Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос вещества влияние

    В режиме идеального смешения концентрации реагентов постоянны по всему объему аппарата. Непрерывный переход от резина идеального вытеснения к режиму идеального смешения можво проследить в рамках диффузионной модели, решая уравнение (VI.14) или (VI.15) с граничными условиями (VI.27) и оценивая изменение степени превраш ения и статистических характеристик распределения при уменьшении числа Пекле. Режиму идеального вытеснения соответствует предельный случай Ре оо, а режиму идеального смешения — Ре 0. Все промежуточные режимы иногда определяют как режимы неполного смешения. Согласно сказанному выше, диффузионная модель далеко не всегда пригодна для описания работы реакторов в режиме неполного смешения. При расчет трубчатых реакторов х)на оказывается справедливой только ври больших числах Пекле, когда гидродинамический режим реактора приближается к режиму идеального вытеснения при этом расчет реактора в приближении идеального вытеснения обеспечивает обычно достаточную для технологических целей точность результатов, и влияние продольного перемешивания потока может быть учтено как малая поправка. При расчете реакторов малой протяженности, где продольное перемешивание особенно заметно и могут наблюдаться сильно размазанные функции распределения, необходимо уже учитывать реальную физическую картину процессов переноса вещества, так как диффузионная модель в этих условиях не применима. [c.213]


    Известно, что в любом химическом процессе, особенно в гетерогенном, явления переноса вещества и энергии играют существенную роль, В большинстве случаев стремление к оптимальному проведению процессов сводится к тому, чтобы обеспечить условия достижения режима химической кинетики. Для этого создают интенсивную конвекцию среды, облегчают доступ реагентов к активным поверхностям за счет измельчения катализаторов или нанесения на соответствующие носители и т. д. В результате уменьшается сопротивление процессам переноса и устраняется влияние последних на химическую реакцию. [c.186]

    В целом, учет продольного переноса вещества при математическом моделировании химических процессов должен быть непременным условием. Пренебрежение им и переход к идеальным моделям можно сделать лишь в тех случаях, когда доказано, что его влияние на скорость процесса в данных условиях не выходит за пределы экспериментальных и расчетных погрешностей. [c.67]

    При этом профили зависимостей Рвг,м = / Rlh) как для случая с изменяющимся Ре/, так и случая Ре/ = 2 отличаются друг от друга весьма незначительно, т. е. Ре/ =2 следует рассматривать как предельную величину для реактора с насадкой. Число Ре/ = 2 хорошо согласуется со значениями чисел Ре/, найденными опытным путем. При малых значениях Rlh величина Ре/ существенно зависит от радиального переноса вещества (рис. 36, б). В целом при Rlh > 6 влияние продольного переноса на число Рег, становится пренебрежимо малым и число Пекле стремится к 8. [c.103]

    Вторая задача, от которой непосредственно зависит успех создания эффективных искусственно создаваемых нестационарных процессов,— это дальнейшее развитие теоретических основ динамики гетерогенных каталитических реакторов. В нестационарных условиях гораздо сильнее, чем в стационарных, проявляется влияние процессов переноса вещества, тепла и импульса. Небольшие изменения, например, в условиях массо- и (или) теплообмена в зернистом слое катализатора могут привести к весьма заметным изменениям избирательности, степени превращения. Поэтому для осуществления нестационарных процессов требуется глубокое и ясное понимание всех физических процессов в реакторе. Количественное знание позволяет строить простые математические модели процессов в реакторах любой производительности. Кроме того, глубокое понимание всех основных закономерностей массо- и теплопереноса в реакторах позволяет создавать условия, благоприятно влияющие на показатели каталитического процесса. Нам представляется, что поиск таких условий эмпирически, на основе общих соображений нечасто будет приводить к заметным положительным эффектам. Особо важно отметить необходимость экспериментальных и теоретических работ по исследованию и количественному описанию поведения твердых частиц катализатора в реакторах, работающих в условиях псевдоожижения, пневмотранспорта, циркуляции частиц между реакторам н регенератором. Именно в таких реакторах легче организовать условия работы при нестационарном состоянии катализатора. [c.227]


