Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серы соединения, температуры кипения

    Обычно в качестве стандартного состояния элемента (простого вещества) выбирается такое состояние, при котором данный элемент устойчив при 1 атм. Выбор стандартного состояния для шести из рассматриваемых здесь девяти элементов очевиден — углерод в виде графита, водород, кислород, азот, фтор и хлор в состоянии идеального двухатомного газа при 1 атм во всем интервале температур от 298 до 1000° К. Бром, иод и сера стабильны в конденсированных фазах при 1 атм в интервале температур от 298° К до точек кипения этих элементов. Поэтому мы приняли в качестве стандартных состояний эти конденсированные фазы до нормальных точек кипения, а выше этих температур — состояния идеального двухатомного газа. Необходимо отметить, что это обусловливает при температурах фазовых переходов разрыв непрерывности изменения энтальпии образования всех соединений, в состав которых входят данные элементы. В случае серы наблюдается также небольшой разрыв непрерывности изменения энергии Гиббса для процессов образования, поскольку пар, находящийся в равновесии с жидкой серой при температуре кипения, представляет собой сложную смесь многоатомных молекул (х=к, 6, 8, причем возможны и другие значения). Испарение с образованием молекул За при 1 атм и 717,75° К не является равновесным процессом и, следовательно, связано с изменением энергии Гиббса. [c.228]


    Использование серы как энергетической примеси основано на том, что сера, находящаяся в соединении с металлами, воспламеняется при температурах 300— 400°С, т. е. более низких, чем температура кипения серы, чем и обусловлена возможность генерации тепла за счет связанной серы. Возможные реакции диссоциации пирита и ковеллина  [c.163]

    Содержание азота в нефтяных фракциях увеличивается с повышением их температуры кипения. Наибольшее количество (йт до 4) его находится в тяжелых остатках от перегонки. Между содержанием азота, серы и смолистых веществ в нефтях имеется нт ко-торая связь богаты азотистыми и сернистыми соединениями тяже №Р смолистые нефти легкие, малосмолистые нефти содержат крайне мало азота. [c.30]

    В то же время соединения серы проявляют незначительные признаки образования водородных связей температуры кипения изомерных тиолов и тиоэфиров мало отличаются друг от друга (табл. 9.5). [c.176]

    Содержание серы влияет на форму кривой ИТК нефти. Это влияние в какой-то степени маскируется одновременным влиянием характеризующего фактора и плотности нефти, но при одинаковом характеризующе.м факторе выявляется отчетливо. При повышении содержания серы в нефти температуры выкипания фракций повышаются, что видно на примере нефтей с характеризующим фактором, различающимся в небольших пределах — от 11,89 до 11,95, и особенно заметно для высококипящих фракций (рис. 58). Это объясняется более высокими температурами кипения сернистых компонентов по сравнению с их аналогами или соответствующими углеводородами и повышенным содержанием сероорганических соединений в тяжелых фракциях [128]. [c.91]

    Наименование соединений Температура кипения, °С мм. рт. ст.) Плотность, < Коэффициент рефракции 20 D Молеку-л ярный вес Содержание серы, вес. % [c.446]

    При изучении группового состава сероорганических соединений и их содержания в дистиллятах арланской и волховской нефтей установлено следующее. С повышением температуры кипения фракций увеличивается содержание в них сероорганических соединений в сероорганических соединениях фракций, выкипающих до 200 °С, преобладает сульфидная сера, а во фракциях, выкипающих выше 300 °С, —остаточная сера. [c.122]

    Из приведенных на рис. 29 и 30 опытных данных следует, что интервал температур кипения углеводородов, образующих азеотропы с соединениями, содержащими серу, убывает с увеличением числа углеродных атомов в молекулах последних. Для одного и того же соединения, содержащего серу, этот интервал температур кипения для парафиновых углеводородов больше, чем для нафтеновых, а для последних больше, чем для олефиновых. [c.91]


