Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ориентация при смешении

    Для упрощения количественного анализа ламинарного смешения разработан метод исследования изменения площади поверхности раздела фаз в процессе смешения. Увеличение площади поверхности раздела можно непосредственно связать с начальной ориентацией и общей деформацией системы [17, 3]. Величину деформации можно рассчитать, зная в деталях картину течения. В конечном счете общая деформация может служить количественной характеристикой ламинарного смешения. Ее можно связать с конструкцией смесителя, технологическими параметрами процесса смешения, физическими свойствами смеси и начальными условиями. Однако измерить общую деформацию жидкости нелегко. Не удается также установить непосредственную связь между расчетной величиной деформации и композиционной однородностью смеси, которая зависит от распределения элементов поверхности раздела внутри системы. Лишь в относительно простых случаях удается рассчитать ширину полос текстуры по величине общей деформации. В более общем случае для определения величины деформации, обеспечивающей заданную однородность смеси, приходится устанавливать эмпирические закономерности. Таким образом, деформация является характеристикой процесса, позволяющей установить связь между параметрами процесса смешения и качеством смеси. В дальнейшем некоторые из этих количественных подходов будут рассмотрены более детально. [c.199]


    Увеличение площади поверхности раздела и перераспределение ее элементов, обеспечивающие эффективное смешение, зависят от начальных условий от исходной ориентации поверхности раздела и исходного расположения ее элементов. При одноосном сдвиговом течении оптимальной является ориентация перпендикулярно направлению сдвига (см. разд. 7.9). Это хорошо видно на примере смесителя, состоящего из коаксиальных цилиндров, изображенного на рис. 11.3. В случае а частицы диспергируемой фазы не пересекают все линии тока и вся поверхность раздела параллельна направлению деформации сдвига. Смешения не происходит совсем, несмотря на наличие деформации, возникающей при вращении одного из цилиндров. В случае б частицы диспергируемой фазы пересекают все линии тока и поверхность раздела перпендикулярна направлению деформации сдвига. При этом может быть достигнута любая требуемая [c.372]

Рис. 11.3. Влияние начальной ориентации и расположения частиц диспергируемой фазы на смешение в зазоре между коаксиальными цилиндрами Рис. 11.3. <a href="/info/1163719">Влияние начальной</a> ориентации и <a href="/info/950108">расположения частиц</a> диспергируемой фазы на смешение в <a href="/info/615880">зазоре между</a> коаксиальными цилиндрами
    Следовательно, для равномерного распределения элементов поверхности раздела внутри системы начальное расположение частиц должно быть таким, чтобы они пересекались со всеми линиями тока. Однако контролировать начальную ориентацию и расположение смешиваемых компонентов трудно. Для смесителей со сложной картиной течения (псевдослучайное смешение) начальные ориентация и расположение компонентов не столь существенны. Если смешиваемые компоненты представляют собой твердые частицы, то их предварительно перемешивают для усреднения начальных ориентации и расположения частиц. [c.373]

    Из (11.6-10) следует, что раздвигающая сила пропорциональна среднему гармоническому сил вязкого трения на поверхности шаров и значению (к / / )/ , зависящему от поля скоростей, ориентации гантели и ее размеров. Чтобы лучше понять особенности диспергирующего смешения, определим величину (к ЯЯ) Ь для некоторых типичных случаев течения. [c.393]