    В определенных геометрических и гидравлических условиях можно рассчитать скорость переноса массы с помощью диффузии. Если реакция протекает в области внешней диффузии, то ее скорость должна соответствовать рассчитанной скорости диффузии. Если скорость реакции много меньше этой величины — это значит, что реакция протекает в кинетической области. Очевидно, что скорость реакции не может превышать скорость диффузии. Если условия не позволяют точно рассчитать перенос массы, а эксперимент указывает на увеличение скорости реакции с увеличением скорости потока, то можно считать, что на скорость реакции влияет перенос вещества. Сильное влияние температуры свидетельствует о том, что процесс идет в кинетической области. [c.96]

    Если средняя длина свободного пробега молекул намного меньше диаметра поры, то молекулы диффундирующих веществ сталкиваются друг с другом гораздо чаще, чем со стенками поры, и последние не оказывают существенного влияния на скорость диффузии в пористом зерне. В этих условиях диффузия в порах протекает так же, как и в объеме неподвижной жидкости или газа, и скорость переноса вещества вдоль поры, отнесенная к единице ее поперечного сечения, определяется законом Фика  [c.151]

    Кристалличность. Знание степени кристалличности важно для оценки проницаемости и селективности таких полимерных мембран, как сплошные пленки (включая тонкие поверхностные слои асимметричных ацетатцеллюлозных мембран), диализные мембраны и мембраны для разделения газов. Кроме влияния на перенос вещества кристалличность воздействует на различные параметры, влияющие на химические и механические свойства, что приводит к изменению свойств мембраны со временем. [c.71]

    Массо- и теплопередача в порах. Наиболее важное значение в процессах гетерогенного катализа имеет перенос вещества и тепла внутри пористой частицы катализатора. Перенос вещества в порах осуществляется исключительно путем молекулярной диффузии. Если диаметр поры значительно превышает среднюю длину свободного пробега, то молекулы диффундирующих веществ сталкиваются друг с другом гораздо чаще, чем со стенками поры и последние не оказывают существенного влияния на скорость диффузии в пористом зерне. В этих условиях диффузия в порах протекает так же, как в объеме неподвижной жидкости или газа и скорость переноса вещества вдоль поры, отнесенная к единице ее поперечного сечения, определяется законом Фика - [c.98]

    При предельно точном расчете скорости массо- и теплопередачи следует учитывать такие явления, как термодиффузия и диффузионная теплопроводность, возникающие при наложении и взаимном влиянии процессов переноса вещества и тепла, а также изменение физических свойств реагирующей смеси под влиянием химических [c.105]

    Вследствие относительно большого размера частиц катализатора, значительное влияние на скорость химических превращений в зернистом слое оказывают процессы переноса вещества и тепла внутри твердых частиц. Процессы на изолированном зерне катализатора изучались в главе III знание макроскопической скорости реакции на отдельном зерне в зависимости от концентраций реагентов и температуры потока в данной точке слоя — необходимый элемент математического описания процессов в зернистом слое. Другим [c.213]

    При моделировании химических процессов размеры печи не сказываются на скорости химического превращения, если процесс определяется только скоростью химической реакции. Однако химическая реакция приводит к изменению состава реагируемой смеси и температуры. Следствием этого является возникновение процессов переноса вещества и теплоты, на скорость которых существенно влияет характер концентрационного и температурного полей в печи, В свою очередь состав смеси и температура существенно влияют на скорость химического превращения. В результате этого протекание химического процесса в целом находится в полной зависимости от размеров печи, так как с изменением масштаба меняется структура или соотношение между его составными частями, химическими стадиями и стадиями процессов переноса вещества и теплоты. В связи с вышеизложенным невозможно сохранить одинаковое влияние физических факторов на скорость химического превращения в печах разного масштаба, кроме тех случаев, когда химическая реакция протекает с большей скоростью, чем процессы переноса. [c.130]

    Изотермическое зерно катализатора включает в себя два параллельно работающих элемента — внутреннюю поверхность и свободный объем, через который переносится вещество от наружной поверхности зерна. Величина Л/пов не оказывает заметного влияния на динамические свойства зерна в целом, если [c.9]