    Сырьем процесса селективной оч истки служат масляные дистилляты и деасфальтизаты, а также фракции дизельных топлив. Однако в последнем случае температура кипения растворителя должна быть сравнительно низка и при его регенерации не должно быть потерь очищаемого продукта. При помощи селективных растворителей из нефтяного сырья могут быть извлечены такие нежелательные компоненты, как непредельные углеводороды, серо-и азотсодержащие соединения, полициклические ароматические и нафтено-ароматические углеводороды с короткими боковыми цепями, а также смолистые вещества. Особое значение процесс селективной очистки имеет для производства нефтяных масел, так как в результате существенно улучшаются два важнейших эксплуатационных свойства масел стабильность против окисления и вязкостно-температурные свойства. Помимо этого, очищенный продукт (рафинат) имеет по сравнению с сырьем меньшие плотность, вязкость, кислотность и особенно — коксуемость и более высокую температуру застывания в нем меньше серосодержащих соединений и он менее интенсивно окрашен. [c.93]

    Каждый класс соединений в нефтях представлен в виде серии гомологических и изологических рядов. Члены этих рядов представлены несколькими, но не всеми теоретически возможными изомерами. Первые члены рядов всегда находятся в меньших количествах, иногда даже могут отсутствовать. Недавно было установлено /8/, что в нефтях распределение компонентов по их температурам кипения носит в пределах гомологического ряда характер нормального (Гауссова) распределения. [c.16]

    Большое значение для выбора условий процесса гидрокрекинга имеет химический состав сырья и особенно — содержание ароматических углеводородов, соединений азота и серы, а также содержание смол и асфальтенов. Концентрация этих соединений в нефтяных дистиллятах зависит от их температуры кипения и молекулярной массы. Качество сырья для процесса гидрокрекинга предопределяет схему его переработки. Особенно важны температурные пределы выкипания нефтяных дистиллятов, т, к. с ростом средней температуры кипения сырья наблюдается увеличение содержания в них ароматических углеводородов, а также соединений серы и азота. В высококипящих вакуумных дистиллятах возможно присутствие высокомолекулярных смол и асфальтенов. [c.255]

    Этот метод непосредственно применим для определения низких концентраций (мг/л) хлорорганических соединений в жидких нефтепродуктах с температурами кипения не выше 400 °С. Нефтепродукты, в которых концентрация хлора более, чем 100 мг/л, могут быть разбавлены подходящим растворителем, не содержащим хлора. Неорганические хлориды, которые нацело разлагаются при температурах, меньших, чем температура в печи, также определяются этим методом (например, хлориды аммония, трехвалентного железа, палладия). Более устойчивые хлориды не могут быть определены этим методом (например, хлориды натрия, калия). Сера и фтор не мешают определению, бромиды и иодиды определяются количественно. [c.42]

    В принципе любую пару летучих соединений с близкими температурами кипения, но с резко различающимися электронными структурами можно использовать для характеристики полярности той или иной жидкой фазы по логарифму отношения объемов удер живания этих соединений на используемой жидкой фазе. Так, напри мер, была использована пара бензол-гексан и рассчитана относи тельная полярность по тому же способу для серии жидких фаз Получены следующие данные Рх р,Р -оксидипропионитрила при нята за 100, сквалана — за ноль) 96 — диэтиленгликольсукцинат [c.112]

    Уравнение (V, 13) применяется для простых веществ независимо от их температуры кипения (если Гн.т.к. > 235) уравнение (V, 14)—для веществ, содержащих галоиды и серу уравнение (V, 15) — для ароматических соединений и нафтенов, не содержащих галоидов и серы уравнение (V,16)—для прочих веществ, не содержащих галоидов и серы. Последние три уравнения применимы для соединений с Гн. т. к. от 236 до 600. [c.132]

    Такой же процесс может происходить и в органических молекулах, оказывая аналогичное влияние на температуру кипения. При сравнении этого физического свойства серии изомерных органических соединений можно увидеть, что у всех веществ, в состав которых входит группа ОН или ЫН, температура кипения значительно выше, чем у изомеров, лишенных этой характерной особенности (табл. 9.2 и 9.3). [c.176]

