Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутадиен выделение из газов

    Одной из таких тенденций является укрупнение технологических установок. Так, мощность этиленовых установок газоразделения в период 1950—1960 гг. составляла от 50 до 100 тыс. т в год, в период 1960—1970 гг. мощности этих установок выросли до 300— 600 тыс. т в год, а после 1970 г. появились сообщения о строительстве установок с единичной мощностью до 900 тыс. т этилена. При этом метод получения этилена в основном остался примерно тем же — пиролиз в трубчатых печах. Переход от мощности 60 тыс. т к мощности 300 тыс. т дает возможность снизить стоимость этилена примерно на 50%. При этом на больших установках становится рентабельным выделение бутадиена и изопрена, суммарное содержание которых в газе пиролиза составляет около 15% от содержания этилена. Бутадиен, выделенный из газа пиролиза, примерно в 1,5—2 раза дешевле бутадиена, полученного дегидрированием н-бутана и -бутенов. [c.12]


    Бутадиен в СССР получают из этанола, одно- и двухстадийным дегидрированием н-бутана, выделением нз газов пиролиза и окислительным дегидрированием н-бутиленов. Производство его энергоемко. Расход топливно-энергетических ресурсов на 1 т бутадиена при контактном разложении этилового спирта составляет 1,77 т у. т., двухстадийном дегидрировании н-бутана — 5,67 одностадийном дегидрировании н-бутана—1,88, выделении из пиролизной фракции — 0,3 т у. т. Внедрение в производственном объединении Нижнекамскнефтехим окислительного дегидрирования позволяет экономить ежегодно 500 тыс. т топлива. [c.175]

    Выделение бутадиена водно-аммиачным раствором уксуснокислой медн основано на способности бутадиена образовывать с солями одновалентной меди комплексы, разлагающиеся на исходные составные части прн повышении температуры до 80°. Основными аппаратами установки являются абсорбер и отпарная колонна. При контактировании с раствором бутадиен абсорбируется в нем, в то время как большая часть бутана и бутадиенов выводится из системы. Растворитель контактируется с углеводородной фракцией последовательно в несколько ступеней, представляющих собой главным образом турбосмесители и сепараторы. Углеводородная фракция после извлечения из нее бутадиена промывается водой и поступает на рециркуляцию илп на установку алкилпрования. Раствор, насыщенный бутадиеном, подается в де-сорбционную колонну, где из него выделяется углеводородная часть, которую отмывают в скруббере водой от увлеченного растворителя. Из скруббера бутадиеновый поток поступает в колонну редистилляции, где освобождается от примесей. Абсорбция проводится при 37°, десорбция при 79°. Этот метод дорогой и применяется при малых содержаниях бутадиена в газах. [c.72]

    Важным применением экстракции в нефтяной промышленности является выделение бутадиена-1,3 (сырья для синтеза каучука) пз смеси углеводородов С4, получаемых при отнятии водорода от бу-танов. Эти соединения кипят при близких температурах, поэтому разделение их путем ректификации невозможно. Для разделения в промышленном масштабе применяется водный аммиачный раствор ацетата меди концентрацией 3—3,5 моль/л [74, 89]. Другие растворители оказались менее пригодными [98]. В аммиачном растворе диолефины и углеводороды Д1 енового типа (бутадиен) образуют соединения с ионом меди Си" . В дальнейшем раствор очищается от других растворенных в нем углеводородов путем продувания газом с высоки.м содержанием бутадиена, а затем производится десорб- [c.402]


    Для производства синтетических каучуков применяют соединения с сопряженной системой двойных связей дивинил (1,3-бутадиен), изопрен, хлоропрен и с одной двойной связью изобутилен, стирол, а-метилстирол, нитрил акриловой кислоты и др. Большинство из этих соединений образуется дегидрированием соответствующих углеводородов, содержащихся в промышленных нефтяных газах, попутных газах, газовом бензине, некоторых фракциях переработки нефти, а также синтетически (например, этилбензол и изопропилбензол). Получение дивинила осуществляется контактным разложением этилового спирта, а также дегидрированием бутана и бутиленов в одну или две стадии. Но наиболее экономичным методом получения бутадиена является его выделение из газов пиролиза нефтяного сырья. [c.174]