    Законы переноса вещества и тепла идентичны. Из-за развитой внутренней поверхности имеет место интенсивный теплообмен между обеими фазами, приводящий к гомогенизации системы. Поэтому становится вполне приемлемым использование закона Фурье q = — Я-эф grad Т, определяющего плотность теплового потока q в зависимости от градиента температуры и величины коэффициента эффективной теплопроводности зерна катализатора Хэф. Экспериментальные значения Хдф, найденные различными авторами, например [73], свидетельствуют о том, что на теплопроводность пористых зерен относительно слабо влияют теплофизические свойства твердого материала. Большое влияние оказывает теплопроводность газовой фазы. Однако решающее значение на величину зф оказывают геометрические характеристики структуры, особенно величины площадей наиболее узких мест или окрестности областей спекания, сращивания, склеивания частиц друг с другом. Для приближенной оценки величины Хэф можно рекомендовать монографию [74], в которой представлен значительный объем экспериментальных данных по дисперсным материалам. [c.157]

    Как мы уже знаем, гомогенные процессы характеризуются взаимодействием веществ в одной фазе. В гетерогенных реакциях, наряду с химическими превращениями, имеются стадии переноса веществ. Их влияние на процесс в целом зависит от условий его протекания. Если наиболее медленной стадией является химическая реакция, то говорят, что процесс протекает в кинетической области, если же, наоборот, звеном, тормозящим процесс в целом, служит перенос веществ, то говорят о диффузионной области. Что является лимитирующей стадией — взаимодействие или транспорт вещества,— можно установить по температурной зависимости скорости реакции в первом случае она гораздо чувствительнее к температуре, чем во втором. [c.103]

    В общем случае коэффициенты массоотдачи являются функцией двух групп факторов. Во-первых, они зависят от факторов, определяющих диффузионный перенос вещества к границе раздела фаз, и, во-вторых, от гидродинамического состояния межфазной поверхности. Очевидно, гидродинамические факторы будут оказывать влияние, аналогичное влиянию в бинарных системах, однако в многокомпонентных смесях диффузия имеет ряд специфических особенностей [64—661. Правда, в работах [67, 681 обращается внимание на различие в оценке глубины проницания (толщины пленки) по теории проницания для бинарной и многокомпонентной систем. В последнем случае речь идет уже о матрице глубин проницания, физический смысл которой в общем случае (при наличии перекрестных эффектов в матрице коэффициентов диффузии) не интерпретируется. Отмечено также [681, что КПД зависит от поверхностного натяжения компонентов. [c.345]

    Влияние процессов переноса тепла и вещества тем больше, чем выше скорость реакции, а в очень быстрых процессах, таких, как горение в пламени, перенос вещества и тепла определяет общую скорость. [c.23]

    Интерпретация опытов затрудняется, когда скорость зависит от процессов переноса вещества и тепла. Чтобы избежать этого, необходимо при помощи предварительных опытов определить границы кинетической области, а влияние указанных процессов переноса изучить отдельно. [c.431]

    На рис. Х1У-14 графи-чески показан экспериментальный метод изучения влияния процессов переноса вещества и тепла к наружной [c.432]

    Однако, поскольку для изучения указанных кинетических выражений требуется обширная исследовательская программа и в случае влияния процессов переноса вещества и тепла их иногда нужно заменять соответствующими линейными уравнениями скорости, мы рассмотрим только простые эмпирические формы кинетических выражений. Если общая скорость процесса не зависит от внешней диффузии, то скорость реакции в присутствии катализатора можно определить непосредственно, не принимая при этом во внимание процесс диффузия в порах. [c.435]

    Полученные суммарные зависимости хода процесса являются составными частями следующего уровня модели и не зависят от его масштаба. Например, закономерности протекания процессов в составных частях модели второго уровня (см. рис. ХУ-2), т. е. переноса вещества и тепла внутри поры катализатора и стадии химического превращения, не зависят от масштаба зерна и капилляра. Влияние масштаба на распределение концентраций и температур по длине поры и скорость химического процесса определяются краевыми условиями зерна и характером массо- и теплообмена между наружной поверхностью и ядром потока. Наблюдаемые зависимости скорости реакции от концентраций и температуры на пористом зерне не зависят от масштаба следующего уровня (слоя катализатора) и входят в него как составляющая математической модели в неподвижном слое. [c.465]

