Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт получение и свойства

    Сплав железо - кобальт обладает высокодисперсной структурой, повышенной износостойкостью, лучшими антикоррозионными свойствами по сравнению с чистым железом [4б8 - 484]. Работоспособность покрытий сплавом железо - кобальт, полученных при pH 0,8, t = 50°С,Д = [c.167]

    Кобальт. Получение кобальта восстановлением окиси кобальта водородом. Получение и исследование свойств гидрата закиси кобальта. Получение и свойства безводного хлористого кобальта. Сернистый кобальт. [c.76]


    Выплавка стекла. Стекло может быть прозрачным или полупрозрачным, бесцветным или окрашенным. Оно является продуктом высокотемпературного переплава смеси кремния (кварц или песок), соды и известняка. Для получения специфических или необычных оптических и других физических свойств в качестве присадки к расплаву или заменителя части соды и известняка в шихте применяют другие материалы (алюминий, поташ, борнокислый натрий, силикат свинца или карбонат бария). Цветные расплавы образуются в результате добавок окислов железа или хрома (желтые или зеленые цвета), сульфида кадмия (оранжевые), окислов кобальта (голубые), марганца (пурпурные) и никеля (фиолетовые). Температуры, до которых должны быть нагреты эти ингредиенты, превышают 1500 °С. Стекло не имеет определенной точки плавления и размягчается до жидкого состояния при температуре 1350—1600 °С. Энергопотребление даже в хорошо сконструированных печах составляет около 4187 кДж/кг производимого стекла. Необходимая температура пламени (1800— 1950 °С) достигается за счет сжигания газа в смеси с воздухом, подогреваемым до 1000 °С в регенеративном теплообменнике, который сооружается из огнеупорного кирпича и нагревается отходящими продуктами сгорания. Газ вдувается в поток горячего воздуха через боковые стенки верхней головки регенератора, которая является основной камерой сгорания, а продукты сгорания, отдав тепло стекломассе, покидают печь и уходят в расположенный напротив регенератор. Когда температура подогрева воздуха, подаваемого на горение, снизится значительно, потоки воздуха и продуктов сгорания реверсируются и газ начнет подаваться в поток воздуха, подогреваемого в расположенном напротив регенераторе. [c.276]

    Получение окиси кобальта разложением азотнокислого кобальта. Получение и свойства окиси и гидрата окиси кобальта. Получение комплексных соединений кобальта. [c.76]

    Опыт 1. Получение дигидроксидов кобальта и никеля и исследование их свойств [c.194]

    С целью исключения влияния молекулярного веса различных соединений кобальта мы вычисляли их токсичность по кобальту. Полученные данные приведены в табл. 14. Как видно из этой таблицы, координация многих лигандов не оказывает влияния па токсичность соединений кобальта. Исключение составляет соединение хлористого кобальта с витамином В (токсичность по кобальту 58 мг/кг), что связано, видимо, с витаминным свойством лиганда. [c.177]

    Для удовлетворения указанных требований к объемным свойствам маслорастворимых ингибиторов выбирают те вещества, которые способны к поляризации системы. Это — микрокальцит (доломит), порошки металлов или их оксидов, дисульфид молибдена, графит, нитрит натрия (сегнетоэлектрик). Особенно сильно поляризуют ПИНС (и другие смазочные материалы) ферромагнитные материалы — мелкодисперсные частицы железа, никеля или кобальта. Получение тонких, модифицированных дисперсий наполнителей обеспечивается разными технологическими приемами. Используют струйные мельницы (в том числе во встречных потоках), коллоидные мельницы разных модификаций, эффективные магнитные реакторы-диспергаторы с вихревым слоем ферромагнитных частиц (АВС-100, АВС-150) ультразвуковые и магнитострикционные диспергаторы, дезинтеграторы, получившие значительное распространение в последнее время [117—122]. Тонкие дисперсии порошков металлов получают также электроискровым и электрохимическими методами 118], дисперсии карбонатов металлов — методом карбонатации 17, 18]. Для модификации поверхности наполнителей используют самые разнообразные гомогенизаторы — отечественные ультразвуковые типа АГС-6, ГАРТ-Пр, зарубежные типа Фирма и Корума и пр. [c.160]


    Покрытия сплавами на основе кобальта. Получение этих покрытий сходно с получением сплавов никеля (табл. 23), Обычно интересуются их магнитными свойствами. [c.152]