    В процессе сборки шин используют бензин, клей и другие вредные вещества. Бензин действует на нервную систему человека. В процессе вулканизации шин образуется парогазовая смесь, содержащая стирол, бутадиен, масляный альдегид, формальдегид, метиловый спирт, аммиак, сернистые соединения и др. Вулканизационные газы приводят к нарушению нервной системы, заболеванию органов пищеварения, снижению гемоглобина в крови. Для снижения выделения вредных паров и газов применяется более совершенное оборудование, обеспечивающее герметичность процесса. Для пользования бензином применяют герметичные банки с клапанами или плотными крышками. Растворители содержатся в герметичных емкостях. [c.260]

    Фракция С4, образующаяся при пиролизе бензина, имеет следующий массовый состав, % 1,3-бутадиен —48 изобу-тен — 22 1-бутен—14 2-бутен—11. Себестоимость бутадиена, выделенного из газов пиролиза, примерно на 40 % ниже себестоимости бутадиена, получаемого двухстадийным каталитическим дегидрированием бутана. В России пиролизный метод пока не получил широкого распространения, так как основное сырье для него составляют легкие углеводороды и количество бутадиена, извлекаемого из продуктов пиролиза, незначительно. С увеличением молекулярной массы исходных углеводородов выход бутадиена возрастает  [c.271]

    Таким образом, достигалось выделение всех трех компонентов фракции углеводородов С , причем бутан выделялся в виде газа, а бутилен и бутадиен — в виде бромидов. [c.48]

    Разделение контактного газа сводится к выделению бути-лен-бутадиеновой фракции, из которой бутадиен извлекается аммиачным раствором уксуснокислой закиси меди бутилены возвращаются на дегидрирование. [c.144]

    Установка и технологическая схема потоков. Вследствие большого количества продуктов реакции (выше 32 отдельных веществ) установка должна иметь секцию разделения компонентов и очистки бутадиена. Промышленный метод состоит из следующих операций каталитическое превращение этилового спирта в бутадиен разделение жидких компонентов (в нормальных условиях) выделение из газов реакции неочищенного бутадиена при помощи абсорбции этиловым спиртом и очистка бутадиена. [c.362]

    Реактив Фишера неоднократно использовали для измерения влажности самых различных газообразных веществ водорода [146], насыщенных и ненасыщенных углеводородов (пропан, этилен, бутадиен и т. д. [146—148]), хладагентов [149], в том числе хлорметана, хладонов 12, 13, 22 и других [150], сернистого ангидрида [64, 80], а также фтористого и хлористого водорода [1]. В последнем случае кислые продукты должны быть предварительно нейтрализованы пиридином. Возможно поглощение галогенводородов непосредственно реактивом Фишера, но при этом нельзя допускать полной нейтрализации пиридина и изменения кислотности раствора во избежание выделения иода. Кроме того, необходимо помнить, что при поглощении кислых газов заметно возрастает температура раствора, поэтому титрование следует начинать только после достижения температурного равновесия с окружающей средой. [c.69]

    По условиям разделения оба эти способа в принципе равноценны. В обоих случаях смеси, из которых выделяется бутадиен, состоят из большого числа веществ. Различаются эти методы лишь относительным содержанием компонентов в исходных смесях. В дальнейшем рассматривается метод выделения бутадиена из смесей, получающихся при двухстадийном каталитическом дегидрировании бутана [347]. При этом отмечаются наиболее существенные отличия процесса, основанного на использовании газов крекинга в качестве исходного сырья. [c.320]