    Влияние масштаба реактора на структуру его модели. Кинетическая модель реактора не зависит от масштаба, поскольку размеры реакционной системы не сказываются на скорости собственно химического превращения. Однако химическая реакция приводит к изменению состава реагирующей смеси и температуры. Следствием этого является возникновение процессов переноса вещества и тепла, на скорость которых существенно влияет характер концентрационного и температурного полей в реакторе. Указанные поля зависят от формы и размеров реакционной системы. В свою очередь состав и температура очень сильно влияют на скорость химического превращения. В результате этого протекание химического процесса в целом находится в сложной зависимости от размеров аппарата. [c.465]

    При Ут- > 100 перенос вещества и тепла к наружной поверхности зерна катализатора не оказывает влияния на общую скорость процесса. [c.476]

    Уточнение модели переноса вещества. Оценим теперь влияние других факторов диффузию газа в плотной фазе, дисперсию газа в разреженной фазе, характер потока (восходящий или нисходящий) в плотной фазе, наличие частиц в пузырях и др. Как будет показано ниже, роль всех этих факторов существенно меньше по сравнению с межфазным обменом. В то же время при отражении их в математической модели, как правило, повышается порядок исходной (невозмущенной) системы дифференциальных уравнений, решение которых даже в линейном случае громоздко. Часто оказывается достаточным найти первое приближение к решению невозмущенной системы. [c.48]

    Пленочная модель не учитывает влияния движения фазы на перенос вещества. При молекулярной диффузии перенос вещества осуществляется вследствие колебательного движения молекул. Как уже отмечалось, такая диффузия имеет место в неподвижной среде или в ламинарном потоке. В случае же турбулентного режима одновременно с общим движением потока происходит поступательное движение отдельных частиц в направлении, перпендикулярном общему движению (турбулентные пульсации). [c.147]

    Влияние турбулентных пульсаций на перенос вещества учитывается моделью проникновения, получившей широкое распространение за последние 10—15 лет. При использовании этой модели предполагается, что турбулентные пульсации непрерывно подводят к межфазной поверхности свежие порции жидкости и смывают жидкость, уже прореагировавшую с газом. Таким образом, каждый элемент поверхности взаимодействует с газом в течение некоторого времени (время контакта, период обновления), после чего данный элемент поверхности обновляется. Считают, что за время контакта растворение газа происходит путем нестационарной диффузии в неподвижный слой бесконечной толщины. [c.147]

    Возможные причины перемешивания [99, 116] в промышленных аппаратах следующие неравномерность профиля скоростей потока возникновение противоположного основному потоку турбулентного переноса вещества перенос вещества в противоположном движению потока направления за счет молекулярной диффузии образование застойных зон байпасные и перекрестные токи в системе температурные градиенты и др. Теоретический расчет влияния каждого из этих эффектов на гидродинамику реального пОтока вызывает затруднения. Поэтому в последние годы большое внимание уделяется определению общего коэффициента перемешивания [77, 99, 258]. Основным экспериментальным методом исследования перемешивания является метод искусственного нарушения состава входного потока и исследование реакции системы на возмущение. Эти методы подробно описаны в ряде учебников и монографий [116, 118, 153]. [c.158]

    Из самого определения следует, что коэффициент массоотдачи представляет собой величину, которая учитывает сопротивление переносу вещества за счет молекулярной диффузии, а также сопротивление переносу потоками жидкости, т. е. чисто конвективному переносу. Следовательно, на величину коэффициентов массоотдачи оказывают влияние все те факторы, которые определяют скорость [c.272]

    Для сложных полидисперсных структур значение в отсутствие реакции характеризует перенос вещества в основном по сквозным макропорам. В случае реакции, когда большая часть работающей поверхности приходится на тупиковые микропоры, тем более теряет смысл понятие Д , так как влияние кинетических факторов и раз-. мера зерна на его величину еще более ощутимо. [c.69]

    IV. Непосредственное определение пристенного коэффициента массоотдачи Рст в условиях, когда перенос вещества по радиусу слоя не оказывает существенного влияния на процесс [27, первая ссылка]. На внутреннюю поверхность трубок диаметром 10—16 мм и длиной 50—150 мм наносили тонкий слой р-нафтола на длине (4—13) Dan- Концентрацию -нафтола в воде определяли на выходе спектрофотометрически. Растворимость р-нафтола в. воде невелика и поэтому сколько-нибудь заметного изменения поверхности трубки во время опыта не происходит, а концентрация р-нафтола на выходе далека от равновесной. Из-за высокого значения критерия Шмидта S ( 1100) сопротивление переносу вещества сосредоточено у стенки трубки. Даже при Кеэ = 10 это сопротивление составляло 97% от общего. [c.130]

