекуперируется вне зоны катализа на выходе горячего конвертированного газа с температурой 320—330 °С из колонны синтеза. Горячий газ отдает в подогревателе 37 часть своей тепловой энергии питательной воде высокого давления. Для охлаждения газовых и жидкостных потоков применяются холодильники с воздушным охлаждением 35. Для очистки газа от диоксида углерода моноэтаноламином (МЭА) служит регенератор-рекуператор 29. [c.206]

    Нефтяной газ давлением 0,14 МПа сжимают компрессором до 2,1— 6,9 МПа (в зависимости от давления природного газа), после чего смесь газов направляют на стадию предварительной обработки (осушка, отделение брызг, тумана, твердых частиц, ири необходимости нагрев). Смешанный поток поступает на мембранную часть установки, работающую при давлении 2,1—6,9 МПа в напорном канале и 0,34—0,96 МПа —в дренажном. Ретант (10—30%-й) после доочистки абсорбционным методом до концентрации СО2 2—3% (об.) направляют потребителю. Пермеат, содержащий более 95% (об.) диоксида углерода, смешивают с выделившимся после регенерации абсорбента газовым потоком и после компримирования вводят в скважину. От 80 до 93% всей [c.299]


    Это равенство показывает, что концентрация диоксида углерода, соответствующая равновесию, должна быть в этом процессе для каждой данной температуры постоянной и не зависящей от количеств карбоната и оксида кальция, содержащихся в системе. Давление диоксида углерода, соответствующее этой концентрации при данной температуре, является тоже постоянным. Оно называется давлением нли упругостью диссоциации. Аналогичное выражение константы равновесия получается для всех гетерогенных реакций, в которых только одно из составляющих систему веществ находится Б газовом состоянии. К таким реакциям относятся процессы термической диссоциации оксидов, гидроксидов, сульфидов, карбонатов, гидрокарбонатов, солей аммония н других соединений. [c.102]

    В сосуде при некотором давлении находится смесь водорода, метана и диоксида углерода (каждого по 1 моль). В сосуде сделано очень маленькое отверстие, и газовая смесь выходит наружу. Предскажите качественно состав газовой смеси в сосуде в момент, когда давление газа сравняется с атмосферным  [c.138]

    Выбор поглотителя является основным моментом при реализации технологии очистки газа от сероводорода, диоксида углерода, серооксида углерода, сероуглерода, тиолов и т.д. От правильного выбора поглотителя зависят не только качество товарного газа, но и металло-и энергоемкость установок, а также вопросы охраны окружающей среды на объектах газовой промышленности. В ряде случаев от наличия остатков поглотителя в товарном газе зависит также эффективность дальнейшего использования газа в других отраслях промышленности. [c.50]

    Газовые огнетушители предназначены для тушения небольших очагов горения веществ, материалов и электроустановок, за исключением веществ, горение которых происходит без доступа кислорода воздуха. В качестве огнетушащего средства в основном используют диоксид углерода, реже применяют азот и л.ру-гие инертные газы. Углекислотные огнетушители могут быть передвижными и стационарными. [c.452]

    Для тушения пожаров диоксидом углерода применяют автоматические и ручные стационарные установки, а также ручные, передвижные и переносные огнетушители. На рис. 34.5 приведена схема стационарной углекислотной газовой огнетушитель-ной тросовой установки СУМ-8, которая нашла применение для. тушения легковоспламеняющихся жидкостей, а также труднодоступных очагов горення. Тепловые замки 2 при заданной те.мпературе расплавляются и трос приводит в действие головку 6 для вскрытия баллона, содержащего огнетушащее вещество. [c.445]

    Однако до 700 °С реакциями непосредственного взаимодействия углерода с парами воды и диоксидом углерода можно пренебречь и характеризовать окисление только процессами взаимодействия с кислородом и доокисления оксида углерода в газовой фазе [61]. В то же время необходимо отметить, что согласно представлениям, развиваемым в работе [62], при температурах ниже 750 °С скорости окисления углерода в сухой среде весьма малы. [c.21]

    Кислород из газовой фазы вступает во взаимодействие с углеродом поверхности коксовой глобулы, образуя кислород-углеродный комплекс. В дальнейшем под действием молекул кислорода этот комплекс может разрушаться с выделением диоксида углерода. Кроме того, он способен разрушаться без участия кислорода (с выделением монооксида углерода). Это предположение подтверждено экспериментально [29]. Учитывается также способность кислорода проникать внутрь коксовой глобулы вследствие диффузии. Водород поверхности окисляется до воды, и при этом образуется кислород-углеродный комплекс. Водород в основном расположен на поверхности частиц кокса. Однако данные о распределении Н2 в глубину частиц отсутствуют, поэтому неравномерное распределение заменено стадией диффузии водорода по частице. [c.32]

