Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Степень фосфора

    Соединения фосфора (V). Фосфор проявляет степень окисления +5 в соединениях с галогенами, кислородом, серой и азотом  [c.371]

    Фосфор Р (Is 2s 2/f 3s Зр ) по числу валентных электронов является аналогом азота. Однако как элемент 3-го периода он существенно отличается от азота — элемента 2-го периода. Это отличие состоит в том, что у фосфора больше размер атома, меньше энергия ионизации, большее сродство к электрону и большая поляризуемость атома, чем у азота. Максимальное координационное число фосфора шесть. Как и для других элементов 3-го периода, рл — рл-связывание для атома фосфора не характерно и поэтому в отличие от азота sp- и sp -гибридные состоянья орбиталей фосфора неустойчивы. Фосфор в соединениях проявляет степени окисления от —3 до +5. Наиболее характерна степень окисления +5. [c.365]


    Соединения со степенью окисления фосфора —3. При нагревании фосфор окисляет почти все металлы, образуя фосфиды. В зависимости от природы металла доля того или иного типа связи в фосфидах меняется в широких пределах. Так, фосфиды s-элементов И группы состава Э3Р2 можно рассматривать как ионно-ковалентные соединения. Они солеподобны, легко разлагаются водой  [c.367]

    К подгруппе ванадия относятся элементы побочной подгруппы пятой группы ванадий, ниобий и тантал. Имея в наружном электронном слое атома два или один электрон, эти элементы отличаются от элементов главной подгруппы (азота, фосфора и др.) преобладанием металлических свойств и отсутствием водородных соединений. Но производные элементов обеих подгрупп в высшей степени окисленности имеют значительное сходство. [c.651]

    Аналогичное поведение обнаруживается и у элементов группы VA, но граница между металлами и неметаллами в этой группе проходит ниже. Азот и фосфор являются неметаллами, химия их ковалентных соединений и возможные состояния окисления определяются наличием пяти валентных электронов в конфигурации Азот и фосфор чаще всего имеют степени окисления — 3, -Ь 3 и +5. Мыщьяк As и сурьма Sb-семи-металлы, образующие амфотерные оксиды, и только висмут обладает металлическими свойствами. Для As и Sb наиболее важным является состояние окисления + 3. Для Bi оно единственно возможное, если не считать степеней окисления, проявляемых в некоторых чрезвычайно специфических условиях. Висмут не может терять все пять валентных электронов требуемая для этого энергия слишком велика. Однако он теряет три бр-электро-на, образуя ион Bi .  [c.455]

    Рассчитать расход реагентов на 1 т фосфора при восстановлении его из фосфоритного концентрата, если процесс может быть описан следующим суммарным уравнением Саз(Р04)2-f 5С + 3810г = ЗСаО-810г 4-2Р Ч-5С0. Содержание Р2О5 в концентрате 25%. Кокс содержит 94,5% углерода. Степень восстановления фосфора 0,85. [c.28]

    Вторая стадия — окисление метакролеина в метакриловую кислоту— встречает больше трудностей по сравнению с окислением акролеина. В обоих случаях не применимы радикально-цепные процессы из-за полимеризации ненасыщенных альдегидов. Пытались использовать катализ медью и серебром при жидкофазном процессе, окисление надкислотами и другие методы, но наибольшие усилия сосредоточены на разработке достаточно селективных гетерогенных катализаторов окисления в газовой фазе. Одним из них является оксидный фосфор-молибденовый катализатор с добавками оксидов Те и Sb, ионов NHt, щелочных и щелочноземельных металлов. При 250—350 °С, атмосферном давлении и степени конверсии метакролеина 80—90% достигается селективность по мет-акриловой кислоте 70—80%. [c.422]