    Пленки кобальта, полученные разложением октакарбонила кобальта, обладают высокими электрическими и магнитными свойствами [451]. [c.288]

    Получение и свойства оксида кобальта (HI). I. Несколько кристаллов нитрата кобальта (II) поместите в небольшой фарфоровый тигель и нагрейте на пламени газовой горелки в вытяжном шкафу до прекращения выделения бурого газа. [c.283]

    Какие свойства оксида кобальта (111) проявляются в этой реакции Какой цвет имеет полученный раствор  [c.216]

    Добавка кобальта к простой углеродистой стали увеличивает ее сопротивление износу. Кроме того, она улучшает и ее режущие свойства. Одним из лучших литых твердых сплавов является стеллит . Выпускается не менее 40 видов этого сплава. Важную область применения кобальта составляет производство сверхтвердых сплавов, полученных спеканием карбида вольфрама и металлического [c.399]

    В опытах А. М. Гурвича и Т. Б. Гапон [174] этим методом весьма просто осуществлена очистка сульфатов цинка и кадмия от следов меди, железа, никеля и кобальта — металлов, которые даже в небольших концентрациях оказывают сильное влияние на оптические свойства люминофоров, полученных на основе сульфидов цинка и кадмия. Оказалось возможным удалить из растворов сульфатов цинка и кадмия одновременно железо, медь, никель и кобальт путем фильтрования растворов через колонку, содержащую в верхнем слое активный уголь марки ДАУХ ( древесный активированный уголь для хроматографии ) и диметилглиоксим в отношении 10 1, а в нижнем слое — один уголь. Нижний слой необходим для задержания в колонке частично растворимого в воде диметилглиоксима (0,04% при 18° С). [c.218]

    ПОЛУЧЕНИЕ И СВОЙСТВА ГИДРООКИСЕЙ КОБАЛЬТА(И) [c.135]

    Удельная иамагиичеииость насыщения кобальта прн О К, полученная методом экстраполяции, 08= 162,5-10 Тл-м /кг. Константы маг-нитострикции монокристалла кобальта с г. п. у. решеткой (а-модификация) зависят от направления и колеблются в пределах от —1-10 до +1,1-10". В поликристаллнческом кобальте магнитострикция насыщения, измеренная в направлении намагничивания, ц = 0,71-10-, а объемная магнитострикция насыщения Шк——0,2-10-. Как и другие ферромагнетики, кобальт обладает свойством поворачивать плоскость поляризации света, распространяющегося вдоль направления насыщения намагниченности. Характеристики этого магнитооптического эффекта (эффекта Фарадея) при 300 К и индукции насыщения при О К и Ма= = 1820-10 Тл  [c.475]

    Кобальт и кислород. При обыкновенной техмпературе металлический кобальт очень слабо окисляется даже сильно влажным воздухом, но лри нагревании до 300° он начинает покрываться тонкой пленкой окислов. При нагревании до 900° реакция окисления кобальта заметно ускоряется. Наряду с этим порошок металлического кобальта, полученный воостановлениел окиси кобальта водородом при температуре 250°, на воздухЕ самовоспламеняется и горит блестящим пламенем. Порошок металлического кобальта, полученный восстановлением окиси кобальта водородом при температуре 700°, пирофорными свойствами не обладает. [c.606]

    Соли нафтеновых кислот также пашли широкое применение. Медные и алюминиевые соли нафтеновых кислот можно применять как инсектисиды. Нафтенаты свинца, хрома, кобальта и марганца применяют в качестве составных частей для лаков, в качестве катализаторов при окислении углеводородов и в качестве присадок к смазочным маслам. Нафтенаты олова и ртути обладают антиокислительными свойствами, в частности, они уменьшают осадкообразование в трансформаторных маслах. Бариевые и кальциевые соли нафтеновых кислот употребляют при изготовлении цветных лаков и консистентных смазок. При производство мыла применяются натриевые соли смешанных нафтеновых кислот, причем эмульгирующая и пенообразующая способность натриевых мыл очень высока. Натриевые соли нафтеновых кислот мазеобразны, гигроскопичны. Их с успехом можно применять в качестве загустителя при производстве консистентных смазок. Для этой же цели применяются литиевые мыла полученные на их основе смазки имеют весьма высокие эксплуатационные свойства. Медные, цинковые и свинцовые соли нафтеновых кислот могут применяться в качество предохраняющих средств д.ля дерева например, для пропитки шпал). [c.57]