Рис. 17.7. Технологическая схема получения пленки каландровым методом (гл. 16) 1 — хранение полимеров и добавок в силосах (см. рис. 17.1, поз. /) 2 — дозирование 3 — смешение в роторном смесителе [интенсивное смешение (11.4 — 11.6, 11.9), плавление с подводом тепла за счет теплопроводности и диссипативного разогрева (9,1)] 4 — смешение на двухвалковых вальцах (10,5, 11.8, 16.1) 5 — контроль за отсутствием металлических включений 6 — каландрование на 1,-образном каландре (гл. 16) 7 — контроль за толщиной 8 — охлаждение пленки в блоке охлаждающих барабанов [охлаждение (9.2—9.5) и ориентация (6.8) пленки формирование НМС (3.6)] 9 — намотка пленки на приемную бобину, Рис. 17.7. <a href="/info/215148">Технологическая схема получения</a> пленки <a href="/info/668183">каландровым методом</a> (гл. 16) 1 — <a href="/info/1441057">хранение полимеров</a> и добавок в силосах (см. рис. 17.1, поз. /) 2 — дозирование 3 — смешение в <a href="/info/430118">роторном смесителе</a> [<a href="/info/197329">интенсивное смешение</a> (11.4 — 11.6, 11.9), плавление с <a href="/info/30175">подводом тепла</a> за счет теплопроводности и диссипативного разогрева (9,1)] 4 — смешение на двухвалковых вальцах (10,5, 11.8, 16.1) 5 — контроль за отсутствием <a href="/info/1022344">металлических включений</a> 6 — каландрование на 1,-<a href="/info/185722">образном каландре</a> (гл. 16) 7 — контроль за толщиной 8 — <a href="/info/901254">охлаждение пленки</a> в блоке охлаждающих барабанов [охлаждение (9.2—9.5) и ориентация (6.8) <a href="/info/863252">пленки формирование</a> НМС (3.6)] 9 — <a href="/info/901488">намотка пленки</a> на приемную бобину,

    Степень диспергирования волокон в смесях можно улучшить путем повышения вязкости системы и, следовательно, величины сдвиговых напряжений. Так, например, заметное улучшение распределения углеродных волокон в смесях обеспечивается введением аэросила в смеси до введения волокон. В процессе смешения и переработки смесей с волокнистыми наполнителями, вследствие ориентации анизометричных волокон в направлении механических воздействий, образуется анизотропный материал. [c.183]

    Для твердого водорода остаточная энтропия при О К обусловливается существованием двух его модификаций пара- и орто-водорода. В связи с этим твердый водород также можно рассматривать как раствор (орто- и пара-водорода), энтропия которого не падает до нуля при О К- Наличие остаточной энтропии у СО (N0, N20) связано с различной ориентацией молекул СО в кристалле (ОС —СО и СО — СО). Так как атомы С и О близки по своим размерам, то эти два вида ориентации в кристалле должны обладать практически одинаковой энергией. Отсюда статистический вес наинизшего энергетического уровня отдельной молекулы равен 2, а для моля кристалла —2 . Поэтому остаточная энтропия СО должна быть величиной порядка / 1п2 = 5,76 Дж/(моль К). Сравнение значений стандартной энтропии СО, вычисленных на основании калориметрических измерений [193,3 Дж/(моль К)) и спектроскопических данных [197,99 Дж/(моль К)1. подтверждает этот вывод. Для твердых веществ, кристаллические решетки которых имеют какие-либо дефекты, 5(0) Ф 0. Значения остаточной энтропии у отдельных веществ, как правило, — небольшие величины по сравнению с 5°(298). Поэтому, если пренебречь остаточной энтропией (т. е. принять условно 5(0) = 0), то это мало повлияет на точность термодинамических расчетов. Кроме того, если учесть, что при термодинамических расчетах оперируем изменением энтропии при протекании процесса, то эти ошибки в значениях энтропии могут взаимно погашаться. Почти каждый химический элемент представляет собой смесь изотопов. Смешение изотопов, как и образование твердых растворов, ведет к появлению остаточной энтропии. Остаточная энтропия связана с ядерными спинами. Если учесть, что при протекании обычных химических реакций не изменяется изотопный состав системы, а также спины ядер, то остаточными составляющими энтропии при вычислении изменения энтропии Д,5 можно пренебречь. [c.265]

    В связи с изложенным следует иметь в виду, что экстраполяция к 0° К экспериментальной теплоемкости позволяет определить величину практической энтропии, которая не учитывает ориентацию ядерных спинов (а также э ект смешения изотопов). В случае протона со спином 1/2 энтропия, определяемая ориентацией спина, равна 7 1п 2 на протон или 1п 2 для двух протонов в молекуле На- Следовательно, практически энтропия водорода, используемая в комбинации с энтропиями других веществ, определяемых по третьему закону, на 2 1п 2 = = 2,75 кал град моль меньше энтропии, рассчитанной из спектроскопических данных с учетом орто- и /гара-составляющих. [c.244]

