Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ металлов электролитический

    Электролиз можно применять для выделения следовых количеств элементов, стоящих в ряду напряжений дальше, чем элемент матрицы или другие мешающие определению компоненты. При этом можно провести кулонометрическое определение с одновременным электрохимическим отделением или выделить элемент электрохимически или химически, а затем применить другие методы анализа. После выделения следовых количеств элементов на проволоке из инертного тугоплавкого металла их можно определить эмиссионными методами, внося проволоку, например, в пламя. Электролиз можно также применить для отделения матрицы, если металл матрицы стоит в ряду напряжений дальше, чем элемент, содержащийся в следовых количествах. Такие выделения обычно осуществляют, проводя восстановление на ртутном катоде. Преимуществом использования ртутного катода по сравнению с электролитическим осаждением является то, что не происходит адсорбции следовых количеств элемента, т. е. определяемый элемент практически полностью остается в растворе, не содержащем ионов металла матрицы. Но с другой стороны, при этом не достигается концентрирование определяемого элемента. [c.422]


    Комплексные соединения имеют большое значение в химической промышленности. Они применяются для получения и очистки платиновых металлов, золота, серебра, никеля, кобальта, меди. Широко используются в процессах разделения редкоземельных элементов, в гальваностегии для электролитического получения плотных и прочных покрытий, а также в области химического анализа для обнаружения и количественного определения многих элементов. [c.207]

    Особую область применения электролиза составляет электролитический анализ металлов. При одновременном присутствии в растворе катионов различных металлов последние могут быть выделены прн электролизе последовательно, в соответствии с их электродными потенциалами, так как минимальная разность потенциалов, необходимая для выделения различных металлов, неодинакова. Это дает возможность путем электролиза производить количественное определение содержания различных металлов в растворе. [c.448]

    Окисление — восстановление — один из важнейших процессов природы. Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд биологических процессов в основе своей являются окислительно-восстановительными реакциями. Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления — восстановления. Получение простых веществ, например железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д., и ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов и т. д. было бы невозможно без использования окислительно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа пер-манганатометрия, иодометрия, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.51]

    Электрогравиметрический анализ основан на электролитическом выделении металлов и взвешивании полученного на электроде осадка металлов. Первое требование к осадкам в гравиметрическом анализе — их практическая нерастворимость — хорошо выполняется в электроанализе, так как большинство металлов не растворяется в воде. Однако электролитическое осаждение иногда бывает неполным вследствие преждевременного прекращения электролиза. При электролизе осаждение происходит только в момент приближения определяемых ионов к поверхности электрода, поэтому очень большое значение имеет перемешивание раствора. [c.214]


    Важное значение для разделения ряда элементов имеет электролитическое осаждение на ртутном катоде, причем осаждение облегчается образованием амальгам. Так, например, для определения примеси алюминия в железных сплавах железо и многие другие металлы осаждают из сернокислого раствора на ртутном катоде, причем алюминий остается в растворе. Наконец, можно указать на применение анодного растворения металлов. Так, например, для определения неметаллических включений в стали и различных цветных сплавах поступают следующим образом. Образец металла опускают в раствор соответствующего электролита и включают ток, причем исследуемый металл является анодом. Во время электролиза металл переходит в раствор, а неметаллические примеси остаются в виде осадка. Этот метод имеет большое значение для фазового анализа металлов. [c.190]

    В учебном пособии Электролиз в гидрометаллургии изложены теория и практика электролитического получения металлов, начиная с наиболее распространенных и кончая рассеянными и редкими металлами. Особое место в теоретической части занимают анализ явлений совместного разряда катионов различ-ных металлов, кристаллизация металлов на катоде, а также явления на аноде. [c.7]