    Каждую из стадий 1-5 следует рассматривать не как элементарную, а как некие их совокупности. Так, стадия 1 описывает образование кислород-углеродного комплекса, происходящее в результате диссоциативной адсорбции кислорода. Последняя, как известно [93], протекает через несколько промежуточных стадий. Стадия 2 описывает также совокупность превращений, приводящих к появлению в газовой фазе диоксида углерода. Стадия 4 описывает процессы, аналогичные процессу окислительного дегидрирования углеводородов. Необходимо отметить, что адсорбция кислорода на углеродных поверхностях протекает необратимо, т.е. адсорбированный кислород может десорбироваться только в виде продуктов окисления [63] (вид кинетических уравнений и численные значения кинетических констант будут приведены в гл. 4). [c.33]

    Отличительной особенностью процесса синтеза метанола на медьсодержащих катализаторах является присутствие в исходной газовой смеси слабого окислителя — диоксида углерода для поддержания стабильной работы катализатора. [c.165]

    Пример 23. Определить к. п. д. перекрестноточной тарелки с кольцевыми клапанами (размеры клапана даны на рис. 32) для колонны диаметром 260 мм, а также коэффициент массопередачи в процессе десорбции диоксида углерода из его водного раствора при продувке воздухом. Концентрация СОг в растворе на входе в тарелку 0,65 г/л, на выходе с тарелки 0,12 г/л, температура на тарелке 20 С. Плотность орошения колонны 0 = 15,1 м /(м -ч). Нагрузка колонны по газовой фазе обеспечивает подъем клапанов (зазор между клапаном и плоскостью тарелки) на тарелках на высоту а,- = = 6,5 мм. Масса клапана С кл = = 0,03 кг относительное свободное сечение тарелок 5о=0,12 м /м. Высота газожидкостного слоя на тарелке Яп = 130 мм. [c.188]

    Этот продукт может быть получен на основе этилена или-ацетилена. Процесс образования винилацетата происходит в паровой фазе по реакции оксиацетилирования из этилена, уксусной кислоты и кислорода при температуре 175—200°С и-давлении (5—10)-Ю Па в присутствии палладиевого катализатора на носителе. Реакционная смесь после реактора частично конденсируется и разделяется на жидкую и газовую фазы. Газ-рециркулят проходит через скрубберы, в которых удаляются винилацетат и диоксид углерода. Жидкий конденсат подается в систему ректификационных колонн, где легкие остатки, главным образом ацетальдегид, вода, а также полимеры, отделяются от очищенного винилацетата. Уксусная кислота возвращается в реактор. Выход составляет примерно 91% винилацетата, 8% диоксида углерода и 1% побочных продуктов (10 наименований). При этом этилен и уксусная кислота используются более чем на 99% (И9]. [c.279]

    После поглощения паров хлорида алюминия газообразные продукты хлорирования состоят из диоксида углерода и непрореагировавшего хлора. Из уравнения реакции хлорирования следует, что на каждые 6 моль прореагировавшего хлора образуется 3 моль диоксида углерода. Следовательно, хлорирование протекает с уменьшением объема неконденсируемой газовой фазы в 2 раза. Отсюда следует, что исходный объем хлора можно определить из выражения  [c.191]

    Решение. Из уравнения реакции хлорирования оксида алюминия (VII. 93) следует, что при взаимодействии 6 моль хлора образуется 7 моль хлорида алюминия и диоксида углерода. Учитывая это обстоятельство, для упрощения расчета полагаем, что хлорирование протекает практически без изменения объема газовой фазы. [c.191]

    В-третьих, концентрация СО2 в пермеате должна быть не менее 95% (об.), при этом содержание метана должно быть меньше 5% (об.). Обогащенный по диоксиду углерода газовый поток перед подачей в скважину необходимо компримировать до высоких (16,0—18,0 МПа) давлений. Температура точки росы газа при давлении в напорном канале мембранного модуля 4,0 МПа равна 366 К (93°С). А так как температура мембраны в элементе должна быть ниже 333 К (60° С), то тяжелые компоненты необходимо предварительно удалить из исходной газовой смеси. Другой путь — снижение давления, а следовательно, и температуры точки росы исходного газа — невыгоден, так как приводит к увел1ичению поверхности мембран в аппарате. [c.291]

    Природные газы добывают с чисто газовых месторождений. Они состоят в основном из метана (93 — 99 % масс.) с небольшой примосью его гомологов, неуглеводородных компонентов серово — доро, ,а, диоксида углерода, азота и редких газов (Не, Аг и др.). Газы газоконденсатных месторождений и нефтяные попутные газы от — личаЕ )тся от чисто газовых тем, что метану в них сопутствуют в значр тельных концентрациях его газообразные гомологи С -С и выше. Поэтому они получили название жирных газов. Из них получают легкий газовый бензин, который является добавкой к товарным бензинам, а также сжатые жидкие газы в качестве горючего. Этан, пропан и бутаны после разделения служат сырьем для 1гзфтехимии. [c.61]