    Таким образом, при Г = О получается кристалл, характеризующийся наличием нескольких ориентаций равной (минимальной) энергии. Рассматривая такой кристалл как идеальный твердый раствор, можно принять нулевую энтропию равной энтропии смешения различных видов его частиц. [c.430]

    Процесс сорбции низкомолекулярных веществ определяется в основном гибкостью полимерной цепной молекулы уменьшение гибкости, в результате ее выпрямления за счет уменьшения числа конформаций или усиления межмолекулярных взаимодействий, должно приводить к понижению сорбции при ориентации в результате уменьшения энтропии смешения . [c.147]

    Исходя ИЗ простых соображений, можно предположить, что прочность образовавшейся в процессе смешения ПВХ с пластификатором структуры будет пропорциональна как числу агрегатов в единице объема, так и прочности связей между агрегатами. Рассмотрим типичную кривую текучести модельной системы (рис. 12.1). Из рисунка видно, что эффективная вязкость системы с повышением скорости сдвига вначале уменьшается, т.е. наблюдается аномальная вязкость, обусловленная разрушением структуры и ориентаций ее обломков вдоль направления потока [82]. С достижением определенной скорости сдвига вязкость системы начинает расти, т.е. наступает дилатансия. Согласно [68] можно предположить, что возникающие при течении нормальные напряжения сдвига будут в противовес касательным напряжениям стремиться ориентировать цепочечные агрегаты перпендикулярно направлению потока. Когда длинные оси агрегатов составляют с направлением потока угол в 45°, тогда силы натяжения и удлинения , действующие на агрегаты со стороны жидкости, достигнут максимума, что приведет к разрыву агрегатов. Очевидно, что действие нормальных напряжений сдвига, стремящихся ориентировать агрегаты перпендикулярно потоку, должно привести к повышению эффективной вязкости системы. [c.263]


    При вычислении значения общего сдвига при неоднородной и нестационарной деформации необходимо знать профиль скоростей и линий тока частиц материала. При конструировании и работе смесителей не всегда возможно обеспечить наивыгоднейшую первоначальную ориентацию фазовых поверхностей поэтому в реальных смесителях необходимо иметь такой характер течения материала, чтобы линии тока непрерывно изменялись в течение всего цикла смешения. [c.127]

    Путем анализа и приближенного решения дифференциальных уравнений, описывающих процесс диспергирования, Мак-Келви получает, что необходимое разъединение частиц при сдвиговом воздействии происходит при значении Ка>(2—4). Если К<1 = °о или Кй<2, диспергирующее смешение сводится к простому (в первом случае силами взаимодействия Ра можно пренебречь по сравнению с напряжениями сдвига в среде, а во втором — агрегат ведет себя как одна частица. Как и при простом смешении здесь большое значение имеет ориентация агрегата частиц относительно линий тока. Если агрегат ориентирован неблагоприятно (вдоль линий тока), диспергирования не произойдет и при К<1> (2—4). Поэтому и здесь важно, чтобы смеситель обеспечивал интенсивное изменение линий тока. [c.131]

    Таким образом, это напряжение составляет примерно 1/10 максимального при смешении однако при неблагоприятной ориентации частиц для диспергирования может потребоваться напряжение, в несколько раз большее. [c.132]

    В уравнении (163) нижний индекс О обозначает абсолютный нуль температуры, а в скобках указано, что это условие справедливо только для идеального кристалла, так как любые вакансии, дислокации, примеси и даже нарушения в ориентации молекул повышают энтропию кристалла за счет энтропии смешения. Спектроскопические измерения и статистические расчеты на [c.369]