    При повышении давления равновесия смещаются в сторону образования веществ, обладающих меньшим объемом, т. е. в состояние с большей плотностью, что большей частью сопровождается увеличением их твердости. Повышение давления вызывает эффекты, в некоторых отношениях обратные тем, которые наблюдаются при повышении температуры. Так, при повышении температуры увеличивается объем, а при повышении давления он уменьшается при повышении температуры возрастает энтропия, а при повышении давления обычно она уменьшается. Часто наблюдается, что переход в форму устойчивую при более высоком давлении повышает металличность и степень симметрии кристалла. В области высоких давлений часто наблюдается переход веществ в такие кристаллические формы, которые не устойчивы или даже не существуют при обычных давлениях. Так, лед при высоком давлении, начиная примерно с 2000 атм, может существовать (в зависимости от сочетания температуры и давления) в нескольких различных кристаллических формах, не существующих при обычных давлениях. Все эти формы обладают большей плотностью, чем обычный лед. Например, плотность льда VI почти в полтора раза больше плотности обычного льда. Подобно этому желтый фосфор, обладающий в обычных условиях плотностью 1,82 г/сл1 , переходит- при высоких давлениях в черный фосфор с плотностью 2,70 г/сж серое олово (а = 8п, структура алмаза, плотность 5,75 з/с ), являющееся неметаллическим веществом, переходит в белое металлическое олово (Р=8п, тетрагональная структура, плотность 7,28 г/слг ) желтый мышьяк (плотность 2,0 г/см ) переходит в металлическую модификацию с плотностью 5,73 г/б .и . При высоких давлениях алмаз ( = 3,51 г/см ) становится более устойчивой формой, чем графит ( = 2,25 г/см ), хотя при обычных давлениях эти соотношения обратны. [c.241]

    Небольшая часть валовых запасов минерального фосфора почвы переходит в усвояемое для растений состояние в результате химических (изменение кислотности среды) и биологических (выделение кислот растениями и микроорганизмами) процессов. Микробиологи выделили из почв и фосфоритов 10 культур бактерий, способных разлагать трехкальциевый фосфат и в более слабой степени фосфорит. [c.251]

    Введение других магнитных ядер, помимо протонов, в молекулу органического соединения дает возможность получить обширную дополнительную информацию как из протонных спектров — путем анализа спин-спиновой связи протонов с этими ядрами, так и осуществляя резонанс непосредственно на этих ядрах. Однако до сих пор этот последний путь для всех ядер (кроме фтора и в некоторой степени фосфора) представляется технически трудной задачей и по существу не является общим методом исследования таких соединений. Главный же путь изучения органических соединений с разнообразными магнитными ядрами — анализ спин-спинового расщепления в спектрах протонов и фтора. [c.261]

    В земной коре в соответствии с его устойчивой степенью окисления фосфор содержится в основном в виде фосфатов (V). Наиболее [c.365]

    При применении биохимического метода большое значение имеет состав воды, природа соединений и их концентрация, наличие в воде биогенных элементов (азота, фосфора, калия, железа) и растворенного кислорода, а также pH и температура. Концентрация органических соединений, находящихся в сточных водах, подаваемых на биохимические очистные сооружения, не превышает 1—2 г/л. Многие из соединений, присутствующих в стоках, могут в той или иной степени нарушать нормальную жизнедеятельность микроорганизмов, поэтому концентрация их не должна превышать допустимых величин (МКб, МКв. о. с). [c.496]

    Противозадирные присадки способствуют образованию пленок, повышающих критическую нагрузку, снижающих интенсивный износ и в значительной степени предотвращающих заедание при сверхвысоких нагрузках. Действие противозадирных присадок заключается в химическом взаимодействии продуктов их разложения с металлом при высоких температурах трения. В результате образуются соединения с металлом, имеющие меньшее сопротивление срезу и более низкую температуру плавлеиия, чем чистые металлы, вследствие чего предотвращается заедание и схватывание соприкасающихся поверхностей. В большинстве отечественных и зарубежных противозадирных присадок в основном содержатся сера, фосфор и галогены, наиболее часто хлор. Известны также присадки, содержащие свинец, сурьму и молибден (обычно в сочетании с серой или фосфором). Присадки, содержащие только один активный элемент, применяются очень редко вследствие их малой эффективности. Наиболее сильные противозадирные присадки, используемые в трансмиссионных маслах, содержат серу и фосфор, хлор и фосфор, серу и хлор или все три элемента одновременно. В Приложении 5 приведена характеристика отечественных противоизносных и противозадирных присадок. [c.102]