    Уравнение (2-5) описывает реакцию карбоната кальция, СаСОз (известняка), и хлористоводородной кислоты, НС1, с образованием водного раствора хлорида кальция, a lj, и диоксида углерода, СО2. Это уравнение полное, так как число атомов каждого сорта в его левой и правой частях одинаково. Смысл этого уравнения на макроскопическом (молярном) уровне таков 1 моль, или 100,09 г, карбоната кальция требует для осуществления полной реакции 2 моля, или 72,92 г, хлористоводородной кислоты, в результате чего получается по 1 молю хлорида кальция (110,99 г-моль ), диоксида углерода (44,01 г-моль ) и воды (18,02 г-моль" ). По этим численным данным нетрудно убедиться, что в данной реакции выполняется закон сохранения массы. Интерпретация уравнения (2-5) на микроскопическом (молекулярном) уровне не столь очевидна, поскольку карбонат кальция представляет собой соль, а не молекулярное соединение. Уравнение (2-5) нельзя понимать в том смысле, что 1 молекула карбоната кальция реагирует с 2 молекулами НС1. Хотя НС1 существует в газовой фазе в виде дискретных молекул, в растворе молекулы НС1 диссоциируют на ионы и СР. Более правильное описание того, что происходит в этой реакции на молекулярном уровне, дает уравнение [c.73]

    Мембраны. Полимерные мембраны, применяемые для этих целей должны быть физиологически безвредными и высокоселективными по отношению к диоксиду углерода. В основном это кремнийорганические блок-сополимеры, применяемые в виде тканеопорных мембран, полученных пропиткой текстильных основ силиконовыми эластомерами [118, 119]. Из табл. 8.24 видно, что наиболее эффективными для применения в ГСУ, а также в мембранных установках регулирования газовой среды являются композиционные мембраны МД-К на основе кремнийорганиче-ских полимеров (производство ВНИИСС, г. Владимир), обла- [c.327]

    Анализ усредненных показателей работы установки показал, что в зависимости от исходного содержания кислых компонентов в газовой смеси, соотношения жидкость/газ, температурного режима абсорбции и десорбции, содержания полисульфида амина в рабочем растворе, степень очистки по меркаптановой сере составляет 44...87%, по сероводородной сере - отсутствие. Эти испытания показали возможность комплексной очистки природного газа от сероводорода, диоксида углерода, а также от меркаптанов с применением полисульфида амина в составе абсорбента на основе алканоламинов. [c.75]

    Выполнение первого пункта осуществляют, поддерживая заданную концентрацию растворенного кислорода или концентрацию кислорода в газовой фазе (закрытые окситенки). Для измерения концентрации растворенного диоксида углерода необходимы надежные анализаторы растворенного СОг для сточных вод. [c.169]

    II ступеней. Охлажденная газовая смесь сжимается шримерно до 3-10 Па, очищается от диоксида углерода в абсорбере 8 и обогащенная свежим аммиаком поступает на стадию синтеза аммиака, жидкая фаза, представляющая собой после абсорбера 8 раствор углеаммонийных солей, поступает в систему синтеза карбамида. В результате использования комбинированной схемы исключается узел очистки газа конверсии от диоксида углерода и повышается рекуперация тепловой энергии, что обеспечивает снижение эксплуатационных и капитальных затрат, а также выбросов тепловой энергии в окружающую среду. [c.239]

    Характерное для нефтеперерабатывающих предприятий рас-средс- очение газовых выбросов в атмосферу без их предварительной очистки придает особое значение так называемым планировочным мероприятиям , позволяющим более эффективно использовать самоочищение воздуха, которому способствуют физические и химико-физические процессы, происходящие в атмоссоере. Так, например, атмосферные осадки вымывают из возду.ха взвеси, растворяют и извлекают газы. Немалую роль играю-- зеленые насаждения их листва не только задерживает пыль, но н сорбирует некоторые газы, в том числе сернистый ангидрид, диоксид углерода. Нужно, однако, учитывать, что процессы самоочищения идут медленно и их возможности ограничен ,.  [c.207]

    В продуктах окисления обычно набяодают оба оксида углерода в самых различных соотношениях. В литературе давно дискутируется вопрос, является ли диоксид углерода также первичным продуктом окислшия или он образуется в результате доокисления монооксида углерода в газовой фазе. Большинство исследователей считает, что оба оксида являются первичными продуктами [61, 68]. [c.22]