Рис. 1.7.4.1. Влияние начальной ориентации поверхности раздела фаз по отношению к вектору смешения на интенсивность процесса (область, занимаемая деформируемой средой, заштрихована) а) оптимальная ориентация б), в) ориентации, при которых смешение отсутствует Рис. 1.7.4.1. <a href="/info/1163719">Влияние начальной</a> <a href="/info/318167">ориентации поверхности раздела</a> фаз по отношению к вектору смешения на <a href="/info/24717">интенсивность процесса</a> (область, занимаемая деформируемой средой, заштрихована) а) <a href="/info/1715036">оптимальная ориентация</a> б), в) ориентации, при которых смешение отсутствует
    В процессе деформации материала связи каучук — сажа, образовавшиеся при смешении в хаотическом порядке, разрываются и вновь восстанавливаются в новых положениях, закрепляя на поверхности сажи молекулы каучука, частично ориентированные в направлении деформации. В результате происходят местная релаксация и выравнивание локальных перенапряжений. Чем выше прочность. .связи наполнителя с каучуком, тем большее усиливающее действие он оказывает, так как при последующей деформации и сопутствующей ей ориентации молекул должно произойти большее увеличение напряжения, необходимого для разрыва. Таким образом, выравнивание напряжений в ходе деформации является одной [c.265]

Рис. 1У.2. Ориентация при смешении двух компонентов (стрелки показывают направление смещения граней) Рис. 1У.2. Ориентация при смешении <a href="/info/1696521">двух</a> компонентов (стрелки показывают <a href="/info/1591877">направление смещения</a> граней)
    Влияние первоначальной ориентации поверхности раздела фаз по отношению к вектору смещения на интенсивность процесса смешения показано на рис. IV.4. В том случае, если поверхность-раздела фаз ориентирована нормально к вектору смещения (рис. IV.4, а), процесс смешения происходит наиболее интенсивно и обеспечивает получение гомогенной смеси. Если исходная поверхность раздела [c.173]

    Примером простого смесителя с замкнутым объемом является ротационный вискозиметр, схема которого дана на рис. 3,3. Сначала рассмотрен случай, когда материал размещен так, как показано на рис. 3,3 а. При ориентации координатной системы в направлении, указанном стрелкой, os Яд-= 1. Поэтому в результате деформаций сдвига при вращении цилиндра быстро увеличивается площадь поверхностей контакта. На рис. 3,3 б и 3,3 е показаны исходные ориентации, при которых os а,.=0, и, следовательно, сдвиг не вызывает никакого увеличения площади поверхности контакта. При таких ориентациях смешение люжет осуществляться только за счет диффузии, которая протекает сравнительно медленно. Любой, сколь угодно мальп элемент объема остается на одном и том же расстоянии от основания н от поверхности цилиндра в процессе сдвига. Каждый элемент движется вокруг цилиндра по за лкнутой траектории. Таким образом, одинаковые средние концентрации по любой замкнутой траектории достигаются только при начальном расположении компонентов в форме секторов (рис. 3,3 а). [c.147]

    Показатель преломления сам по себе, а также вместе с другими свойствами очень важен при характеристике нефтяных фракций. Для узких фракций с одним и тем же молекулярным весом значения показателя преломления сильно увеличиваются от парафинов к нафтепам и к ароматике значения показателя преломления для полициклических нафтенов и для полициклической ароматики соответственно выше, чем для моноциклических соединений. Для ряда углеводородов по существу того же тина показатель преломления увеличивается с молекулярным весом, но не до высокой степени, особенно для парафинового ряда. Так как для сырых нефтей показатель преломления очень сильно меняется, то при характеристике их это свойство не имеет особого,значения. Если смешать жидкие углеводороды, то объемы конечных растворов аддитивны или почти аддитивны показатели преломления в таких случаях следуют простейшему правилу смешения [141]. Значения для нефтепродуктов широко меняются некоторые значения для узких фракций даны в табл. 1П-5 с другими свойствами для ориентации. [c.184]