    Разделение бутан-бутеновой фракции. Бутан-бутеновая фракция, выделенная из контактного газа первой стадии дегидрирования, не может быть разделена методом ректификации вследствие того, что часть бутенов (а также бутадиен) имеют температуру кипения ниже, а часть выше, чем н-бутан, причем разность тем- [c.160]


    Исходные данные производительность установки по бутадиену 60 тыс. т/год степень извлечения на стадиях разделения контактного газа и выделения бутадиена Т11 = 97 и т 2 = 96,5% (масс.) соответственно  [c.15]

    Разделение бутан-бутеновой фракции. Бутан-бутеновая фракция, выделенная нз контактного газа первой стадии дегидрирования, не может быть разделена методом ректификации вследствие того, что часть бутенов (а также бутадиен) имеют температуру кипения ниже, а часть выше, чем к-бутан, причем разность температур кипения основных компонентов (бутадиен-1,3 и бутен-1, н-бутан и гранс-бутен-г) не превышает 1—2°С  [c.111]

    Бутадиен — газ с температурой кипения — 4,5 °С, хорошо растворяется в спирте и почти не растворяется в воде и в разбавленном водном спирте. Для его выделения и очистки прежде всего удаляют из контактного газа вещества с относительно высокой температурой кипения. Для этого газ охлаждают в холодильнике 8 водой, а затем в холодильнике 9 до 0°С холодильным рассолом. Конденсат — это водный спирт, который содержит эфир, уксусный альдегид и др. Ректификацией из него выделяют спирт-регенерат. [c.236]

    Для выделения газообразных углеводородов применяют методы сжатие (компрессия) с охлаждением, абсорбционно-десорбционный и адсорбционно-десорбционный (см. ч. I, стр. 271). Жидкости чаще всего разделяют перегонкой и ректификацией. Очень часто в промышленности практикуется комбинирование двух или более перечисленных методов. Используя разнообразные методы разделения исходных материалов, а также наиболее современные процессы их переработки, получают важнейшие соединения, являющиеся непосредственным сырьем органического синтеза синтез-газ (смесь СО и На) насыщенные алифатические углеводороды (от метана до пентанов) индивидуальные моноолефины (от Сз и выше) и их смеси диолефины бутадиен, изопрен и др. ацетилен ароматические углеводороды бензол, толуол, ксилолы и пр. [c.183]

    Выделение углеводородов из нефти и их переработка. Смеси веществ (С12—С18), которые могут быть использованы в промышленности без разделения (например, в производстве синтетических моющих средств), получают методом ректификации (перегонки). Для выделения индивидуальных низших парафинов (Сз—С5) из попутных газов проводят ректификацию при повышенном давлении (0,9—1,8 МПа). Для выделения индивидуальных углеводородов широко используют также азеотропную перегонку. К перегоняемой смеси добавляют жидкость, изменяющую летучесть компонентов смеси, — азеотропный агент, образующий с одним из компонентов постояннокипящую, или азеотропную, смесь, имеющую минимальную температуру кипения. Так выделяют, например, бутадиен из смеси углеводородов С4, используя в качестве азеотропного агента аммиак. [c.135]

    В США значительные ресурсы бутиленов обусловлены широким развитием вторичных процессов по переработке нефти [161]. В последние годы в США эти ресурсы несколько сократились вследствие применения в больших масштабах бутиленов для производства высокооктановых компонентов бензина, внедрения в процесс каталитического крекинга цеолитсодержащих катализаторов и расширения объема гидрокрекинга. В результате в качестве сырья для дегидрирования более широко начали использовать н-бутан и выделять бутадиен из продуктов пиролиза В Западной Европе вследствие значительно меньшего развития в нефтепереработке вторичных процессов, а также вследствие ограниченных ресурсов н-бутана, извлекаемого из попутных газов, выделение бутадиена из продуктов пиролиза приобретает особо важное значение. В СССР выделение бутадиена будет развиваться в соответствии с ресурсами бутан-бутиленовой фракции, получаемой в процессе пиролиза (см. гл. III). [c.150]