    Приближенный метод оценки влияния продольного переноса вещества при изотермических условиях разработан Хафтоном Ч В методе используется одномерная модель вида [c.222]

    Весьма примечательно, что наилучшего понимания каталитических реакций удалось добиться в тех случаях, когда промежуточные стадии или соединения были идентифицированы химическими методами такова, например, большая область реакций карбониевого типа, протекающих на кислотных катализаторах, а также гомогенные реакции, катализируемые комплексами, число которых непрерывно возрастает. Механизм гомогенных реакций можно экстраполировать на гетерогенные реакции, и успехи, достигнутые в области химии неорганических комплексов и в теории кристаллического поля, создали теоретические предпосылки, доказывающие правильность такой экстраполяции. И все же такой чисто химический подход неудовлетворителен, в особенности в области гетерогенного катализа, в котором физические явления (обусловленные влиянием поверхности) иногда накладываются на химическое явление (эффекты, связанные с переносом вещества или [c.7]

    Говоря о скорости потока в зернистом слое , часто имеют в виду совершенно различные величины эта неопределенность связана с тем, что имеется несколько уровней и способов усреднения скорости потока. Самое детализированное описание гидродинамики потока дает задание истинных локальных скоростей в каждой точке свободного объема зернистого слоя. Истинная локальная скорость потока обращается в нуль у поверхности твердых частиц. При скоростях потока, обычных для промышленных каталитических процессов, близ твердой поверхности наблюдается резкий перепад скорости, сосредоточенный в тонком гидродинамическом пограничном слое, толщина которого мала по сравнению с характерным размером твердых частиц или промежутков между ними. Поле истинных локальных скоростей близ твердой поверхности определяет скорость иассо-и теплообмена между потоком и поверхностью твердых частиц (см. главу 1П). Влияние распределения истинных локальных скоростей потока близ твердой поверхности на процессы переноса в слое в целом сказывается лишь в том, что участки близ твердой поверхности, где скорость потока близка к нулю, могут играть роль застойных зон , в которых происходит задержка и накопление вещества, распространяющегося по слою с движущимся потоком. Особенно сильные застойные эффекты должны наблюдаться в областях близ точек соприкосновения твердых частиц (рис. VI.4). Эти области эквивалентны узким и глубоким каналам турбулентные пульсации в них не проникают, истинная локальная скорость потока близка к нулю, и перенос вещества осуществляется только с помощью медленного процесса молекулярной диффузии. [c.215]

    Поскольку в зернистом слое при Ве = иЦху 10 перенос вещества и тепла против течения происходит,только на расстояниях, сравнимых с размером отдельной ячейки, нри исследовании влияния гидродинамики слоя на положение критических точек перескока между различными режимами рационально пользоваться ячеистой моделью слоя. При этом, благодаря отсутствию переноса вещества и тепла между ячейками в направлении, противоположном движению потока, для вывода локальных условий перехода между режимами процесса достаточно исследовать режимы работы отдельной ячейки при заданных значениях концентраций и температуры на ее входе [36 1. [c.249]

    Существенное влияние на процесс переноса веществ в полимерах оказывают наличие кристаллических областеЁ в полимере и структура аморфных областей. Проницаемость кристаллизующихся полимеров меньше, чем соответствующих аморфных полимеров. [c.44]

    Рпс. V- . Влияние физп. е-ского переноса вещества на макспмальный выход гетерогенной консекутивной реакцпп первого порядка  [c.181]