    Термическая стабильность индивидуальных сера-органических соединений изучена плохо, несмотря на то, что первые исследования в этой области относятся к семидесятым годам прошлого столетия. Эти первые исследования были посвящены изучению термостабильности таких относительно высокомолекулярных соединений, как дибензилсульфид, дифенилсульфид, дибензилдисульфид, т. е. соединений, температуры кипения которых соответствуют керосиносоляровым фракциям. В более поздних работах периода 1920 — 1935 гг. можно найти самые общие сведения о термостабильности незначительного количества только низкомолекулярных меркаптанов, сульфидов и дисульфидов, по своим температурам кипения соответствующих бензиновым фракциям. В 1951 г. М, Г. Руденко и В. И. Громова опубликовали данные о термостабильности одиннадцати сернистых соединений, из которых четыре (дифенилсульфид, фенилциклогексилсульфид, тионафтен и тиантрен) относятся к высококипящим. [c.197]


    Ароматические углеводороды валенской нефти характеризуются, во-первых, невы оким содержанием серы как в исходных ароматических углеводородах (суммарно), так и в отдельных группах во-вторых, ароматические углеводороды валенской пефти характеризуются большим содерл<анием нафтеновых колец в средней молекуле по сравнению с ароматическими углеводородами других нефтей в-третьих, ароматические углеводороды валенской нефти содержат более короткие боковые цепи, чем ароматические углеводороды сернистых нефтей восточных районов СССР. Ароматические углеводороды 1 группы отличаются значениями интерцепта peijipaKnnn, характерными для нафтеновых углеводородов (1,0И0—1,0505), что свидетельствует о преобладании на1 )тсновых колец в средней молекуле этих углеводородов. Число нафтеновых колец изменяется от фракции 250—300 С к фракции 450—500 °С в пределах от 1,72 до 3,49, при одном ароматическом кольце в средней молекуле. Азотистые соединения концентрируются в основном в ароматических углеводородах IV руипы, причем содержание азота увеличивается с повышением температуры кипения фракций. [c.410]

    Количественно идентифицированы декалин, 1- и 2-метилдека-лины, 2-этилдекалин, 1,2-, 1,3-, 1,4-, 1,5-, 1,6-, 2,3-, 2,6- и. 2,7.-диметилдекалины. Значительную часть сероорганических соединений, присутствующих в исследованных фракциях, составляют сульфиды. С- повышением температуры кипения фракций относительное содержание сульфидов снижается с 91,8 до 34,1% и соответственно повышается содержание сернистых соединений, составляющих остаточную серу. Характеристики групп углеводородов керосино-газойлевых фракций арланской нефти угленосной свиты приведены в табл. 260—295. [c.189]

    Для предсказания свойств простых веществ и соединений Д. И. Менделеев использовал следующий прием он находил неизвестные свойства как среднее а р н ф м е т 1 ч е с к о е нз свойств окружающих элемент соседей в периодической системе, справа и слева, сверху и снизу. Этот способ может быть назван методом Д. И. Менделеева. Так, например, соседями селена слева и справа являются мышьяк-и бром, образующие водородные соединения НзАз н НВг очевидно, селен может образовать соединение НгЗе и свойства этого соединения. (температуры плавления и кипения, растворимость в воде, плотность в жидком и твердом состояниях и т. д.) будут близки к среднему арифметическому из соответствующих свойств НзАз иЛВг. Так же можно определить свойства НгЗе как среднее из свойств аналогичных соединений элементов, расположенных в периодической системе сверху и снизу от селена,— серы и теллура, т. е. НгЗ н НгТе. Очевидно, результат получится наиболее достоверным, если вычислить свойства НгЗе как среднее из свойств четырех соединений НзАз, НВг, Нг5 и НДе. Данный метод широко применяется и в настоящее время для оценки значений свойств неизученных веществ. [c.38]