    Несконденсированный газ направляется на абсорбцию бу-тнленов, бутадиена и тяжелых фракций в абсорбер Р, который орошается охлажденным кубовым остатком десорбционной колонны 14. Неабсорбированные газы из абсорбера 9 (легкие углеводороды С1—Сз) направляются в топливную линию, а насыщенный абсорбент после теплообменника 12 поступает в десорбционную колонну 14. Из верхней части колонны 14 отбираются углеводороды фракций С4 и выше, которые конденсируются в двух последовательных конденсаторах 15 и 16, охлаждаемых соответственно водой и рассолом. Конденсат собирается в емкость 17. Конденсаты нз емкостей 5 и 17 подвергаются ректификации в четырех последовательно работающих колоннах 21, 23, 26 и 30. В колоннах 21 и 23 отгоняются лепкие углеводороды С]—Сз. Кубовый остаток колонны 21 поступает в колонну 26, из верхней части которой отбирается бутилен-бутадиено-вая фракция кубовый остаток колонны 26 поступает в колонну 30, из верхней части которой отбирается остаток бутилен-бутадиеновой фракции. Бутилен-бутадиеновая фракция с массовым содержанием бутадиена 15—20% направляется на разделение. Бутадиен, выделенный одним из указанных методов, направляется в производство СК. Кубовый остаток колонны 30, содержащий тяжелые углеводороды (С5 и выше), идет на склад. [c.45]

    Технологический процесс двухстадийного дегидрирования бутана состоит из следующих операций дегидрирование бутана в бутилены выделение бу-тап-бутиленовой фракции из контактного газа первой стадии дегидрирования разделение бутан-бутп-леновой фракции с возвратом бутана на первую стадию дегидрирования дегидрирование бутиленов в бутадиен выделение бутилен-бутадиеновой фракции из контактного газа второй стадии дегидрирования выделение и очистка бутадиена [c.6]

    Процесс протекает следующим образом. к-Бутаи и к-бутеи из газов циркуляции проходят над катализатором, дегидрирующим к-бутап в / -бутен, а к-бутен в бутадиен (рис. 42). После быстрого охлаждения газ компримируется и, как обычно, путем абсорбции освобождается от водорода и низко-молекулярных продуктов крекинга. Выделенная из абсорбента фракция С4 для извлечения 8—12% бутадиена обрабатывается на экстракциошюй установке аммиачно-ацетатным раствором меди. Отделяющаяся смесь к-бутана и к-бутена (газ циркуляции) вместе со свежим к-бутаном возвращается в реактор для дегидрирования. [c.87]

    Очистка бутадиенэ путем азеотропной перегонки. В конце 30-х годов возрос спрос на бутадиен, являющийся сырьем для производства синтетического каучука. Первоначально дешевыми источниками бутадиена были газы нефтяного крекинга. Дау Кемикл Компани имела в своем распоряжении значительные количества фракций, содержащих углеводороды С , в состав которых входило 50% бутадиена. Был разработан процесс выделения этого бутадиена в чистом виде, состоящий в азеотропной перегонке с аммиаком [40]. Промышленная установка, построенная для работы по этому процессу, была первой установкой США, в которой бутадиен получался тоннами. Этот процесс в настоящее время не используется, хотя изучение его показало, что он является наиболее рентабельным способом очистки, если исходный продукт содержит более 50% бутадиена. [c.132]

    Бутадиен дает комплексное соеданение нейтральным насыщенным водным раствором хлористой меди. Этот осадок разрушается при нагревании и дает чистый или во всяком случае высокопроцентный бутадиен. Однако осадок физически адсорбирует изобутилен, если он присутствует одновременно. Подобное выделение бутадиена не имеет аналитическою зка-чеиия, яо может бьггь. использовано при кон-центранди бутадиена в (газах. [c.390]