    В общем виде изменение энтропии в реакциях изомеризации суммируется 1) за счет изменения числа симметрии (б) молекул (число симметрии а равно числу эквивалентных пространственных ориентаций, которые может занимать молекула в результате простого вращения изменение энтропии численно выражается как —Д1пз) 2) из вклада, вносимого появлением -форм (рацематов или диастереомеров). При этом мезоформы имеют нулевой вклад а вклад -формы выражается значением Л1п2 и равен 1,38 э. е. 3) для углеводородов, имеющих гексаметиленовые кольца, обла-дающиеконформационной подвижностью, учитывается также вклад, возникающий от смешения двух неидентичных конформационных изомеров (например, ее ааж т. д. ). Расчет энергии этого вклада выполняется из соотношения—В(х 1п х- - у 1пу), где х ш у — молярные доли конформеров в равновесии при исследуемой температуре. Равновесие конформеров приближенно определяется на основании числа скошенных бутановых взаимодействий, характерных для каждой из конформаций. Обычно этот вклад невелик, так как чаще всего в конформационном равновесии значительно преобладает один устойчивый конформер. [c.139]

    Эта зависимость (правило смешения) оказывается справедливой для характеристик, на которые не влияет анизотропия молекул независимо от степени молекулярной ориентации. Примером такой характеристики является плотность. Объемную долю кристаллической фазы, зная плотность поликристаллического полимера, можно ргссчитать из выражения  [c.71]

    Из сказанного следует, что в статических смесителях расщепление и рекомбинация потоков приводят к многократному увеличению числа полос (упорядоченное распределительное смешение). Конструкция смесителя обеспечивает наиболее благоприятную ориентацию элементов поверхности раздела применительно к конкретному виду течения (ламинарное смещение) в смесителе Кеникс — перпендикулярная ориентация при доминирующем сдвиговом течении, а в смесителе Росса — параллельная ориентация при доминирующем течении при растяжении. [c.397]

    Способы изготовления смесей и их переработки оказывают заметное влияние на степень ориентации волокон. В процессе смешения с жидкими каучуками волокна легко ориентируются, причем даже длинные волокна, обладающие значительной жесткостью, не разрушаются. Смеси, изготовленные в резиносмесителе, обладают незначительной анизотропией свойств, однако степень ориентации волокон несколько увеличивается, если смеси затем перерабатывают на вальцах. Направленная подача резиновой смеси в зазор вальцев способствует дальнейшему увеличению ориентации волокон. Напротив, приемы повышения однородности смеси, такие как частые подрезания и подача в зазор перпендикулярно валкам, нарушают ориентацию волокнистых наполнителей. Поэтому для создания материалов с повышенной анизотропией свойств необходимо по возможности поддерживать постоянным направление ориентации волокон в смеси, и наоборот. Эффект ориентации возрастает при повышении до определенного уровня температуры и продолжительности обработки на вальцах, замене вальцевания шприцеванием и каландрова-нием. [c.184]

    Существенную роль в мицел-лообразоваиии играет увеличение энтропии системы (сверх эптропин смешения). Наличие в воде ближнего порядка и отсутствие да.яьнего приводит к существованию пустот, дырок , в которые внедряются неполярные группы молекул ПАВ, уменьшая свободу теплового движения молекул воды и энтропию системы. При объединении углеводородных частей молекул ПАВ (гидрофобном взаимодействии) уменьшается наведенная вокруг них ориентация молекул воды, что приводит 188 [c.188]

    Диссоциация ионогенных групп приводит к образованию ДЭС вокруг сферической мицеллы. Взаимодействие таких мицелл в растворе носит электростатический характер. Существенную роль в мицеллообразовании играет увеличение энтропии системы (сверх энтропии смешения). Наличие в воде ближнего порядка и отсутствие дальнего приводит к существованию пустот, "дырок", в которые внедряются неполярные группы молекул ПАВ, уменьшая свободу теплового движения молекул воды и энтропию системы. При объединении углеводородных чааей молекул ПЛВ (гидрофобном взаимодействии) уменьшается наведенная вокруг них ориентация ноле- [c.76]