    Ячейка с ртутным катодом для электролитических разделений. Как уже говорилось, ионы некоторых металлов, восстанавливающиеся на обычных металлических электродах труднее, чем ион водорода, довольно просто выделяются на ртутном электроде в виде металла, при этом они отделяются от катионов металлов, которые в этих условиях не восстанавливаются. На рис. 12-5 показана электролитическая ячейка, которую можно использовать для этой цели площадь ртутного катода, находящегося на дне ячейки, составляет от 10 до 50 см . После того как необходимое отделение закончено, не прекращая электролиза, сосуд для уравнивания осторожно опускают до тех пор, пока уровень ртути в электролизере не понизится до уровня крана. Этот прием применяют для того, чтобы металлы в ртутной фазе не окислились кислородом, присутствующим в водной фазе. Затем кран закрывают для прекращения электролиза и раствор извлекают из ячейки для последующего анализа. Металлы, растворенные в ртути, не извлекают, но загрязненную ртуть очищают и используют повторно. [c.419]

    Таким образом, в случае присутствия кадмия изменение силы тока в зависимости от приложенного напряжения можно выразить кривой, приведенной на рис. 42. При малом напряжении, недостаточном для электролитического выделения кадмия на ртутном катоде, ток практически не идет. При увеличении напряжения до определенной величины начинается резкое увеличение силы тока. Это напряжение характерно для кадмия. Если в растворе присутствуют другие металлы, которые занимают при данных условиях другие места в ряду напряжений, то они будут восстанавливаться при других значениях приложенного напряжения. Поэтому полярографическая волна, т. е. скачкообразное увеличение силы тока, наблюдается при определенном, характерном для каждого металла напряжении тока, приложенного к электродам. Необходимо иметь в виду, что величина этого напряжения сильно зависит от присутствия в растворе других электролитов, а также от того, находится ли определяемый металл в виде хлорида, нитрата, аммиачного комплекса и т. п. Поэтому качественный полярографический анализ возможен только при строго определенных условиях среды. [c.212]

    Подготовка проб к анализу. Металлы и сплавы могут быть использованы как электроды в виде стержней или кусков произвольной формы. Растворы и порошки наносят на нижний электрод, изготовленный из специальных спектрально-чистых углей, или из электролитической меди. Если исследуется порошок, то в спектрально-чистом угле длиной 30—35 мм предварительно просверливают углубление 1,5—2 мм глубиной и заполняют его 20—30 мг исследуемого порошка, смешанного с угольной пылью (1 1). Верхним электродом служит угольный стержень длиной 30—35 мм, конец которого затачивают на конус. Использованные угли непригодны для дальнейшей работы. [c.134]

    Электроанализ основан на выделении металлов электрическим током и взвешивании полученного на электроде осадка металлов. Электролитическое осаждение химических соединений металлов (окислов и др.) имеет очень малое значение в анализе и практически применяется только для определения свинца в виде РЬОг. [c.193]

    Некоторые металлы довольно легко реагируют с водой и окисляются другие осаждаются в обычных условиях электроанализа медленно или неколичественно (например, висмут, хром, железо). Поэтому применение электролитического осаждения в анализе в общем ограничено. [c.190]

    Для проведения количественного анализа, основанного на электролитическом осаждении металлов, требуются определенные физические и химические условия реакци . Общие требования к осадку остаются теми же, что и при обычном весовом анализе осаждение должно быть возможно более полным, осадок должен быть чистым и, наконец, осадок должен б ыть плотным и удобным для отделения его от жидкой фазы. Все эти свойства осадка существенно зависят от физических и от химических условий осаждения. [c.195]


    Количественный полярографический анализ основан на тех же процессах, которые рассмотрены выше для качественного анализа. Испытуемый раствор помещают в электролизер и соединяют электроды с источником тока. При достаточном напряжении начинается электролитическое выделение данного металла, например кадмия на ртутном катоде. Дальнейшее увеличение напряжения приводит к возрастанию силы тока, причем характер зависимости между этими двумя величинами обусловлен некоторыми рассматриваемыми ниже физическими условиями проведения электролиза. [c.212]

