Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты, значения рКа ароматические

    Авторами на протяжении многих лет изучалась реакция алкилирования карбоновых кислот, ароматических углеводородов, фенолов и их производных этиленовыми углеводородами. Исследования проводились в присутствии катализаторов на основе фтористого бора, который, как известно, за последние десятилетия стал одним из распространенных катализаторов в органической химии [14] и особенно эффективным оказался в процессах алкилирования. Эти наши исследования и составляют основу данной монографии. В связи с тем, что алкилбензолы и некоторые их производные в настоящее время широко используются в качестве исходных продуктов для различных синтезов через гидроперекиси, в монографию включена специальная глава — Автоокисление алкилароматических углеводородов . Эта глава особенно наглядно показывает значение реакции алкилирования ароматических углеводородов. Она написана главным образом на основе литературных данных и включает наши исследования, выполненные за последние годы. [c.5]


    Для эталонной реакционной серии — диссоциации ароматических карбоновых КИСЛОТ Гаммет положил значение р = 1. Как видно ИЗ табл. 13, в различных реакционных сериях р варьирует в широких пределах как по знаку, так и по, абсолютной величине. По физическому смыслу константа р характеризует относительную (в сравнении с эталонной серией) чувствительность данного равновесия или реакционного превраш,ения к структурным изменениям в реагирующих соединениях. Изменения констант реакции при переходе от одной реакционной серии к другой обусловливаются рядом факторов типом реакционного превращения, т. е. механизмом реакции степенью передачи электронных эффектов заместителей на реакционный центр условиями протекания реакции. [c.171]

    Наибольшие численные значения имеют lg Уо ионов алифатических карбоновых кислот, несколько меньшие — ароматических карбоновых кислот, еще меньше — фенолов. [c.204]

    Во все средние коэффициенты активности кислот в данном растворителе входит одна и та же величина lg лиония МН" . Таким образом, значения lg ионов кислот не могут быть связаны с изменением энергии протона, а являются результатом различного взаимодействия анионов с растворителями. Анионы жирных карбоновых кислот, ароматических карбоновых кислот и фенолов характеризуются изменением энергии при переносе их из неводного растворителя в воду. Можно было бы думать, что это результат различия в радиусах анионов. Однако радиусы замещенных бензойных кислот и фенолов с теми же заместителями мало различаются между собой, [c.204]

    С изменением строения растворяемых молекул избирательность растворителя будет меняться. Так, например, избирательность одного и того же растворителя будет совершенно различна при извлечении из нефтяных фракций ароматических углеводородов и при извлечении карбоновых кислот из их смеси с углеводородами Если в первом случае основной причиной избирательного растворения является различная поляризуемость молекул углеводородов [6], то во втором случае — различие значений ди-польных моментов, осложненное образованием водородных связей. [c.253]

    Электрофорез в гомогенной буферной системе при унифицированной напряженности поля является стандартным методом, который особенно эффективен при разделении маленьких молекул с постоянным зарядом. Поэтому можно без больших трудностей разделить алифатические и ароматические карбоновые кислоты, сульфокисло-ты, аминокислоты, фенолы, нуклеотиды и амины. Показательные примеры разделений, имеющих важное прикладное значение, приведены в двух обзорных статьях Кура (см. список литературы). [c.51]


    Методом ЯМР анализировали также и смеси карбоновых кислот и ангидридов. Паркер [85] использовал для анализа различия в значениях химических сдвигов для а-водородных атомов ангидрида и соответствующей кислоты. Обычно линии резонанса на а-водородных атомах ангидридов находятся в более низком поле, чем линии для а-водородных атомов кислот. Этим методом авторы анализировали ароматические, а также алифатические кислоты и ангидриды, такие, как уксусная, пропионовая, янтарная, фталевая, хлоруксусная, фумаровая и малеиновая. [c.149]

    Описано много комплексных соединений серебра с органическими лигандами. Известны комплексы серебра с ненасыщенными и насыщенными углеводородами, с карбоновыми кислотами, с аминокислотами, тиокислотами, комплексонами, с многочисленными аминами ароматического и жирного ряда, с лигандами, содержащими фосфор и мышьяк, с лигандами, содержащими азот и серу, азот и селен, фосфор и серу, с дикетонами и другими органическими соединениями. Не все эти соединения имеют одинаковое значение для аналитической химии. Ниже приводится краткая характеристика важнейших комплексов серебра с органическими лигандами. [c.29]

    В кетонах (ацетоне) сила карбоновых кислот снижается на 8 единиц р/С, а фенолов на 3—4 единицы р/С. Это можно объяснить различными видами образования водородных связей в спиртах и кетонах. Наличие дополнительной водородной связи в спиртах приводит к увеличению кислотности карбоновых кислот [1]. Ацетон снижает силу оснований еще в большей степени, чем кислот [89]. Сила оснований в 90%-ном ацетоне уменьшается на б—8 единиц р/С, в то время как сила ароматических карбоновых кислот уменьшается приблизительно на 5 единиц, а фенолов на 3—4 единицы. Это объясняется тем, что у кетонов акцепторные свойства более выражены по сравнению с донорными. В среде метилэтилкетона и метилизобутилкетона определены р/Св моно-, ди- и триоктиламинов полученные [90] значения равны 4—5. [c.29]

    Ароматическое пиридиновое ядро очень устойчиво к действию окислителей. Гомологи пиридина, как и гомологи бензольного ряда, окисляются без разрушения цикла. При этом получаются пиридин-карбоновые кислоты, имеющие важное значение в фармации. Напри- ер, р-пиколин (3-метилпиридин) окисляется в никотиновую (пиридин-З-карбоновую) кислоту. [c.373]

    Наибольшие численные значения имеют lg у ионов алифатических карбоновых кислот, несколько меньшие—ароматических карбоновых кислот, еще меньше—фенолов. [c.231]

    Из рис. VI П-25 видно, что для ряда ароматических карбоновых кислот эти предположения вполне оправдываются. По оси абсцисс на этом рисунке отложены значения логарифмов к — константы скорости инициирования реакции, приводящей к появлению окраски, а по оси ординат — величины р/С катализировавших этот процесс ароматических карбоновых кислот. Ароматические кислоты были выбраны потому, что эти соединения обладают наиболее приемлемыми физическими свойствами (они не летучи при температуре опыта) и молекулы их имеют почти одинаковые размеры. Значительные отклонения от имеющей место закономерности наблюдаются лишь для двух оршо-замещенных бензой- [c.71]

    Успешное разделение некоторых ароматических окси-карбоновых кислот проведено в тонких слоях кремневой кислоты [16] в различных системах растворителей I — эфир — целлозольв В (7 3), II — этилацетат — целло-зольв В (3 1), III — ацетон — целлозольв В (1 3)]. Значения Rf этих кислот приведены ниже  [c.57]

    Рассматриваемые в этом разделе пироновые, пнрнлиевые и ин-дигоидные соединения, строго говоря, относятся к гетероциклическим соединениям и, следовательно, должны быть описаны в третьей части этой книги. Однако, учитывая их близкое родство и генетические связи с чисто ароматическими соединениями, а именно с оксикетонами, окси-карбоновыми кислотами и аминокарбоновыми кислотами, а также их большое химическое, физиологическое и отчасти промышленное значение, с педагогической точки зрения желательно рассматривать их здесь, а не в конце книги. [c.674]

    В СССР, помимо нефти и графита, были предложены в качестве смазочных и противоизносных добавок полиоксиэтилированные алкилфенолы (ОП-10) [7], сульфонол [119] и продукты на основе различных карбоновых кислот и их производных [57]. Наибольшее распространение получил окисленный петролатум. Исходный петролатум — отход, полученный при депарафинизации авиационных масел, является смесью парафиновых, нафтеновых и высокомолекулярных ароматических углеводородов. При окислении их кислородом воздуха при 140—160° С в присутствии перманганата калия в результате распада образующихся гидроперекисей возникают кислородные соединения ветвистого строения с одной, двумя и более функциональными группами, из которых наибольшее значение имеют сложные эфиры и соединения, обладающие, наряду со свободными гидроксилами и карбоксилами, лактонной и лактидными группами. Всю совокупность кислых соединений условно называют эфирокислотами [22 ]. На одну молекулу в среднем приходится 1,75 карбоксильных трупп, 0,12 свободных и 0,82 связанных гидроксила. Весьма приближенная эмпирическая формула этого продукта — С45Ндо04д. При более глу- [c.218]


    Неактивированные алифатические и ароматические карбоновые кислоты, не содержащие электроноакцепторных групп, а также фрагментов, которые восстанавливаются легче, чем карб-оксигруппа, дают на полярограммах в водных [6] и неводных [7, 8] растворителях хорошо выраженную волну, которая, как правило, отвечает восстановлению протонов до водорода. Так, напрнмер, волна, соответствующая выделению водорода из уксусной кислоты, наблюдается в ацетонитриле на фоне 0,1 М перхлората тетраэтнттаммония при —2,3 В (отн. нас. КЭ), а в водной среде в средней области значений pH — при —1,76 В (отн [c.370]

    Пирролы, имидазолы, пиразолы и бензоконденсированные аналоги, обладающие NH-группой, способны депротонироваться (значение рА а лежит в интервале 14-18). Следовательно, эти соединения могут быть полностью превращены в соответствующие анионы при действии сильных оснований, таких, как гидрид натрия или -бутиллитий. Незамещенный пиррол ( рК . 17,5) проявляет кислотные свойства в гораздо большей степени, чем соответствующий насыщенный аналог пирролидин (рА 44). Кислотность индола (рА 16,2) значительно выше, чем кислотность анилина (рА 30,7). Такое различие в кислотности можно объяснить возможностью делокализации отрицательного заряда в анионе ароматического гетероцикла. Введение электроноакцепторных заместителей или дополнительного гетероатома, особенно иминного атома азота, существенно повышает кислотные свойства гетероциклических соединений. Прекрасный иллюстрацией такого влияния может служить тетразол, рА которого (4,8) имеет тот же порядок, что и рК карбоновых кислот [c.47]

    При осуществлении процессов этерификации в промышленных масштабах большое значение имеет реакционная способность кислот и спиртов, которая определяет технологические параметры и производительность основного реакционного аппарата. Строение спирта влияет на скорость реакции так же, как и на ее равновесие, т. е. с удлинением и разветвлением алкильной группы скорость реакции снижается. Влияние строения карбоновых кислот на скорость этерификации противоположно их влиянию на равновесие. Так, удлинение и разветвление угд зод-ной цепи карбоновой кислоты ведет к увеличению константы равновесия, но к снижению скорости химической реакции. Особенно медленно реагируют ароматические кислоты скорость их этерификации в 40—100 раз меньше, чем для уксусной кислоты. [c.166]

    Гидролиз нитрилов с образованием карбоновых кислот имеет большое значение, так как при по.мощи этой реакции осуществляется введение карбоксильных групп в органические соединения. В эту реакцию вступают не только алифатические и ароматические цианзамещенные, а также и а-оксинитрилы (циангидрины) с образованием а-оксикислот, и цианиды кислот (ни- [c.325]

    Сульфокислоты ароматического ряда и их производные имеют чрезвычайно важное практическое значение они являются промежуточными продуктами в синтезе азокрасителей, их, а также их соли широко используют в качестве моющих средств, исходных веществ для получения многих ароматических соединений (фенолов, анилинов, карбоновых кислот и их производных) и лекарственных препаратов (сульфамидов) [c.138]

    В среде неводных растворителей успешно титруют алифатиче-ские и ароматические кислоты и их окси-, галоген-, нитро- и другие производные [128, 407, 451]. Особенно большое значение имеет титрование нерастворимых в воде высших жирных кислот, таких как капроновая, энантовая, каприловая, пеларгоновая, каприно-вая, лауриновая, пальмитиновая, стеариновая, бегеновая и другие [369, 388, 452]. Из ароматических карбоновых кислот в среде неводных растворителей можно титровать бензойную кислоту и ее нитро-, галоген- и оксипроизводные, а- и р-нафталинкарбоно-вые кислоты и их производные и ряд других ароматических кислот [376, 383]. Все карбоновые кислоты можно с достаточной степенью точности титровать в среде спиртов [369], кетонов [305, 353, 367], хлороформа [128, 386], бензола 1386, 452], толуола [386], пиридина [326], этилендиамина и диметилформамида [434], в смеси диоксана с водой [381, 382] и в ряде других растворителей [388]. [c.117]

    Из данных таблицы 16 сл едует, что наибольшие численные значения имеют величины IgYo ионов алифатических карбоновых кислот, есколько меньшие ароматических карбоио-вых кислот, еще меньшие фенолов. [c.383]

    На основании исследований силы многих ароматических карбоновых кислот и многих катионных кислот, производных анилина, Грюнвальд определил относительные значения величин Уо и у , приняв, что Уо и у в этаноле равны единице (см. табл. 91). Из уравпешя АрК —АрК = тоУ() — т у , [c.796]

    Во все средние коэ4х )ициенты активности кислот в данном растворителе входит одна и та же величина lg у лиония МН" . Таким образом, значения lg уо ионов кислот не могут быть связаны с изменением энергии протона, а являются результатом различного взаимодействия анионов с растворителями. Анионы жирных карбоновых кислот, ароматических карбоновых кислот и фенолов характеризуются изменением энергии при переносе их из неводного растворителя в воду. Можно было бы думать, что это результат различия в радиусах анионов. Однако радиусы замещенных бензойных кислот и фенолов с теми же заместителями мало различаются между собой, а lg уо—очень сильно. Очевидно, эффект заключается не столько в размерах радиусов анионов, сколько в характере сольватации анионов кислот различной природы. У ароматических карбоновых кислот заряд в анионе менее локализован, чем у алифатических кислот, а у фенола локализация еще меньше. Следовательно, энергия переноса анионов зависит от характера распределения зарядов в анионах и от величины неполярных радикалов ионов. [c.231]

    Значение АППН основания определяют по разности между потенциалом средней точки этого основания и ППН 1, 3-дифенилгуанидина. Значение АППН кислоты определяют по разности между ее ППН и ППН бензойной кислоты. Используя справочные данные, можно вычислить приблизительные значения АППН для ряда монофункциональных аминов, амидов, алифатических, м- и -ароматических карбоновых кислот и оксиароматических соединений в различных растворителях. [c.334]

    Криоскопический метод может быть использован и для определения констант равновесия К изучаемых ассоциаций. Так, в работе Крауса и Бартона [144] были измерены константы димеризации ряда карбоновых кислот. Полученное ими значение К для бензойной кислоты в бензольном растворе хорошо укладывается на прямую 1п К как функция 1 /Т, построенную на основе данных Уолла [2134, 2133], и дает — АЯ ассоциации, равную 8,4 ккал моль. В качестве другого примера можно указать на работу Аллена и Калдина [26], в которой для определения К и термодинамических функций некоторых ароматических карбоновых кислот были использованы изме- [c.50]

    Здесь стабильность комплекса также понижается с введением электроноакцепторных групп в молекулу лиганда, что указывает на определяющую роль ст-донорно-акцепторной связи. Однако в случае медных комплексов ароматических карбоновых кислот, строение которых отвечает хелату тина I, стабильность комплекса, наоборот, увеличивается, когда /<-электроноакцепторная группа F, NO2 и др., в то время как электронодонорные группы С (СНз), ОН, ОСН3 и др. понижают прочность координационных связей [138]. Константа р=—0.58. Это говорит о том, что решающее значение б [c.278]

    Наряду с производством синтетических материалов и поверхностноактивных веществ большое значение имеет еще производство таких химических полупродуктов, на основе или при участии которых осуществляется органический синтез. Главнейшими из них являются спирты — метиловый, этиловый, изопропиловый, бутиловые и высшие спирты, эти-ленгликоль, синтетический глицерин, альдегиды и кетоны — ацетальдегид и высшие альдегиды, ацетон, метилэтилкетон и другие кетоны, окиси олефинов — окись этилена, окись пропилена, карбоновые кислоты, уксусная кислота, синтетические жирные кислоты, ароматические дикарбоно-вые кислоты, адипиновая кислота, фенолы — фенол, алкилфенолы, двухатомные фенолы, полупродукты для СК, пластмасс и синтетических волокон — бутадиен и изопрен, изобутилен, чистые олефины от С5Н10 до СшНзг, стирол, дивинилбензол и а-метилстирол, акрилонитрил и акрилаты, аминокислоты и канролактам, галоидопроизводные — дихлорэтан, хлористый этил, тетрафторэтилен, перфторолефины и парафины, ядохимикаты (гексахлорциклогексан, ДДТ и др.). [c.33]

    В ряду ароматических гидроксильных кислот, так же как и в ряду карбоновых кислот, заместитель, стоящий в л-положе-нии, проявляет индукционное влияние в чистом виде. Как видно из данных табл. 8.4, метильная группа проявляет +1 эффект, остальные заместители —I эффект. Заместитель, находящийся в п-ноложении, проявляет как эффект сопряжения, так и индукционный. Как и для ароматических карбоновых кислот, если знаки обоих эффектов совпадают, заместитель в -положении оказывает на кислотность большее влияние, чем тот же заместитель, находящийся в лг-положении. Фенолы с такими сильными электроноакцепторными заместителями (—/ и —Т эффекты ), как —N02, —СМ и —ЗОгСНз, характеризуются исключительно низкими значениями рКа- Интересно отметить, что увеличение кислотной ионизации фенола под влиянием этих заместителей происходит в гораздо большей степени, чем при введении этих же заместителей в п-положение молекулы бензойной кислоты. Это можно объяснить тем, что способность фенолят-аниона к сопряжению гораздо больше, чем у бензоат-аниона, и поэтому электронная поляризация в первом случае протекает исключительно эффективно. В тех случаях, когда / и Г эффекты имеют противоположные знаки (это характерно для галогена и мето-ксильной группы), относительную силу этих эффектов можно оценить, измеряя константу ионизации. В результате выясняется. [c.125]


Смотреть страницы где упоминается термин Карбоновые кислоты, значения рКа ароматические: [c.249]    [c.140]    [c.96]    [c.196]    [c.151]    [c.377]    [c.380]    [c.250]    [c.184]    [c.31]    [c.166]    [c.166]    [c.250]    [c.110]    [c.70]    [c.266]    [c.76]   
Константы ионизации кислот и оснований (1964) -- [ c.120 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические кислоты

Карбоновые кислоты ароматические

Карбоновые кислоты, значения рКа

Карбоновые кислоты, значения рКа ароматические таблицы

кислоты, значения рКа



© 2025 chem21.info Реклама на сайте