    Лигроин можно газифицировать драктически всеми известными методами. Однако для одних процессов сырьевой продукт должен быть достаточно легким и полностью очищенным известными способами от соединений серы. К таким видам исходного углеводородного сырья относятся СНГ, конденсат природного газа, легкий лигроин, лигроин с щироким интервалом температур кипения компонентов, а для некоторых процеосов газификации — и тяжелый лигроин [4]. [c.100]

    Применение в качестве вытеснителя нефтепродуктов с различными пределами температур кипения и ведение процесса в сравнительно мягких рабочих условиях позволяет использовать сырье до С22 без заметного разложения н-алканов, а следовательно, и без последующей их очистки. Поскольку при температуре, поддерживаемой в процессе, крекинга компонентов сырья можао избежать, в случае тщательно очищенного сырья выжиг с адсорбента коксообразных веществ необязателен. Однако высокая активность цеолита в условиях длительной работы без регенерации или замены сохраняется лишь при использовании высокоочищенного сырья. Поэтому сырье для жидкофазного процесса нужно подвергать глубокой гидроочистке. Присутствие в контактируемом с синтетическими цеолитами сырье полярных кислород-, серу-, азот- и никельсодержащих примесей, а также непредельных соединений приводит к блокировке ими. входных окон в полости цеолитов за счет электростатических сил притяжения, имеющих весьма высокие значения при температуре жидкофазного процесса [12, 14, [c.201]

    Тип и содержание соединений серы, находящихся в исходном-сырье, зависят от температуры кипения и источника этого сырья. Природный газ содержит в основном сероводород плюс низкокипя-щие сульфиды или меркаптаны — такие, как метилмеркаптан и диметилдисульфид. Легкий бензин содержит подобные соединения с более высокой температурой кипения. Легкие нефтяные дистйл- латы содержат большое количество компонентов различных типов. Так, например, в одном типичном легком дистиллате было найдено 77 различных серусодержащих компонентов, включая 36 типов меркаптанов, 23 линейных сульфида, 18 циклических сульфидов [c.63]

    К высокомолекулярным соединениям нефти мы относим вещества молекулярного веса выше 400, независимо от того, имеют ли они чисто углеводородную природу или в состав их входят гетероатомы (кислород, сера, азот, металлы и т. д.). Вещества эти содержатся в тяжелой части нефти, имеющей температуру кипения выше 350° С [11. Самые большие молекулы веществ, входящих в состав нефтей, имеют молекулярный вес, в пределах от 3000 до 5000. Возможность наличия в нефтях более высокомолекулярных соедийений маловероятна. Наиболее высокомолекулярными соединениями нефти являются, ио-видимому, асфальтены Е литературе встречаются данные о тТШ —что асфальтены характеризуются молекулярными весами от 20 ООО до 200 ООО [2]. Однако эти высокие значения молекулярный вй С О асфальтенов, приводимые в работах отдельных исследователей, объясняются тем, что они не учитывают явления ассоциации молекул асфальтенов, которое наблюдается даже в разбавленных растворах при температурах ниже. 60—70° С. [c.12]

    Из фракций дизельного топлива сернистые соединения экстрагировали в лабораторных условиях в экстракционной колонне [27]. В качестве экстрагента применяли, активный деароматизирующий растворитель — диэтиленгликоль (плотность при 20° С 1,116 г/см , температура кипения 245° С, температура застывания —10° С). Максимальное количество сернистых соединений извлекалось при отношении экстракта к сырью 7 1, температуре верха экстракционной колонны 160° С, нижней части колонны 135° С. Содержание общей серы в дизельном топливе снижалось с 0,85 до 0,14 вес. %. Экстракт содержал 2,78 вес. % общей серы (20—25 вес. % сернистых соединений) и 76,7 вес. % ароматических углеводородов. Эти данные свидетельствуют о том, что диэтиленгликоль не обладает достаточной селективностью по отношению к сернистым соединениям, выделяемым из нефтяных дистиллятов в смеси с ароматическими углеводородами. Однако расчеты показывают, что при экстракции сернистых соединений и ароматических углеводородов диэтиленгликолем эксплуатационные расходы на получение 1 т дизельного топлива, содержащего 0,2 вес. % общей серы, в два раза меньше, чем при гидроочистке. Поэтому экстракция сернистых соединений из нефтепродуктов в определенных условиях может оказаться перспективной. [c.107]