    Рассматриваемый до сих пор случай, когда два электрода, выполненные из одного и того же металла, погружены в раствор соли этого металла, может встретиться только при электролитическом рафинировании металлов и не находит применения в электрохимическом анализе. В электрогравиметрии ионы Ме+ должны полностью быть выделены из раствора, и поэтому нельзя использовать электроды из того же металла. Кроме того, материал электродов не должен реагировать с раствором в должен быть устойчивым к агрессивным средам. Обычно используют платину. [c.258]

    При современных масштабах производства особый интерес проявляется к вопросам интенсификации и совершенствования электролитического извлечения и рафинирования различных цветных металлов. Следует иметь в виду, что состояние технической электрохимии и гидрометаллургии в данное время таково, что поиски новых возможностей в технологии без глубокого и всестороннего теоретического анализа процессов могут привести лишь к случайным результатам и обобщениям. [c.5]

    Электролитическое восстановление металлов (медь, никель) для количественного анализа впервые применил, по-видимому, в 1864 г. американский химик и минералог У. Гиббс (1822—1908). [c.49]

    По рис. 71 видно, что электрогравиметрическое определение можно сочетать с разделением. Для практически полного осаждения ионов металла необходимо напряжение, соответствующее рМе 5 (абсцисса точки пересечения с прерванной горизонтальной линией на рис. 71). Если при этом другие находящиеся в растворе ионы еще не разряжаются, выделяется только один металл. Так, например, анализ латуни (сплава меди и цинка) можно осуществлять следующим образом. После растворения навески проводят электролиз при напряжении на электролитической ячейке около 1,55 В. При этом на катоде выделяется медь, масса которой равна приросту массы этого электрода. Электролиз продолжают при напряжении 2,6 В, причем выделяется цинк, массу которого также находят по приросту массы катода. [c.279]

    Некоторые металлы, например щелочные, довольно легко реагируют с водой и окисляются. Другие осаждаются в обычных условиях электроанализа медленно или неколичественно (например, висмут, хром, железо). Поэтому применение электролитического осаждения в анализе ограничено. Кроме определения названных и некоторых других металлов, практическое значение имеет также определение малых количеств некоторых металлов путем так называемого внутреннего электролиза. [c.215]

    Главной особенностью процесса электролиза при полярографическом анализе является применение катода (при электролитическом окислении — анода) с очень малой поверхностью, например ртутного капающего электрода. Вследствие этого плотность тока на катоде очень велика. В результате в части раствора, находящегося вблизи поверхности такого микрокатода, концентрация определяемых ионов при электролизе быстро уменьшается . При небольшой силе тока эта убыль ионов пополняется за счет диффузии ионов из других, более отдаленных от поверхности микрокатода слоев раствора. Поэтому вначале при увеличении напряжения сила тока продолжает возрастать, и кривая круто поднимается вверх. Однако при достижении некоторой силы тока металл выделяется настолько интенсивно, что процесс диффузии не обеспечивает подхода к поверхности электрода достаточного количества ионов восстанавливающегося металла. Поэтому, несмотря на дальнейшее увеличение напряжения, сила тока не будет изменяться кри- [c.485]

    Сущность метода заключается в электролитическом выделении металла или его оксида на электроде и определении массы полученного осадка. Поскольку ток не измеряют, а требуется только специфичность реакции электролитического выделения металла, электролиз обычно проводят при контролируемом потенциале. Таким образом, метод сочетает в себе принципы весового анализа, т е. гравиметрии, и потенциостатической кулонометрии. В наиболее простых случаях, например при выделении меди из раствора, не содержащего других ионов, условия электролиза не контролируют и его проводят при постоянном токе. Если параллельно с выделением металла протекают другие электрохимические реакции, которые не сопровождаются выделением осадка, они не мешают определению, так как растворенные и газообразные продукты не изменяют массу осадка на электроде. [c.543]