    Белый фосфор — огнеопасное и чрезвычайно ядовитое вещество. Он легко загорается (возможно самовоспламенение), температура воспламенения 40 °С. Его легко зажечь, дотронувшись до него пробиркой с горячей водой. Горение сопровождается разбрызгиванием, попадание брызг горящего фосфора на кожу приводит к исключительно тяжелым ожогам. Отравление белым фосфором может происходить и через кожу, так как фосфор растворим в жировой ткани. Прн постоянном воздействии малых количеств фосфора происходит хроническое отравление организма, сопровождающееся разрушением костей. Сильно ядовиты также соединения фосфора низких степеней окисления. [c.413]

    Когда элемент образует несколько рядов соединений, соответствующих различным степеням окисления, после названия соединения в скобках дается указание либо на валентность катиона (римской цифрой), либо на число атомов галогена, кислорода, серы или кислотного остатка в молекуле соединения (прописью). Например, железо хлористое (П1), фосфор хлористый трех), марганца окись (дву). При этом обозначение валентности дается обычно для менее характерных валентных состояний. Например, для меди в случае двухвалентного состояния указание на валентность опускается, одновалентная же медь обозначается так медь иодистая (I). [c.9]

    Константа равновесия этой реакции равна 1,75-10 , что соответствует степени диссоциации 0,004. Жидкий аммиак растворяет щелочные и щелочно-земельные металлы, фосфор, серу, иод и многие неорганические и органические соединения. При температурах выше 1300°С аммиак диссоциирует на азот и водород  [c.187]

    В этом разделе автор преследовал две цели. Во-первых, рассмотреть группу соединений, содержащих фосфор, которые используются в качестве инсектицидов и в той или иной степени токсичны для человека. Во-вторых, рассмотреть некоторую группу близких к этим веществам соединений, которые, хотя и не имеют промышленного значения, обладают высокой токсичностью и могут быть использованы в качестве боевых отравляющих веществ. Последнюю группу обычно называют отравляющими веществами нервно-паралитического действия. [c.395]

    Для углеродистых сталей характерно скачкообразное изменение ударной вязкости с понижением температуры. Можно выделить три зоны (рис. 6) зону / хрупких изломов при t < i-2, зону II рассеяния, где наб подаются и хрупкие и вязкие изломы (в зависимости от марки стали), и зону III вязких изломов ири t > Зоне рассеяния соответствует критический интервал температур < t < который характерен только для углеродистых сталей и лежит в пределах примерно от —10 до —30° С. Критической температурой хладноломкости для углеродистых сталей считают температуру ниже которой наблюдается хрупкий излом, а выше KOTopoi i — только вязкий излом. Следует отметить, что с уменьшением содержания углерода критическая температура несколько сннжаегся. В сильной степени на хладноломкость влияют примеси фосфора. [c.14]

    Bei эти ионы имеют тетраэдричеекое или искаженно тетраэдрическое строение. Учитывая различие в электроотрицательностях атомов, можно считать, что степень окисления фосфора в указанном ряду изменяется от —3 до +5. [c.369]

    Так как коллоидные частицы имеют слабый отрицательный заряд, хлопья коагулянтов — слабый положительный заряд, то между ними возникает взаимное притяжение, способствующее формированию крупных частиц. В процессе коагуляционной очистки сточных вод происходит соосаждение с минеральными примесями за счет адсорбции последних на поверхности оседающих частиц. Из воды удаляются соединения железа (на 78—89 %), фосфора (на 80—90 %), мышьяка, цинка, меди, фтора и других. Снижение по ХПК составляет 90—93 %, а по БПКб —80—85 % Степень очистки зависит от условий воздействия на коагуляцию дисперсной системы радиации, магнитного и электрического полей, введения частиц, взаихмодействующих с системой и стабилизирующих ее. Воздействие излучения, как и окисление органических соединений озоном способствует разрушению поверхностно-активных веществ (ПАВ), являющихся стабилизаторами твердых и жидких частиц, загрязняющих сточные воды. Под воздействием электрического поля происходит образование агрегатов размером до 500—1000 мкм в системах Ж — Т, Ж] — Ж2 и Г — Т. [c.479]