    Основываясь на том, что кривые растворимости ряда веществ в различных растворителях в коордицатах 1п — ИТ образуют семейство прямых, Гильдебранд ввел понятие регулярных растворов. Согласно Гильдебранду, регулярные растворы подобны идеальным в том смысле, что тепловое движение их молекул способно преодолеть стремление к их ориентации и ассоциации, в результате чего в растворе имеет место такое же беспорядочное распределение молекул, как и в идеальном растворе. Следовательно, для регулярных растворов, как и для идеальных, энтропия смешения определяется мольной долей = —Я 1п N. Но теплота смешения компонентов уже не равна нулю АЯ Ф 0. [c.218]

    Для компенсации осевого смешения вала один из злементов уплотнения должен быть максима.пьно подвижным. По этому признаку торцовые уплотнения делятся на две группы с вращающимся (рис. 8.6, а, б) и невращающимся (рис. 8.6, в, г) подвижным уз.аом. Герметизация по валу или в корпусе осущес твляется эластичными кольцами круглого сечения, благодаря чему элементы уплотнения получают некоторую свободу ориентации по торцовой поверхности..  [c.199]

    В процессе простого смешения, в результате приложения к системе девиаторных деформаций сдвига, растяжения или сжатия происходит увеличение поверхности контакта между смешиваемыми материалами. Существенно, что смешение осуществляется только при определенной ориентации слоев компонентов смеси относительно направления сдвиговых деформаций или других деформаций формоизменения. Основное значение имеет первоначальная ориентация поверхности раздела компонентов, подлежащих смешению. [c.124]

    Было установлено, что активность изолированных комплексов аддитивна, т. е. при смешении комплексов получается окислительно-восстановительная реакция, соответствующая сумме отдельных реакций дьгхательной цепи. Выделение комплексов дыхательной цепи позволило сделать вывод об определенной пространственной ориентации этих комплексов в мембране. Важная роль в передаче электронов от одного комплекса к другому принадлежит KoQ и цитохрому с. Цитохром с является единственным растворимым цитохромом и наряду с коэнзимом Q служит мобильным компонентом дыхательной цепи, осуществляя связь между фиксированными в мембране комплексами. [c.199]

    Механизм смешения полимеров состоит в увеличе-НИИ поверхности раздела между смешиваемыми ингредиентами, размеры диспергируемого ингредиента при этом уменьшаются (рис. 1.7.4.1). Увеличение поверхности раздела является результатом деформаций сдвига и растяжения. Существенное значение для интенсивного смешения имеет правильная относительная ориентация направления деформа1Щи и поверхности раздела ингредиентов. [c.56]

    Во время смешения каждая частица наполнителя покрывается пленкой полимера, в которой макромолекулы ориентированы таким образом, что их полярные группы о0ращены к полярным группам наполнителя. Картина во многом напоминает ориентацию молекул эмульгатора в мицеллах при эмульсионной полимеризации. Большое значение имеет предварительная обработка поверхности наполнителя, усиливающая его связь с полимером и снижающая свободную энергию поверхности на границе полимер — наполнитель, что приводит к увеличению работы адгезионного отрыва — прививка полимера к волокнистым наполнителям, гидро-фобизация стеклянного волокна за счет взаимодействия его гидро ксильпых групп с кремнийорганическими соединениями или изоцианатами и т. д. Аналогичный эффект достигается введением карбоксильных групп в макромолекулу каучука, если наполнителем служит вискозный корд (взаимодействие групп СООН с группами ОН целлюлозы), предварительным поверхностным окислением неполярных полимеров — обра.зование активных групп, способных реагировать с функциональными группами наполнителя или адгезива. [c.471]


Смотреть страницы где упоминается термин Ориентация при смешении: [c.25]    [c.149]    [c.394]    [c.394]    [c.398]    [c.411]    [c.254]    [c.359]    [c.495]    [c.81]    [c.72]    [c.125]    [c.126]    [c.398]    [c.172]   
Основные процессы переработки полимеров Теория и методы расчёта (1972) -- [ c.171 ]




ПОИСК







© 2025 chem21.info Реклама на сайте