    Кинетика образования отдельных продуктов окисления при выжиге кокса с цеолитсодержащего катализатора крекинга подробно изучена в работах [22, 87]. На кривых изменения скоростей выделения оксидов углерода по мере выжига кокса можно вьщелить три участка (рис. 2.11, а). На первом наблюдается уменьшение скоростей, что связано преимущественно с окислением оставшейся после стабилизации легкогорючей составляющей кокса. Затем скорости возрастают и по достижении максимума (второй участок) вновь падают (третий участок). При повышении температуры с 490 до 560 °С легкогорючая составляющая окисляется в первые секунды регенерации, когда анализ состава газовой фазы затруднен, в связи с чем на кривых выделения продуктов окисления первый участок, отражающий ее горение, отсутствует (рис. 2.11,6). При более высоких температурах возрастание скоростей образования оксидов углерода до максимальных значений с последующим их уменьшением наблюдается все более четко. Максимальная скорость образования диоксида углерода достигается на более ранних стадиях выжига, чем для монооксида (см. рис. 2.11). Кроме того, при повышении температуры скорость образования СО увеличивается в большей степени, чем [c.29]

    Рассмотрим прпмер нестационарного процесса окисления СО на Pt в изотермическом реакторе идеального перемешивания [54, 55]. В [54] изучалась схема (X), в соответствии с которой Аа = О2, AZ] = 0Z], В = СО, [BZ] = [ OZ], АВ = СО2. По этому механизму 561 молекула оксида углерода из газовой фазы адсорбируется на одном активном центре катализатора, а каждая молекула кислорода адсорбируется диссоциативно на двух центрах. Диоксид углерода образуется по стадийному механизму. При этом предполагается, что СОа не адсорбируется на поверхности катализатора. Особенности стационарных режимов приведенного механизма обобщены в работе [42]. [c.62]

    Целесообразность использования ячеечной модели доказана решение.м задачи идентификатош структуры потоков на основании кривых отклика, полученных при нанесении стандартного ступенчатого воздействия по расходу диоксида углерода, дозируемого в исходный синтез-газ. Математическая модель каждой ячейки включает уравнения материальных балансов для определения концентраций компонеигов в газовом потоке, в твердой фазе, на поверхности активных центров в микропорах, а также уравнения тепловых балансов для определения температуры газового потока и катализатора. Использование модели требует выявления закономерностей, определяющих физико-химические и ки- [c.64]

    Цель расчета по модели - определение влияния цйклическог зменения входных параметров на выход целевого продукта. Исследования проводились в следующих направлениях 1) выбор канала для нанесения возмущений 2) выбор фор кШ возмущающих воздействий 3) влияние изменения концентрации диоксида углерода в газовом потоке на входе в реактор а) на температурный режим потока б) на температуру в слое катализатора в) на качество образующегося метанола (с точки зрения образования примесей и увеличения концентрации воды). Выбор канала для нанесения возмущений выполнен с учетом возможности изменения параметров в промьппленных условиях. Для интенсификации процесса выбран расход диоксида углерода, который приводит к изменению концентрации Oj во входном потоке. Расчет технологических режимов выполнялся для случаев синусоидальной, прямоугольной и трапециевидной форм возмущающих воздействий. Анализ полученной информации показал целесообразность использования симметричных прямоугольных волн д.чя увеличения выхода метанола по сравнению с традащионным стацнон шы.ч режимом. При этом изучалось влияние периода возмущающих воздействий и их амплитуды. Установлено, что прирост производительности по метанолу в большей степени зависит от периода цикла, чем от амплитуды. Расчеты показали, что рабочий диапазон изменения температуры и расхода СО2 при реализации циклических режимов совпадает с диапазоном, определенным стационарными условия 1и проведения процесса. [c.65]

    Все созданные на сегодняшний день совмещенные схемы работают по схо- eNn принципу. Так, японской фирмой Japan Gas hemi al разработан проект совместного производства аммиака и метанола [3], согласно которо.му из конвертированного газа вначале получают метанол. При этом за счет переработки оксида углерода концентрация СО в газе снижается. Далее остаточный оксид углерода окисляется кислородом воздуха и гидрируется до метана. Газовая смесь, очищенная от диоксида углерода, поступает на синтез аммиака. По схе- [c.211]


Библиография для Диоксид углерода газовый: [c.226]   
Смотреть страницы где упоминается термин Диоксид углерода газовый: [c.538]    [c.20]    [c.300]    [c.328]    [c.235]    [c.19]   
Технология карбамида (1961) -- [ c.144 ]




ПОИСК





Смотрите так же термины и статьи:

Газовые смеси указаны через тире по месту компонента смеси, стоящего ближе к началу алфавита, например, смесь N СОг следует искать на Азота оксид углерода диоксид

Диоксид

Диоксид углерода

Очистка воздуха и газовых смесей от диоксида углерода



© 2024 chem21.info Реклама на сайте