    Практика эксплуатации электрофильтров в производстве фосфора показала пх недостатки они не обеспечивают необходимую степень очистки печного газа, имеют несоверщенный меха ю1зм встряхивания и обстукивания, быстро забиваются грязью и пылью. Поскольку степень очистки от пыли недостаточна, большое количество пыли попадает в аппараты для конденсации фосфора, что приводит к загрязнению фосфора и образованию фосфорного щла-ма. Шлам затрудняет дальнейщие тех1Нологические операции (требуется отстой фосфора, происходит забивка аппаратуры, затрудняется перекачка фосфора насосами и т. д.). [c.77]

    Соединения, содержащие фосфор, обладают большим вредным действием, чем соединения кремния, последние более вредны, чем соединения мышьяка, которые в свою очередь снижают антидетонационный эффект больше, чем соединения серы. Наконец степень снижения антидетонационного эффекта в присутствии соединений хлора меньше, чем в присутствии сернистых соединений органические перекиси на указанные выше антидетонаторы не влияют. В тех же случаях, когда в качестве антидетонатора попользуется анилин, желательно, чтобы в топливе пе было перекисей, наличие же соединений мышьяка, хлора, серы и т. д. на антидетонационные свойства не влияет. На антидетонатор двухселенистый этил никакие вещества не оказывают действия, снижающего антидетонационный эффект. [c.426]

    Алгебраическая сумма всех зарядов на атомах (или алгебраическая сумма произведений чисел атомов на их степень окисления), входящих в состав молекулы, равна нулю. Очевидно, чт неизвестная степень окисления одного из атомов в молекуле может быть определена с помощью подобного равенства. Так, исходя из формулы гидроксиламина NHjOH, в молекулу которого входят три атома водорода ( + 3) и один атом кислорода (—2), нетрудно сделат . вывод, что для сохранения электронейтральности молекулы атом азота должен иметь степень окисления —1. Рассуждая подобным же образом, мы найдем, что степень окисления фосфора в [c.141]

    Здесь наблюдается постепенный переход ог типично основных оксидов натрия и магния к амфотерным, или промежуточным (алюминия), и к кислотным оксидам фосфора, серы и хлора. Этот пе-ре.ход сопровождается понышепием окислительного числа эле.мен-тов, образующих оксиды. То же наблюдается у оксидов одного и того же элемента в разных степенях окисления. Так, например, в ряду [c.126]

    При использовании в двигателе бензинов, содержащих МЦТМ без ТЭС, нагарообразование в нем весьма незначительно, а преждевременное воспламенение почти отсутствует. Требования двигателя к детонационной стойкости топлив после эксплуатации на бензине с МЦТМ оказались значительно ниже, чем после такого же пробега на этилированном бензине [83]. В исследованиях подчеркивается, что отсутствие калильного зажигания при работе двигателя на бензине, содержащем МЦТМ и фосфор, будет приобретать все большее значение по мере увеличения степени сжатия современных двигателей и повышения октановых чисел автомобильных бензинов [86]. [c.154]

    Опишите эксперимент ЯКР, который должен дать информацию о степени 7с-связывания в связях фосфор - сера в Р8С1з и 6H5)зPS. Можете ли вы определить из эксперимента ЯКР, образует ли сера хр -гибрид и использует ли р-орбитали в связывании, или р - и р,,-орбитали серы в равной степени участвуют в связывании (Заметим, для 8 I = 3/2.) [c.283]

    Одна[ко понятие степень окпсления очень полезно для классификации веществ и при состап.ленпи химических уравнений. Так, например, определив степень окисления фосфора в соедшгениях (НР "Оз) , НзР 04 и Н4Р2 07, мы видим, что эти соединения являются родственными и должны сильно отличаться по свойствам от соединения Н3Р+Ю3, в котором степень окисления фосфора другая. Особенно широко используется понятие степень- окисления при изучении окислительно-восстановительных реакций. [c.45]

    Из фосфорных кислот, которые содержат фосфор в высшей степени окисления +5, наибольшее практическое значение имеют ортофосфорная и полифосфорные кислоты. Общая формула фосфорной и полифосфорных кислот пРгОб-/ гН20. Этих кислот (и их солей — фосфатов) известно очень много. По структуре полмфос-форные кислоты подразделяются на цепочечные и кольцевые. [c.418]

    Пример 9. При получении фосфора возгонкой из фосфатов измерялась степень восстановления фосфата при четырех различных температурах. В таблице припедены результаты статистического анализа однородности дисперсий воснро-изв( дим0сти результатов при разных температурах. [c.50]