    Выходящий из печей пиролиза газ после обычной очистки комприми-руют до 30—36 ат и пропускают через абсорбционную колонну, орошаемую 80—85%-ной серной кислотой при 20°. В этой колонне, работающей без всякого охлаждения, от газа отмывается весь бутадиен, содержащийся в нем в количестве 0,5—2%, а также около одной трети от всего присутствующего пропилена. Пропилен не теряется, так как из сернокислотного раствора может быть выделен изопропиловый спирт. [c.453]

    Третьим важным источником исходных продуктов для получения смол является синтез под высоким давлением аммиака и метилового спирта из водорода, который в первом случае реагирует с атмосферным азотом, а во втором — с окисью углерода аммиак применяется для получения, путем реакции с двуокисью углерода, мочевины, а метиловый спирт—для окисления его в формальдегид. Еще почти неиспользованными, но многообещающими в этой области материалами являются побочные продукты, получаемые при крекинге нефти. При соответствующем подборе сырья и условий крекинга можно получить хорошие выходы таких важных продуктов, как этилен, изобутилен, бутадиен и даже ацетилен. Хотя эти последние получаются в виде компонентов сложных систем и выделение их из смесей и очистка сопряжены сисп гхьзо-ванием сложной аппаратуры, но то обстоятельство, что эти ценные продукты пиролиза могут сильно удешевить производство смол, делает этот синтез весьма многообещающим. И действительно, уже-достигнуты большие успехи в области пиролиза нефти, при произ-. водстве светильного газа, в направлении получения значительных количеств таких ценных ненасыщенных углеводородов, как стирол. [c.479]

    В Советском Союзе на заводах, производящих каучук, бутадиен получается не из этилового спирта, а из газов крекинга. На рис. 201 показана схема выделения бутадиена из газов крекинга и его очистка. Для выделения бутадиена из газов крекинга с водяным паром (содержание бутадиена 4%) иримеынютсн дополнительные оиерации хемосорбции медно-аммиачными солями [194] (см. рис. 201). [c.472]

    В качестве сырья для получения этилового спирта сернокислотной гидратацией применяется этан-этиленовая фракция, вы деляемая из газов пиролиза этана, пропана, низкооктановых бензинов и др. Обычно на сернокислотную гидратацию дается фракция, содержащая около 40% этилена и 60% этана. Содержание пропилена и ацетилена не должно превышать 0,1%. Выделение такой фракции осуществляется абсорбционно-ректифи кационным методом без разделения близкокипящих этилена и этана. На некоторых заводах синтетического этилового спирта газ после компримирования до 30—36 ат пропускается через абсорбционную колонну, где бутадиен и частично пропилен (око- ло 7з) при 20° поглощаются 80—85% кислотой. Здесь важно удаление бутадиена, так как в процессе гидратации он полиме-ризуется и обуглероживается, приводя тем самым к забивке колонн и трубопроводов. [c.104]

    Содержащийся в газах этан представляет собой ценное сырье для пиролиза, так как по сравнению с другими углеводородами он обеспечивает наибольпшй выход этилена. Поэтому выделение этана из попутных газов представляет собой одну из важных задач, стоящих перед нефтяной промышленностью. Значительную часть пропана намечается использовать как бытовое топливо однако в ряде случаев он будет подвергаться лиролизу для получения онизпшх олефинов, а также непосредственно перерабатываться в химические продукты. Основное назначение йолучаемых при переработке попутных газов бутанов — использование их как сырья для получения методом дегидрирования бутадиена и изобутилена, являющихся важнейшими мономерами для производства синтетического каучука. Бутадиен, получаемый в настоящее время в значительных количествах из спирта, будет полностью заменен бутадиеном, получаемым из к-бутана или бутилена, что является более экономичным В отдельных случаях может оказаться целесообразной окислительная переработка и-бутана в кислородсодержащие продукты уксусную кислоту, метилэтил-кетон и др. [c.14]