    Этан-1,2-дисульфокислота приготовлена окислением этиленмер-каптана [473], этилентиоцианата [454, 474] и некоторых циклических соединений [475], содержащих атомы серы, связанные с соседними атомами углерода. Она образуется с небольшим выходом при сульфировании нитроэтана [477], нитрила и амида пропионовой. кислоты [476] и при электролизе сульфоацетата бария [478]. Действие насыщенного раствора щелочной соли сернистой кислоты на бромистый этилен [Збв, 454, 479] нри температуре кипения смеси ведет к получению этан-1,2-дисульфокислоты с выходом 95%. В небольших количествах аммониевая соль кислоты образуется также при обработке 1,1,2-трибромэтана кипящим раствором сернистокислого аммония [440]. [c.185]

    I и незначительным влиянием большей их части на показатели - роцесса. На активность катализатора заметно влияют кислородные соединения, относящиеся к классу гидропероксидов [8]. Такие соединения адсорбируются на активных центрах катализаторов и замедляют крекинг. При регенерации активность катализатора восстанавливается. Азотистые соединения. Содержание общего азота в вакуумных I дистиллятах колеблется в пределах от 0,03 до 0,28% (масс.). С повышением температуры кипения нефтяных фракций содержание азота в них повышается [20, 21] и в остатках, кипящих выше 450 °С, концентрируется около 90% (масс.) азота и 0% (масс.) серы.) При анализе высококипящих фракций по уг-леводорЩНшт—компонентам установлено, что в группу метанонафтеновых углеводородов переходит 0,1—0,2% (масс), азота и 0.1—П.9°/п Гмягг серы от общего содержания их в остатке вы-ше 450 . Основное количество азота содержится в смолах (52 -- [c.23]

    По Фридману промежуточным продуктом действия серы на гексилен является соединение СвН 23, 2 —0,862, температура кипения 40—41° С при 10 мм рт. столба, имеющие строеиие  [c.165]

    Сульфиды получают кипячением смеси тиофенолов и галоидных алкилов со спиртовым раствором щелочи. Этим методом из тиоксиленолов и н-октилбромида получают октилксилилсульфиды [2]. Сульфиды и их полимеры синтезируют из меркаптанов или меркаптидов щелочных металлов и галоидных алкилов в растворе азотистых оснований в присутствии источника ионов меди [3]. Дисульфиды со значительным выходом образуются при окислении меркаптанов элементарной серой в растворителе. Процесс протекает непрерывно в противоточной колонне при нормальном давлении и температуре, не превышающей температуру кипения синтезируемых дисульфидов [4]. Приведенные примеры далеко не исчерпывают методы синтеза соединений двухвалентной серы. Ведутся интенсивные исследования в области использования нефтяных сернистых соединений. Результаты позволяют рассчитывать на получение больших количеств [c.51]

    Меркаптаны (тнолы). Имеют строение Р5Н. Метилмеркап-тан (метантиол) —газ с т. кип. 5,9°С. Этилмеркаптан и более высокомолекулярные гомологи — жидкости, нерастворимые в воде. Температура кипения меркаптанов Со—Се 35—140°С. Меркаптаны обладают очень неприятным запахом. У низших представителей этот запах настолько интенсивен, что обнаруживается в ничтожных концентрациях (0,6-Ю-" -Ь 2-10 % для СгНбВН). Это свойство их используется в практике газоснабжения городов для предупреждения о неисправности газовой линии. Они добавляются к бытовому газу в качестве одоранта . Содержание меркаптанов в нефтях невелико. Так, в башкирских и татарских нефтях оно колеблется от 0,1 до 15,1% от общего содержания сернистых соединений. Исключением является марковская нефть (Восточная Сибирь). Почти все сернистые соединения (общее содержание серы 0,897о) представлены меркаптанами и концентрируются в бензиновой фракции. [c.36]