    При исследовании последовательной нейтрализации вытяжки аммиаком и поташем особый интерес представляло выяснение степени ретроградации усвояемых форм пятиокиси фосфора. Поэтому показателем процесса (у) служила сте-тень усвояемости образующихся фосфорных соединений (процентное отношение количества водорастворимых и лимоннорастворимых форм фосфора к общему количеству фосфора в продуктах реакции). В качестве независимых факторов были выбраны следующие Z —температура аммонизации (254-70° С) Zj — продолжительность аммонизации (15- 30 мин) 23 — норма аммиака (100- -150% от стехиометрической нормы) z , 25, г , г — содержание примесей в исходной вытяжке, соответственно 04-3,16% Mg(N03)2 0- 0,89% Ре(МОз)2 O-f-0,56% Л1(ЫОз)з 0- 0,88% HjSiFe Zj — температура при взаимодействии компонентов аммонизированной вытяжки с раствором карбоната калия (25-f-70° ) 29 — продолжительность взаимодействия с карбонатом калия (30- 60 мин) гю — норма карбоната калия (100-Ы20% от стехиометрической нормы). [c.232]

    Преимущество электротермической переработки фосфатов с возгонкой фосфора заключается в возможности производст1ва фосфорной кислоты любой концентрации (вплоть до 100% Р2О5) и в высокой степени чистоты при использовании любых фосфатов, в ТОМ числе и низкокачественных, без их предварительного обогащения. [c.225]

    Известно, что присадка меди в значител1>ной степени повышает коррозионную стойкость углеродистых сталей даже при не-больнюм ее содержании. Положительное влияние добавки меди иа устойчивость стали к атмосферной коррозии проявляется более заметно, если в состав стали, кроме меди, ввести Сг, Л1 или Р. Хром и алюминий, как известно, повышают склонгюсть стали к анодному пассивированию. Положительное влияние фосфора, по-виднмому, может быть объяснено переходом этого элемента из металла в поверхностный слой влаги и образованием защит- [c.182]

    Ул> чшение работы двигателей при использовании этилированных бензинов на двигателях с высокой степенью сжатия достигается путем добавления присадок, содержащих фосфор или бор (рис. 5. 9—5. И и табл. 5. И). [c.286]

    С азотом железо непосредственно не соединяется, однако с фосфором соединяется с выделегтем теплоты и образованием фосфидов. Водород в некоторой степени растворяется как в твердом, так и в расплавленном >келезе, однако без образования соединений. Углерод прн высоких температурах взаимодействует с железом с образованием карбидов. Подобно этому кремний соединяется при высоких температурах с железом, образуя разнообразные по составу силиды. Так же соединяется с железом бор. [c.301]

    Взрыв железнодорожной цистерны, содержавшей жидкий фосфор, произошел 4 февраля 1978 г. в Браунсоне (шт. Небраска, США). Эта авария описана в работе [Hymes,1985]. Причиной взрыва послужил сход с рельсов товарного поезда, в составе которого был 31 вагон с различными грузами. Цистерна, содержавшая фосфор, перевернулась и лежала под углом 15° к горизонту. Сверху на цистерну упали еще три вагона. Началась утечка жидкого фосфора. Пожарные соорудили вокруг цистерны обвалование, чтобы фосфор не растекался. Фосфор воспламенился, над местом пожара поднимались клубы белого дыма - это был пентаоксид фосфора, вещество средней токсичности. Через 7 ч цистерна взорвалась. Силой взрыва горящий фосфор был разбросан по территории площадью 0,15 км , в результате чего несколько человек получили ожоги различной степени тяжести (вплоть до третьей). Другие в результате взрыва получили механические травмы. В цитируемой работе высказано несколько предположений о природе взрыва, но указывается, что наиболее правдоподобной выглядит гипотеза, согласно которой взрыв произошел от нагревания воды, находившейся внутри цистерны (фосфор перевозили под слоем воды), до 250 °С. Такой температуре соответствует давление внутри резервуара 3,8 МПа, - вполне достаточное, чтобы разорвать оболочку цистерны. [c.449]