    Основное требование к осадкам в гравиметрии - низкая растворимость - в электрогравиметрии вьшолняется достаточно хорошо, поскольку осадки металлов или их оксидов на инертных электродах при соответствующих pH практически не растворяются в водных растворах. Кроме того, при электролитическом осаждении по сравнению с гравиметрией легче добиться выполнения условий получения чистых осадков и соответствия их состава определенной формуле. Наконец, агрегатная форма осадка в электро-гравиметрии позволяет быстро завершить анализ, поскольку промывание электрода занимает мало времени. [c.543]

    Диметилдиоксим первым из диоксимов применялся для экстракционного отделения никеля [П06, 1201]. от диоксим часто используется в аналитической практике для отделения и концентрирования малых количеств никеля при анализе металлов, сплавов и солей алюминия и алюмосиликатов [931], железа [1004, 10491, кобальта и его солей 11002], урана и его сплавов [334, 12061, чистого электролитического хрома [324], сплавов на основе циркония 11061], кадмия [206] и многих других металлов и сплавов [563, 842]. Экстракция диметилдиоксимата никеля применяется также при анализе перхлоратных растворов легированных сталей [8461, содержа-Ш.ИХ хром, молибден, ванадий, никель, растворов электролитических ванн [678а1, цинковых электролитов для получения цинка [8641 и дpyfиx объектов [16, 5591. Описаны методы экстракционного выделения никеля при помощи диметилдиоксима из руд [429, 8151, медных солей [10011, галогенидов щелочных металлов [45] и из различных биологических материалов [404, 6771. [c.58]

    Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления - восстановления. Получение простых веществ (железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д.) ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов И т. д. было бы невозможно без использования окисли-тельно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа перманганатометрия, ио,дометркя, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.75]

    Электролитический анализ металлов с использованием в качестве фона ЭДТА. [c.196]

    Электролиз щироко применяется при промышленном получении fнoгиx металлов (К, N3, Са, Mg, А1). В промьшшенных электролизерах под воздействием подводимого электрического тока на одном из электродов выделяются газовые образования. В результате электролитической диссоциации молекул на электродах происходит рост газовых пузырьков, которые изолируют часть поверхности элеюрода. Это приводит к перераспределению потенциала на электроде и изменяет скорость протекания химической реакции. Вследствие этого происходит увеличение разности потенциалов, что ведет к повьппению энергозатрат. Для эффективного управления производством необходим учет влияния пузырьков на распределение электрического поля. Математическое моделирование позволяет провести расчет и анализ электрического поля [1]. [c.118]

    Второе важное требование к осадку — его чистота, соответствие состава осадка определенной формуле. Это требование выполняется при электролитическом осаждении значительно лучше, чем при обычных мэтодах весового анализа. Осадитель (электроны) одинаков для ионов различных металлов, тем не менее ири соблюдении определенных физических и химических условий разделение металлов происходит количествеиио. [c.189]

    Таким образом, электролитическое осанодение металлов необходимо вести в определенном интервале напряжения тока. В зависимости от химических условий (см. 51) этот допустимый интервал может быть более или менее узким. В большинстве случаев для электролитического осаяоде-ния выбирают Факие химические условия, при которых нет необходимости строго регулировать напряжение. Тем не менее обычно во всех установках для проведения электровесового анализа предусмотрена возможность регулировать напряжение. [c.195]

    Значение химических условий при электровесовом анализе част 1чно отмечалось выше. Кислотность раствора, присутствие анионов азотной или серной кислоты, введение анионов, образующих с металлами комплексы,— все эти условия имеют очень большое значение при электролитическом выделении металлов. Обычно химические условия еще в больше) мере, чем физические, определяют полноту осаждения, чистоту осадка и его внешние качества. [c.197]