    Неокисленные сернистые соединения двухвалентной серы сероводород, меркаптаны, сульфиды, дисульфиды и циклические (тиофены и тиофаны). Температуры кипения неокисленных сернистых соединений мало отличаются от температур кипения углеводородов, в растворе которых они находятся. [c.73]

    Тетраалкиламмоний не был выделен в чистом состоянии, так как он разлагается уже при температуре кипения жидкого аммиака. Однако его присутствие в растворе было доказано различными реакциями при действии иода, образовывался иодистый тетраэтиламмоний, при действии серы — соответствующий сульфид подобдо - металлическому калию, тетраэтиламмоний давал окращенные в красный цвет соединения с диметилпироном (стр. 1013) и трифенилметилом (стр. 495). По-видимому, тетраэтнл-аммоний существует в синей и в бесцветной формах. [c.165]

    Сертютые соединения в отгоне распределяются следущим образом с повышением температуры кипения содержание серы возрастает от 0,9 до 1,98 йодное число в начальных фракциях выше, чем в конечных и изменяется от 78 до 37 г г, следователь- [c.227]

    Сера в элементном состожии существует в нескольких аллотропных формах наиболее устойчивая из них состоит из циклических молекул 8д. Этот элемент обнаружен в больших подземных отложениях, из которых его извлекают, применяя процесс Фраша. Сера проявляет в своих соединениях степени окисления от -Ь 6 до — 2. Наиболее важным ее соединением является серная кислота, обладающая свойствами сильной кислоты. Серная кислота представляет собой хорошее обезвоживающее средство и имеет высокую температуру кипения. Эта кислота-наиболее широко применяемый промышленный химикат. [c.330]

    Водородная связь. В тех случаях, когда водород соединен с сильно электроотрицательным элементом, он может образовать водородную связь, которая является промежуточной между химической и меж-молекулярной. Эта связь обусловлена тем, что смещение электрона от атома водорода превращает его в частицу, не имеющую электронов, не отталкивающуюся электронами других частиц, т. е. испытывающую только притяжение. Водородная связь проявляется тем сильнее, чем больше электроотрицательность атома-партнера и чем меньше его размеры, поэтому она характерна для соединений фтора и кислорода, в меньшей степени — для азота и еще в меньшей степени — для хлора и серы. Соответственно меняется и энергия водородной связи. Благодаря водородным связям молекулы объединяются в димеры, полимеры и ассоциаты. Ассоциация приводит к повышению температуры плавления и температуры кипения, изменению растворяющей способности и т. д. Водородная связь образуется очень часто, и объясняется это тем, что молекулы воды встречаются повсеместно. Каждая из них, имея в своем составе два атома водорода и две необобществленные электронные пары, может образовать четыре водородные связи. [c.237]

    В реакционную колбу (рис. 59), соединенную с холодильником 4, помещают смесь из 5 мае. д. бромида калия и 2 мае. д. оксида марганца (IV) или дихромата калия. Из капельной воронки, пришлифованной к горлу колбы, приливают небольшими порциями 4 мае. д. концентрированной серной кислоты. Реакционную смесь в конце реакции слегка подогревают. Ввиду низкой температуры кипения брома (5 °С) для конденсации его паров нужно применить хорошо действующий холодильник. Жидкий бром собирают под слоем дистиллированной воды, приемник нри этом помещают в охладительную смесь или в снег. Холодильник соединяется с колбой на шлифе, так как корковые и резиновые пробки быстро разруилаются. Бром, полученный таким способом, содержит следы хлора и иода, а в некоторых случаях соединения серы и др. [c.242]


Смотреть страницы где упоминается термин Серы соединения, температуры кипения: [c.227]    [c.362]    [c.16]    [c.34]    [c.381]    [c.115]    [c.356]    [c.150]    [c.469]    [c.639]    [c.14]    [c.207]   
Идентификация органических соединений (1983) -- [ c.70 ]




ПОИСК





Смотрите так же термины и статьи:

Серы соединения

Температура серы

Температуры соединений



© 2025 chem21.info Реклама на сайте