    Фосфорные удобрения в зависимости от их состава в различной степени растворимы в почвенных растворах и, следовательно, неодинаково усваиваются растениями. По степени растворимости фосфорные удобрения разделяют на водорастворимые, усвояемые растениями, и нерастворимые фосфаты. К водорастворимым относятся простой и двойной суперфосфаты. К усвояемым, т. е. растворимым в почвенных кислотах, относятся преципитат, термофосфат, плавленые фосфаты и томас-шлак. Нерастворимые удобрения содержат трудноусваиваемые соли фосфора, растворимые только в [c.144]

    Электротермический метод получения фосфорной кислоты основан на восстановлении фосфора из фосфата кальция ири высоких температурах (1400—1600°С) в электрических печах. Пары фосфора, выходящие из печи, окисляют (сжигают) с образованием иентаоксида фосфора, гидратацией которого получают фосфорную кислоту (так называемую термическую фосфорную кислоту). Фосфорную кислоту вырабатывают также сжиганием желтого фосфора, иолученного возгонкой в электропечах и конденсацией паров. Оср[овное преимущество электротермического способа -перед экстракционным заключается в возможности получения фосфорной кислоты любой концентрации (вплоть до 100%-ной фосфорной кислоты и полифосфорной кнслоты, содержащей до 89% Р2О5) и высокой степени чистоты сырьем для электротермической возгонки фосфора могут служить любые фосфаты, в том числе низкокачественные, без необходимости их обогащения. Однако велики расходные коэффициенты по электроэнергии. [c.151]

    С образованием галогенокнслородных соединений фосфора. Применение силикагеля ограничивается его высокой сорбционной способностью по отношению ко многим газам. Ангидрон частично поглощает непредельные углеводороды, вследствие чего не может быть использован в качестве осушителя в их присутствии. Кроме того, выбор сорбента в каждом отдельном случае зависит от требуемой степенн осушки или очистки газовой смеси. [c.591]

    Образование фосфорномолибденованадиевой гетерополикислоты является сложным процессом, причем возможно образование двух модификаций а- и Р-форм, природа которых окончательно не выяснена. Решающим фактором, влияющим на образование этих форм, является степень полимеризации исходного молибдата. В образующейся гетерополикислоте мольные соотношения фосфора, ванадия и молибдена Р V Мо=1 1 11. [c.66]

    Р2О3) реакция протекает в малой степени. Поэтому апатитовый концентрат применяют только как первичный фосфат для производства кислоты, а для получения двойного суперфосфата в качестве вторичного фосфата используют легко разложимый фосфорит. При этом наличие в реакционной массе значительного количества воды обусловливает необходимость выпаривания ее. Процесс состоит из следующих стадий фосфорит смешивают с неупаренной фосфорной кислотой, упаривают часть пульпы в распылительной сушилке, смешивают оставшукгся пульпу с твердой высушенной массой и ретуром готового продукта при одновременной грануляции массы гранулированную массу сушат, рассевают и дробят, затем продукт нейтрализуют. [c.365]


Смотреть страницы где упоминается термин Степень фосфора: [c.63]    [c.30]    [c.158]    [c.265]    [c.172]    [c.412]    [c.278]    [c.111]    [c.208]    [c.288]   
Современная общая химия Том 3 (1975) -- [ c.2 ]

Современная общая химия (1975) -- [ c.2 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние концентрации и температуры фосфорной кислоты на степень разложения фосфорита

Влияние нормы фосфорной кислоты на степень разложения фосфорита в пульпе и в высушенном продукте

Влияние примеси магния в фосфорной кислоте на степень разложения кингисеппского фосфорита (М. Е. Позин, Д. Ф. Жильцова, Свердлова)

Влияние примеси соединений фтора в фосфорной кислоте на степень разложения кингисеппского фосфорита (М. Е. Позин, Д. Ф. Жильцова, Свердлова)

Влияние температуры процесса на степень разложения фосфорита

Влияние условий сушки двойного суперфосфата на степень разложения фосфорита

Напишите не менее шести различных реакций, в которых фосфор меняет свою степень окисления

Степени окисления соединений фосфора

Степень конденсации фосфора из газов

Фосфор степени окисления

Фосфор степень конденсации

Фосфор степень пересыщения паро



© 2025 chem21.info Реклама на сайте