    При дистилляции (или простой иерегонк е) молекулы, отрывающиеся с поверхности испарения, движутся в одном и том же направлении до момента достижения поверхности конденсации. Отличительная же особенность ректификации состоит в том, что поток жидкости (как правило сконденсированных паров) направляется навстречу поднимающемуся потоку паров. Если дистилляция состоит всего лишь из процессов испарения и конденсации, то при ректификации благодаря тесному контакту двух фаз в колонне имеет место массо- и теплообмен. Рассмотрим в общих чертах процесс, протекающий на тарелке колонны (рис. 24). При установившемся режиме составы пара и жидкости на одной и той же тарелке изменяются в направлении достижения термодинамического равновесия между ними под влиянием градиентов температур и концентраций. Вследствие переноса вещества в вертикальном направлении (парами вверх, а жидкостью вниз) это равновесие нарушается, что благоприятствует дальнейшему обогащению паров легколетучими компонентами [1]. Другими словами, поток жидкости (флегма) на своем пути из зоны более низких температур (вверх колонны) в зону более высоких температур (кипятильник) поглощает из потока паров высококипящие компоненты и выделяет легколетучие компоненты. Температурному градиенту в колонне соответствует перепад концентраций в парах и в жидкости. При этом в кипятильнике пар менее насыщен легколетучим компонентом, чем в головной части колонны, а жидкость (флегма) в верху колонны содержит больше легколетучего компонента, чем на входе в кипятильник. [c.39]

    Получена зависимость эффективности использования внутренней поверхности катализатора от температуры для реакций гидрогенолиза этана и пропана при давлении I ата (см. рис. 4). Однако промышленные установки очистки ПГ работают под давлением около 2 ата. Положительное влияние давления на протекание реакций гидрогенолиза этана и пропана объясняется увеличением степени использования внутренней поверхности никель-хромового катализатора. Дело в том, что с ростом давления механизм переноса вещества в порах катализатора изменяется от Кнудсеновской до нормальной диффузии. Поэтому при высоких давлениях, когда практически во всех порах перенос осуществляется по механизму нормальной диффузии, величина /остается практически неизменной и оптимальной является однородная мел-копористая структура катализатора. [c.69]

    Исследование кинетики каталитических процессов - одним из основных методов определения механизма катализа, знание которого необходимо для решения проблем научного и практичесюго плана,Кинетические данные при этом до.таны быть надежными и неискаженными макроскопическими факторами. К последним относят физические этапы переноса вещества.и тепла, затруднения в осуществлении которых приводят к концентрационным и температурным неоднородностям в реакционном объеме и внутри кусков пористого катализатора и тем самым оказывает искажающее влияние на кинетику процессов /17 К одному из видов макрофакторов В.А.Ройтер отнес такхе химические неоднородности в ишхте и по глубине зерен контакта, которые могут возникать вследствие химического взаимодействия катализатора с реакционной средой /2-А7 и неучет которых, также как и первых двух типов искажений, обесценивает результаты исследований как в теоретическом, так и в практическом отношениях. Большое внимание этому важному для катализа принцицу о воздейотвии реакционной системы на катализатор уделяет в своих работах Г.К.Боресков /Ь- . [c.90]

    Простым примером является пористая двухкомпонентная структура, представляющая собой агрегат из спекающихся и неспекаю-щихся кристаллов. По-видимому, существует два возможных пути, которые могут привести к увеличению кристаллов. Первый заключается в потере стабильности неспекающегося компонента, который под влиянием изменяющейся химической среды начинает спекаться. Рис. 6 показывает, как размер кристалла трудноспекающегося вещества, которое более не является стабилизатором, увеличивается со скоростью, пропорциональной скорости спекания легкоспекаю-щегося вещества. Влияние воды и пара на тугоплавкие окислы, подобные окиси алюминия, — пример такого ослабления стабилизатора. Вторая возможность заключается в том, что кристаллы спекающегося компонента могут увеличиваться благодаря наличию механизма байпасного переноса. Атомы спекающегося компонента могут переноситься через промежутки между кристаллами этого компонента, тем самым позволяя термодинамическим потенциалам кристаллов различного размера становиться эффективными движущими силами, промотирующими рост кристаллов. В этих условиях кристаллы стабилизирующего носителя не должны увеличиваться. Но взаимосвязь, представленная на рис. 6, нарушаете , и закономерности, управляющие спеканием спекающегося вещества, фактически возвращаются (хотя и не совсем точно) к закономерностям однокомпонентной системы, которая была показана на рис. 4. Хороший пример такого механизма структурного коллапса — влияние присутствия в медном катализаторе небольшого количества хлора (или [c.43]


Смотреть страницы где упоминается термин Перенос вещества влияние: [c.246]    [c.220]    [c.222]    [c.128]    [c.432]    [c.436]    [c.439]    [c.456]    [c.467]   
Абсорбция газов (1976) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте