Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полистирол е сочетании с ТСХ

    Более 40% всего бензола, производимого в США, употребляется для производства стирола, который, как указывалось ранее, используется для производства полистирола и каучука. Вскоре его будут также применять в сочетании с алкидными смолами в производстве стирольных масел и других поверхностных покрытий. Много бензола намечается расходовать на производство найлона. Бензол широко используется при производстве додецилбензола — сырья для приготовления синтетических мыл. [c.156]


    В аппарате совмещены три зоны слева от перегородки 6 - термическая, где нефть нагревается и крупные капли оседают между перегородками б и 7, где для коалесценции капель используется электрическое поле, и справа от перегородки 7 - зона механической коалесценции за счет фильтрации нефти через пакеты гофрированных пластин из полистирола (гофры под углом 30 - 60 ° расположены поперечно у смежных пакетов). Сочетание этих зон дает большой эффект как по производительности аппарата, так и по глубине обезвоживания. Температура нефти после зоны нагрева обычно 65 - 70 °С. При начальной обводненности нефти 9 - 10%(мас.) на выходе из такого аппарата содержание воды составляет не более 0,3% [обычно 0,1 - 0,25%(мас.)]. Размеры аппарата диаметр - 2,4 м, длина - 7,6 м. [c.350]

    Взаимная растворимость полимеров [9]. Все более широкое применение в промышленности находят в настоящее время смеси полимеров, которые могут обладать свойствами, отсутствующими у отдельных компонентов. Особый интерес представляет сочетание жестких высокомолекулярных веществ (полистирол, поливинилхлорид, нитроцеллюлоза) с мягкими каучукоподобными (например, сополимер бутадиена с акрилонитрилом, различные другие эластомеры), выполняющими роль своеобразных пластификаторов и свободными от таких недостатков низкомолекулярных пластификаторов, как резкое снижение прочности полимерной композиции, способность мигрировать ва поверхность изделий, летучесть и т. д. [c.515]

    Наиболее низкой плотностью обладают изделия из полипропилена и полиэтилена, наиболее высокой—изделия из фторопласта-3. Высокая эластичность в сочетании с морозостойкостью характерна для изделий из пластиката шлангов, пленок, трубок, электроизоляционных оболочек проводов, уплотнительных колец и прокладок, защитных пленок, заменителей кожи. Менее эластичен полиэтилен, из которого помимо перечисленных изделий (за исключением заменителе кожи) изготовляют тару различных объемов, химическую посуду, детали приборов. Высокой упругостью отличаются изделия из полиамидов, фторопласта-3 и особенно из поликарбоната. Наименее упруги изделия из полистирола. Изделия из полиамидов и полиформальдегида отличаются высокой стойкостью к истиранию и низким коэффициентом трения (особенно по стальным поверхностям), поэтому полиамиды и полиформальдегид рекомендуется использовать для изготовления деталей машин, подвергающихся трению скольжения (подшипники, вкладыши, зубчатые передачи, шестерни). Этролы применяют для изготовления рукояток, кнопок, рулей управления, деталей корпусов приборов. Изделия из поликарбоната и полиформальдегида имеют наиболее высокую прочность и наименьшую ползучесть под нагрузкой при нагревании до 90—100 °С, [c.539]


    Обширные исследования в области механизма взаимодействия полимера с наполнителем выполнены в последнее время Липатовым и др. Обнаружено существенное повышение температуры стеклования при введении наполнителя во многие полимеры. Стеклянное волокно, стеклянный порошок, бентонит, каолин, графит, двуокись титана и многие другие наполнители были исследованы в сочетании с полистиролом, полиметилметакрилатом, [c.139]

    В последнее время получили распространение и так называемые гетерогенные мембраны. В последних твердое вещество, обеспечивающее ионный обмен, распределено в непроводящей матрице, которая придает мембране подходящие физико-механические свойства. В качестве подобных инертных веществ используют силиконовый каучук, полиэтилен, полистирол, коллодий и др. Разнообразные электроды этого типа с селективной чувствительностью по ионам SOf, l", ОН , Zn +, Ni + и др. получены при сочетании подходящих ионообменных смол (см. гл., Х1П) с соответствующей инертной матрицей. В других электродах в качестве активного вещества используют различные малорастворимые соли или хелатные комплексы. На этой основе созданы электроды, чувствительные к ионам F , S , I", РО , SO4", К , Na+, Са +, Ag+ и др. [c.343]

    При действии сильных механических напряжений на полимеры, например, при продавливании полимеров через капилляры, очень быстром перемешивании или помоле, в условиях, когда макромолекулы не успевают или не могут перемещаться друг относительно друга, в них могут возникать разрывы цепей по валентным связям с образованием свободных полимерных радикалов. Если формование изделия проводится достаточно быстро, то воссоединение радикалов приводит к закреплению образованной формы изделия (Каргин, Слонимский, Соголова). Если подобным воздействиям (механическому крекингу) подвергнуть смесь полимеров, можно после рекомбинации радикалов получить новые химические сочетания полимеров. Берлин применил для временного разрыва связей замораживание набухших полимеров (крахмала, полистирола), используя для механических воздействий изменения объема при замерзании. Подобные химические изменения при механическом воздействии на полимеры составляют область механохимии полимеров. В отличие от обычного течения высокополимеров, при котором макромолекулы постепенно, отдельными участками цепей, передвигаются друг относительно друга, при механохимическом течении передвигаются обломки или фрагменты сетчатой структуры полимера до момента их рекомбинации, что уподобляет этот процесс обратимому разрушению коагуляционных структур. Введение небольших добавок защитных веществ, дезактивирующих свободные радикалы (бутилгидрохинона и др.), позволяет регулировать процесс восстановления структуры, подобно действию добавок поверхностноактивных веществ при коагуляционном структурообразовании. Механохимия полимеров несомненно открывает новые пути в их технологической переработке. [c.254]

    Метод селективного гидрирования в сочетании с методами ЯМР, УФ- и ИК-спектроскопии позволяет определять не только число и местоположение двойных связей в макромолекуле, но также конфигурацию цепи, характер и величину внутри- и межмолекулярного взаимодействия. Так, темп-ра стеклования аморфного полистирола больше, чем у его сполна гидрированного продукта, и, следовательно, жесткость цени полистирола в значительной мере обусловлена я,я-взаимодействием бензольных колец. [c.69]

    Для ленточной упаковки широко используют поливинилиденхлорид или целлофан. Применяют также пленки из ненасыщенных полиэфиров, на поверхность которых наносят покрытия из поливинилиденхлорида или полиэтилена. Для блистер-упаковки обычно применяют поливинилхлорид и его комбинации с полиэтиленом, полистирол и полипропилен. Вследствие хорошей перерабатываемости в сочетании с низкой стоимостью чаще других материалов используют поливинилхлорид. Для повышения влагостойкости на него наносят покрытия из поливинилиденхлорида или политрифторхлорэтилена. [c.308]

    Суспензионная полимеризация находит широкое промышленное использование. Она применяется в производстве полимеров Ё сополимеров стирола, полиметилметакрилата и поливинилаце-тата. Суспензионный метод является основным при получении поливинилхлорида. Следует отметить, что в ряде технологических процессов, например при синтезе ударопрочных сополимеров на основе стирола, суспензионная полимеризация проводится в сочетании с блочными процессами. Сущность блочно-суспензионного процесса заключается в проведении полимеризации в две стадии на первой стадии полимеризацию проводят в массе до конверсии 25—40 %, а затем полученный форполимер диспергируют в воде и завершают процесс в суспензии до полной конверсии мономера. Аналогичная технология используется при получении вспенивающегося полистирола. [c.107]

    К привитым сополимерам стирола относятся такие материалы, как ударопрочный полистирол, АБС-пластики и прозрачные МБС-пластики. Наибольшее распространение получили ударопрочный полистирол и АБС-пластики благодаря уникальному сочетанию таких эксплуатационных свойств, как жесткость, высокая ударная вязкость, прочность, формуемость, химическая стойкость (для АБС-пластиков). [c.159]


    Другим методом синтеза линейных трехблочных термоэластопластов может быть метод сочетания живых двухблочных сополимеров полистирол — полидиен — литий (поли-а-метилстирол — полидиен — литий). Их получают при использовании в качестве сочетающих агентов бифункциональных соединений, например 1,2-дибромэтана [18, 19], сероокиси углерода [16]. Кроме линейных термоэластопластов этим же способом получают звездообразные (радиальные) полимеры, если применяют полифункциональные сочетающие агенты, например 51С14 [19], дивинилбензол [20]. [c.286]

    Прямое извлечение этилбензола из рафинатов платформинга за последние годы получает значительное распространение в зарубежной практике. Оно осуществляется путем суперфракционирования и является экономически выгодным в сочетании с извлечением ксилолов. Использование этилбензола, содержащегося в рафинатах каталитического риформинга, создает базу для дальнейшего развития производства стирола и полистирола, являющегося ценнейшим полимерным материалом. [c.365]

    Интересные блоксополимеры получены сочетанием блоков полистирола и полиметклметакрилата путем сополимеризации метилметакрилата с бирадикалами макромолекул полистирола. Бирадикалы образуются из макромолекул полистирола, на концах которых находятся гидроперекисные группы. Для образования таких ма кромолекул стирол полимеризуют в присутствии дигидроперекиси, например дигидроперекиси ж-диизопропилбензола. При распаде дигидроперекиси образуются три типа радикалов инициирующих полимеризацию стирола  [c.545]

    Участие активных (содержащих связи Сбо-литий) гексааддуктов в реакциях функционализации и сочетания. Получены двенадцатилучевые двуядерные и моноядерные многолучевые полистиролы, структуры типа браслет со звездообразными подвесками . [c.40]

    В 1963 г. Р. Меррифилд [722] разработал важный метод, который с тех пор применяется для синтеза многих пептидов [723]. Этот метод называется твердофазным синтезом, или синтезом на полимерных подложках [724]. Здесь используются те же реакции, что и в обычном синтезе, но один из реагентов закреплен на твердом полимере. Например, если желательно соединить две аминокислоты (получить дипептид), то в качестве полимера может выступать полистирол, содержащий боковые группы H2 I (рис. 10.1, 99). Одну из аминокислот, защищенную трет-бутоксикарбонильной группой (Вое), закрепляют на боковых группах (стадия А). Нет необходимости, чтобы все боковые группы вступили в реакцию достаточно, чтобы это произошло с некоторыми из них. Затем гидролизом в присутствии трифтороуксусной кислоты в дихлорометане снимают защитную группу Вое (стадия Б) и к иммобилизированной аминокислоте присоединяют другую аминокислоту, используя ДЦК или другой агент сочетания (стадия В). После этого удаляют вторую защитную группу Вое (стадия Г), что дает дипептид, все еще закрепленный на полимере. Если этот дипептид и есть желаемый продукт, его можно снять с полимера действием HF (стадия Д). Если необходимо получить пептид с более длинной цепью, прибавляют другие аминокислоты, повторяя стадии В и Г. [c.156]

    Стирол СбН5СН = СН2 — жидкость с приятным запахом. Характерной особенностью является способность полимеризации, что находит широкое применение в производстве полистирола. В сочетании с бутадиеном используют для получения полистирольного каучука. [c.354]

    Сочетание свойств различных высокомолекулярных веществ обнаруживается у так называемых блоксополимеров и привитых сополимеров. Блоксополимеры представляют собой сополимеры, линейные макромолекулы которых построены из различной длины блоков, образованных многими звеньями отдельных мономеров. Блоксополи-мер поливинила и полистирола можно изобразить следующим образом  [c.381]

    Сочетание разл. методов. Напр., экструзией и ка-ландрованием получают толстые П. п. (0,2-2,5 мм) из ударопрочного полистирола, АБС-пластика, полипропилена, к-рые подвергают глубокой вытяжке, и П.п. из нек-рых термостойких термопластов. [c.572]

    Нетрудно показать, что если реакторы идеального смешения объединены последовательно в каскад реакторов иЛи представлены секционированным реактором, то удельная производительность каскада реакторов или секционированного реактора с увеличением их числа (реакторов, секций) приближается к реактору идеального вытеснения. На практике используют каскад реакторов от 2-4 до 8-10 и более, а также сочетание реакторов, например идеального смешения и идеального вытеснения. В промышленности каскад реакторов и секционированные реакторы используются для проведения окисления углеводородов в жидкой фазе молекулярным кислородом, например циклогексана в цик-логексанол и циклогексанон, изопропилбензола в гидропероксид изопропилбензола и др. При блочной (в массе) полимеризации стирола в полистирол полимеризация мономера сначала осуществляется до конверсии 0,7-0,8 в двух последовательно соединенных полимеризаторах смешения, а затем завершается до конверсии [c.184]

Рис. 9.10.4. Спектр спиновой диффузии протонов в смеси полистирола (ПС) и по-ли(вииилметилэфира) (ПВМЭ), полученный с помощью последовательности на рис. 9.10.1,в (тга = 100 мс) в сочетании с вращением под магическим углом (рг = 2,8 кГц), а — гетерогенный образец смеси из хлороформа б — гомогенный образец смеси из толуола. Обратим внимание на отсутствие в случае рис. а кросс-пиков между сигналами, соответствующими различным полимфам, и на интенсивные кросс-пики на рис. б между сигналами ароматической группы в ПС и сигналами ОСНз + ОСН в ПВМЭ. (Из работы [9.56].) Рис. 9.10.4. <a href="/info/50569">Спектр спиновой</a> <a href="/info/382964">диффузии протонов</a> в смеси полистирола (ПС) и по-ли(вииилметилэфира) (ПВМЭ), полученный с помощью последовательности на рис. 9.10.1,в (тга = 100 мс) в сочетании с вращением под магическим углом (рг = 2,8 кГц), а — гетерогенный образец смеси из хлороформа б — гомогенный образец смеси из толуола. Обратим внимание на отсутствие в случае рис. а <a href="/info/122653">кросс-пиков</a> между сигналами, <a href="/info/1057823">соответствующими различным</a> полимфам, и на <a href="/info/122655">интенсивные кросс-пики</a> на рис. б между сигналами <a href="/info/53997">ароматической группы</a> в ПС и сигналами ОСНз + ОСН в ПВМЭ. (Из работы [9.56].)
    Как уже упоминалось выше, для изготовления невысыхающих герметиков используются или полностью насыщенные или с низкой непредельностью полимеры типа бутилкаучука, полнизо-бутилена, этилен-пропиленового каучука, хлорированного, бутилкаучука различной молекулярной массы — от 10 10 до 200-10 в сочетании с полистиролом, полипропиленом и полиэтиленом высокого и низкого давления и такими же полимерами более низкой молекулярной массы (по 300) [1, 7, 16—21]. Эти полимеры хорошо перерабатываются на вальцах и другом оборудовании резиновой промышленности, а отсутствие двойных связей или их малое содержание предопределяет высокую химическую стойкость герметиков, атмосферостойкость и стойкость к старению. [c.141]

    К числу полимеров, которые армируются стеклянным волокном, относятся полипропилен, полистирол, сополимеры стирола с акрилонитрилом, полиамиды, полиэтилен, сополимеры акрилонитрила, бутадиена и стирола, модифицированный полифениленоксид, поликарбонаты, полиацетали, полисульфоны, полиуретаны, поливинилхлорид, полиэфиры. В дополнение к этому надо сказать, что в термопластичные материалы вводят длинные волокна, короткие волоконца, различные сочетания длинных и коротких волокон, а также крошку стеклянных волокон. Широкое применение термопластичных стеклонанолпенных композиций связано главным образом с улучшением свойств материала при введении в него стекла. Ниже показано относительное увеличение показателей физико-механиче- [c.272]

    Продукты с максимальной степенью присоединения (гекса-адукты) содержат по шесть активных связей Сбо--Ь1 и представляют собой уникальные объекты для создания новых сложных регулируемых супрамолекулярных структур. Так, реакцией сочетания двух активных шестилучевых звездообразных макромолекул ди-метилдихлорсиланам получены двенадцатилучевые двуядерные регулярные полистиролы [57]  [c.206]

    В работах [52, 53, 60] опубликованы данные исследования образцов звездообразных фуллеренсодержащих полимеров, различающихся по структуре ядра моноядерного 6-лучевого и дву-ядерого 12-лучевого (продукта попарного сочетания 6-лучевого полимера) полистиролов, а также моноядерного гибридного 12-лучевого полимера с равным числом лучей из полистирола и по ли-7ире 7-бути л метакрилата [60] классическими гидродинамическими методами (скоростная седиментация, поступательная диффузия, вискозиметрия) в разбавленных растворах. Диффузия гибридного полимера изучена с привлечением метода невидимок [60]. Определены ММ, асимметрия, гидродинамический радиус макромолекул и число ветвлений, изучен композиционный состав полимерного продукта и идентифицированы примеси [59, 74]. Полученные данные сопоставлены с трансляционной и вращательной подвижностью линейных полимеров, аналогов отдельного луча и звездообразных макромолекул. Проведено сравнение гидродинамических характеристик Сбо-содержащих полимеров со свойства- [c.210]

    Явления самоорганизации в растворах фуллеренсодержащих полимеров регулярной структуры были исследованы методом ма-лоуглового нейтронного [86-89] рассеяния в дейтеротолуоле в диапазоне импульсов q = (4л/А.)51п(0/2) = 0.001-01 нм (0-угол рассеяния) длина волны нейтронов X = 0.476 нм. Авторы использовали комбинацию высокоразрешающего метода и метода среднего разрешения (q = 0.1-10 нм" Х = 0.345 нм, А к1Х = 0.1), что позволило обнаружить особенности звездообразных полимеров и их сверхструктур в масштабах от мономерного звена до мезоскопического размера 1 хт. Сравнивались свойства образцов моноядерного 6-лучевого полистирола 12-лучевого двуядерного полистирола (продукта попарного сочетания 6-лучевых звезд) и моноядерного 12-лучевого гибридного полимера с равным числом лучей из полистирола и поли-трет-бутилметакрилата [86, 89]. Установлено, что во всех системах нейтронное рассеяние подчиняется бимодальному закону  [c.215]

    Полистирол, содержащий концевые аминогруппы, был получен при использовании в качестве инициатора раствора амида натрия в жидком аммиаке [205]. В цепи полистирола содержится одна концевая аминогруппа. Для получения привитого блок-сополимера сополимер метилметакрилата, акрилонитрила или стирола с небольшим количеством Р-изоцианатэтилметакрилата может быть введен в реакцию сочетания с полистиролом, содержащим концевую аминогруппу. Полистирол, содержащий на конце макромолекулы аминогруппу, также может вступать в реакцию сочетания с диизоцианатом. [c.306]

    Гомополнмер стирола по своему промышленному значению занимает третье место среди термопластичных материалов, вырабатываемых в Великобритании. Его производство, как и производство полиэтилена и поливинилхлорида, было в значительной степени стимулировано второй мировой войной. Существенное увеличение мощностей по получению стирола-мономера и полистирола в послевоенное время и большие достижения в технологии пластмасс сделали возможным многотоннажное производство полистирола в качестве дешевого термопластичного материала общего назначения. Поскольку этот полимер обладает благоприятным сочетанием таких свойств, как прозрачность, жесткость, легкая перерабатываемость и низкая стоимость, его потребление за послевоенные годы заметно возросло. [c.260]

    Кроме того, выпускается большое количество разнообразных сополимеров — это весьма распространенный подход — модифицировать химическое строение полимера ради получения желаемого набора свойств. Другой подход заключается в использовании смесей полимеров, сочетание которых обладает нужными свойствами. Ударопрочный полистирол (УППС) представляет собой частично сополимер, а частично смесь полибутадиена и ПС. [c.241]

    В подавляющем большинстве случаев для получения наполненных полимерных материалов применяют твердые наполнители тонкодисперсные с частицами зернистой (сажа, двуокись кремния, древесная мука, мел, каолин и др.) или пластинчатой (тальк, слюда, графит и др.) формы, а также разнообразные волокнистые материалы. Последние применяют в виде элементарных волокон, нитей, прядей, жгутов, тканей, холстов, матов, бумаги, шпона, прутков, сеток. В особую группу среди твердых наполнителей выделяют т. наз. э л а-стификаторы, к-рыми служат полимеры с низким модулем упругости (гл. обр. эластомеры), используемые в сочетании с такими жесткими полимерами, как полистирол и большинство реактоплаетов. Подробно о твердых наполнителях см. Наполнители пластмасс. Наполнители резин. Наполнители лакокрасочных материалов. [c.161]

    Для упаковки охлажденного мяса, к-рое необходимо предохранять от изменения цвета (обусловленного разрушением миоглобина при отсутствии доступа кислорода) и др. органолептич. свойств, а также от действия бактерий наиболее пригоден целлофан с наружным лаковым покрытием. Для этой цели используют также нелакированный целлофан, пленки из поливинилхлорида, сополимера винилиденхлорида с винилхлоридом (саран), полиэтилена, полистирола, гидрохлорида каучука. Срок хранения мяса в полимерной упаковке 2—3 сут при О °С и 1,5 сут при 6 °С. См. также Гидратцеллюлозные пленки, Поливинилхлоридные пленки, Поливинилиденхлоридные пленки, Полиолефиновые пленки, Полистирольные пленки, Гидрохлоридкаучуковые пленки. Соленое мясо, предназначенное для длительного хранения, расфасовывают и упаковывают (напр., в США) на высокопроизводительных автоматах в вакууме или в атмосфере инертного газа. В качестве упаковочных материалов, к-рые должны защищать продукт от проникновения кислорода и влаги, а также от действия света применяют многослойные пленки целлофан — полиэтилен, полиэтилентерефталат — полиэтилен, полиамид — полиэтилен (см. также Полиэтилентерефталатные пленки. Полиамидные пленки), саран — поливинилхлорид — саран и целлофан — фольга — полиэтилен. Используют также пленки из поликарбоната, полиуретана или поливинилового спирта в сочетании со сваривающейся (обычно полиэтиленовой). пленкой. [c.468]

    Стеклянное волокно широко применяется в авиационной и электротехнической промышленности в виде армированных стеклопластиков. В работе Мак-Линтока [1148] последние рассматриваются как промежуточные материалы между деревом и сталью, способные заменить сталь во многих случаях. Они представляют собой сочетание смол (полиэфирных, фенольных, силиконовых, меламиновых, эпокси- и полистирола) с армирующими материалами. В качестве последних применяют, кроме стекловолокна, и другие волокна (хлопок, асбест и т. д.). Однако наибольшее распространение имеют армированные пластики на основе стекловолокна в силу своей высокой удельной прочности, диэлектрических свойств, низкой теплопроводности, коррозиоустойчивости и легкости формования [1149, 1150]. Армированные стеклопластики выдерживают температуру до [c.328]

    Исследованы два метода синтеза смол путем одновременной загрузки мочевины, формалина и бутанола с последующим обезвоживанием смолы по окончании реакции и путем предварительной конденсации мочевины и формальдегида в нейтральной или щелочной среде с последующей этерификацией полученных метилолмочевин бутанолом в кислой среде. Исследовано также влияние основных факторов производственного процесса на свойства смол и покрытий на их основе. Установлено, что вязкость смолы зависит не только от степени конденсации,, но и в значительной мере от содержания метилольных групп евз В патентах приводятся различные лаковые композиции совмещенных с алкидными смолами мочевиноформальдегидных смол композиция для покрытий, образующая при отверждении твердые, глянцевые эластичные пленки (20—70% алкидной смолы, 10—70% мочевиноформальдегидной смолы и -10— 70% латекса синтетического полимера, например, полистирол, поливинилхлорид и др.) лакокрасочные покрытия с повышенной стойкостью к действию дезинфицирующих сред из глифталевых мочевиноформальдегидных смол и полимеров дивинилацетилена бензостойкие покрытия горячей сушки из мочевиноформальдегидных смол в сочетании с алкидными смолами алкидномочевинные лаки кислотного отверждения с применением алкилового эфира фосфорной кислоты (этиловый эфир) и алкидно-карбамидный лак холодной сушки для отделки футляров радиоприемников .  [c.372]

    Успешно внедряются в практику способы очистки промышленных и бытовых сточных вод с помощью фло-кулянтов. предложены высокоэффективные флокулянты, такие, как сильноосновные водорастворимые полиэлектролиты ВПС (высокомолекулярная пиридиниевая соль на основе винилпиридинов), ВА-2 (четвертичная аммониевая соль на основе полистирола), ПЭИ (поли-этиленимин), катионный полиакриламид, которые заменили минеральные коагулянты — соли алюминия и железа и известь. Методы, основанные на применении минеральных коагулянтов, имеют ряд существенных недостатков большой расход реагентов, продолжительность процесса коагуляции, образование, как правило, больших объемов осадков, обезвреживание и утилизация которых представляет известные трудности. Методы, использующие высокомолекулярные синтетические флокулянты, в значительной степени лишены указанных недостатков. Их применение в сочетании с напорной флотацией позволит значительно повысить эффективность физико-химических способов обезвреживания промышленных и хозяйственных сточных вод. [c.58]


Смотреть страницы где упоминается термин Полистирол е сочетании с ТСХ: [c.247]    [c.131]    [c.254]    [c.302]    [c.136]    [c.70]    [c.93]    [c.78]    [c.168]    [c.265]    [c.165]    [c.78]    [c.194]    [c.246]    [c.246]   
Хроматография полимеров (1978) -- [ c.247 ]




ПОИСК







© 2025 chem21.info Реклама на сайте