    Выделен и подробно охарактеризован ряд олефиновых комплексов металлов VI—VIII групп имеются сведения о существовании довольно неустойчивых комплексов Т1 и V. Некоторые примеры олефиновых соединений приведены в табл. 28.2. Помимо олефинов в соединения с металлами вступают и такие вещества, как малеиновая кислота или акрилонитрил, а также полностью фторированные олефины. Известно сравнительно немного примеров устойчивых комплексов с моноолефинами более многочисленны соединения с олефинами хелатного типа, такими, как бициклогептадиен-2,5, с сопряженными олефинами, например с бутадиеном-1,3, и особенно с циклическими олефинами, как несопряженными типа транс,транс,/пранс-циклододекатриена, так и с сопряженнылш, например циклогептатриеном или циклооктатетраеном. Подобно карбонилам, олефиновые комплексы, как правило, диамагнитны, и для предсказания их стехиометрии можно применить правило об электронной конфигурации ближайшего инертного газа, считая, что двойная связь является донором двух электронов. [c.175]

    На заводах, получающих бутадиен из бутана, исходный технический бутан и бутйн-бутиленовая фракция, поступающие на дегидрирование, имеют неодинаковый состав. Ниже рассматриваются коррозионные проблемы на заводе, который использует указанное сырье с повышенным содержанием сернистых соединений. Коррозия, вызванная или стимулируемая ими, становится заметна, главным образом на стадии выделения продуктов дегидрирования. Поступающий в цех дегидрирования бутан вначале подвергается осушке в стальном осушителе, заполненном твердым хлористым кальцием. Этот аппарат, работающий при 10—30° С, корродирует мало, если своевременно обновлять хлористый кальций, и поэтому не имеет антикоррозионного покрытия. Далее бутан под давлением 6 ат проходит последовательно через два стальных кожухотрубных аппарата — испаритель и перегреватель, где он подогревается до - 380°С контактным газом, поступающим в межтрубное пространство этих теплообменников. Последующие аппараты эксплуатируются уже при температуре, превышающей 500° С, поэтому применение обычных углеродистых сталей невозможно из-за сильной газовой коррозии. [c.193]

    Смесь углеводородов С4 (5,5% -бутана и 90,5% н-бутиленов), йоздуха и водяного пара подают в нагреватель./, а затем в реактор 2 проточного типа. Тепло выходящего из реактора газового потока используется для производства -водяного пара в генераторе 3. В системе выделения продуктов включающей охладительную бащню 4, промывную бащню 7, разделительную башню 8, абсорбер 9 продуктов С4 и разделитель 10 продуктов С4, получают сырой бутадиен-1,3. В отходящих газах содержится 20% непрореагировавших -бутиленов, которые возвращают в реактор 2. Выход бутадиена-1,3 составляет 62%. [c.49]

    Бутадиен— газ с температурой кипения —4,5° С— хорошо рас-гворяется в спирте и почти не растворяется в воде и в разбавленном водном спирте. Для его выделения и очистки прежде всего удаляют из контактного газа вещества с относительно высокой температурой кипения. Для этого газ охлаждают в холодильнике 8 водой, [c.264]

    Образующиеся в процессе крекинга (380—450 °С) и пиролиза (680—про °С) нефтепродуктов газы наряду с этиленом содержат водород/, метан, этан, пропан, пропилен, бутйн, изобутан, бутены, изобутилен, бутадиен, ацетилен, аллены и др. Этилен из смеси указанных углеводородов выделяют ректификационными или адсорбционно-ректификационными методами [697, с. 19—32]. Технологическая схема выделения этилена ректификационным способом приведена на рис. VII. 1. [c.366]


Смотреть страницы где упоминается термин Бутадиен выделение из газов: [c.80]    [c.85]    [c.289]    [c.241]    [c.349]    [c.213]    [c.91]    [c.190]    [c.243]    [c.187]    [c.35]    [c.93]    [c.153]   
Нефтехимическая технология (1963) -- [ c.303 , c.304 , c.305 , c.306 ]




ПОИСК





Смотрите так же термины и статьи:

Выделение газа



© 2025 chem21.info Реклама на сайте