    Данные рентгеноструктурного анализа электролитических железа и и-Jкристаллической решетке металла. Рентгенограмма электролитического железа характеризуется оиль-.ной размытостью линий, свидетельствующей о рассеянии лучей протонам,и и о нал1нчия внутренних напряжений. Линии могут быть зафиксированы только фотометрически. По мере отжига в вакууме начинают выявляться. ливни а-железа, которые становятся четкими после нагрева до 600—700°. Параметры решетки гранецентрированного куба электролитического железа а = 2,8612 А после отжига при 650° а = 2,8590 А. При растворении водорода -В железе наблюдается, следовательно, как бы разбухание кристаллической решетми. Такая же закономерность наблюдается и для никеля а решетке [c.48]

    Выделение водорода сопровождается минимальным перенапряжением на платиновом электроде оно значительно выше для всех других металлических электродов. Особенно большое перенапряжение Т1н2 наблюдается в случае ртутных электродов. Поэтому эти электроды особенно эффективны вполярографиче-ском анализе. Только перенапряжением водорода объясняется возможность проведения электролитического выделения неблагородных металлов, таких, как Сс1, 2п и др. из водных растворов или растворов кислот. [c.260]

    Интерес к изучению структуры ионных жидкостей вызван тем, что, во-первых, расплавы солей широко применяют при электролитическом получении редких металлов, используют в ядерной технике в качестве теплоносителей во-вторых, знание структуры позволяет вычислить равновесные свойства солевых расплавов статистическими методами, что важно для развития общей теории жидкого состояния. Исследование структуры расплавленных солей впервые было проведено В. И. Даниловым, и С. Я. Красницким. Они изучали расплавы ЫаНОз и КНОз вблизи их точек плавления. В твердом состоянии эти соли имеют ромбоэдрическую решетку, в узлах которой находятся ионы Ыа+или К% а на середине расстояния между их центрами — ионы ЫОз. Анализ полученных данных показал, что структурными единицами расплавов этих солей являются не молекулы, а ионы Ыа% и N03. В расплаве почти те же числа ближайших соседей и расстояния между ними, что и в твердом состоянии. [c.266]

    Рассмотрим принцип метода для случая, когда в растворе находятся ионы металлов, которые электролитически восстанавливаются на ртутном катоде раствор содержит также какой-либо сильный электролит— KNOз, NN401 или другую соль щелочного металла . В этот раствор опускают два электрода один из них, как правило, — катод, имеет малую поверхность, например капли ртути, вытекающие из очень тонкого капилляра. Анод — слой ртути с большой поверхностью на дне электролитического сосуда. Электроды соединяют с источником постоянного тока и постепенно повышают напряжение, наблюдая за изменением силы тока в зависимости от приложенного напряжения. Эта зависимость имеет неравномерный характер и выражается кривой с перегибами — волнами. Напряжение, при котором возникают эти волны, зависит от состава электролита и характерно для того или иного иона металла. Высота волн зависит от концентрации восстанавливающегося иона. Таким образом, по кривой зависимости силы тока от приложенного напряжения в данных условиях можно судить о составе и концентрации электролита, т. е. провести качественный и количественный анализ раствора. [c.482]

    Кафедра физической и коллоидной химии, зав. кафедрой докт. хим. наук, проф. О. К. Кудра научное направление — физикохимическое исследование растворов и электродных процессов. Проф. О. К. Кудрой с сотрудниками разрабатываются теория и методы электролитического получения металлических порошков и методы электроосаждения различных металлов и сплавов из комплексных электролитов. При кафедре работает исследовательская лаборатория радиохимии под руководством проф. Ю. Я. Фиалкова, успешно решающая серьезные проблемы физико-химического анализа изучение механизмов электролитической диссоциации и переноса тока в растворах, разработка методов количественного физико-химического анализа жидких систем и др. Часть этих исследований обобщена в монографии Ю. Я- Фиалкова Двойные жидкие системы . [c.121]


Библиография для Анализ металлов электролитический: [c.37]   
Смотреть страницы где упоминается термин Анализ металлов электролитический: [c.110]    [c.278]    [c.261]   
Краткий курс физической химии Изд5 (1978) -- [ c.442 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы электролитическое

Электролитический анализ



© 2025 chem21.info Реклама на сайте