    Покрытия сплавами на основе кобальта. Получение этих покрытий сходно с получением сплавов никеля (табл. 23). Обычно интересуются их магнитными свойствами. Кроме указанных в табл. 23, известно получение сплава Со — 5п — Р в аммиачных или щелочных растворах, содержащих цитрат или тартрат и олово(1У)—Na2SnOз максимальное содержание олова в покрытии — 9 % (масс.). [c.122]

    Влияние дисперсности на температуру воспламенения . Некоторый интерес представляет температура, при которой выделение тепла вследствие окисления металла превосходит скорость его отвода, так что температура самопроизвольна растет до тех пор, пока не закончится процесс сгорания. Эта температура воспламенения будет зависеть, естественно, от соотношения между повер сностью и объемом, Тамман и Беме показали, что для проволоки из железа, марганца и церия температура воспламенения может быть снижена на несколько сот градусов уменьшением диаметра проволоки. Пирофорические свойства, присущие иногда железу, никелю и кобальту, полученные при слабом нагреве их оксалатов или при низкотемпературном, восстановлении окислов являются следствием дисперсности, которая снижает температуру воспламенения ниже комнатной. Так, железо, полученное восстановлением при 370°, имеет температуру воспламенения —11 и —15° соответственно в воздухе и кислороде для никеля, восстановленного при 350°, —соответствующие температуры —6 и —9°. Слой окисла на металлах порошкообразном состоянии вследствие их большой поверхности представляет весьма значительную их долю. Цинковый поро шок, например, может содержать весьма значительное количество окиси (которая, однако, не всегда обязательно представляет собой только поверхностную пленку). [c.143]


    Применение высоких температур позволяет проводить процесс осаждения с большой скоростью со 100%-ными выходами металла по току. Осадки, полученные при высоких температурах, содержат очень малое количество посторонних включений и по своим физико-механическим свойствам отличаются от осадков, получаемых в обычных условиях. Например, микротвердость осадков никеля и кобальта, полученных при 150° С, составляет 83 и 210 кПмм соответственно, т. е. примерно в два раза ниже, чем у осадков, полученных при 25° С. Осадки, полученные при высоких температурах, отличаются большой эластичностью. Испытания методом растяжения образца показывают, что осадки никеля и кобальта, полученные при 25° С, растрескиваются при нагрузке примерно 18 кПмм , в то время как вдвое большая нагрузка (выше которой разрывалась Л1едная основа) не приводила к растрескиванию осадков, полученных при 150°. [c.107]

    Когда говорят о типах катализаторов, используемых для данной реакции гидрирования, обычно указывают только, что катализатор никелевый или из благородного металла можно сказать, что катализатор принадлежит к группе железа. Однако все эти термины дают весьма неоднозначное описание, в котором соседствуют дезинформация и правда. Например, катализатором группы железа может быть никель, железо или кобальт, причем в одной или нескольких различных формах. Как правило, это нанесенные катализаторы, т. е. полученные осаждением металла на носитель или пропиткой его раствором соли металла. В качестве носителей чаще используют инфузорную землю (кизельгур), порошкообразные оксид кремния и активированный уголь, оксиды магния и редкоземельных элементов, оксид алюминия или молекулярные сита. (Существует много типов окспда алюминия, и каждый из них оказывает свое положительное или отрицательное влияние на получающийся катализатор.) В задачу данной главы не входит описание приготовления катализаторов, которое слишком сложно. Отметим только, что, называя катализатор никелевым, мы не даем ему адекватной характеристики. Даже если назван носитель, то еще нельзя определить, как будет работать катализатор. Свойства катализатора сильно зависят от способа его приготовления, типа носителя, наличия промоторов, введенных сознательно или случайно попавших при осаждении. Способы восстановления и стабилизации катализатора также могут оказать решающее воздействие на его эксплуатационные характеристики, в том числе на активность и селективность. [c.108]

    Магнитные свойства осадков, сплава никель — кобальт, полученных из фторборатных электролитов, исследовались И. И. Панченко [21 ]. Электролит для осаждения готовился растворением углекислых солей никеля и кобальта в борфтористоводородиой кислоте. Наилучшие результаты были получены в электролитах с общим содержанием ионов никеля и кобальта 2 н. и отношением концентрации ионов Со Со + Ni = 0,18 (pH электролита 3—4, плотность тока 1—3 а1дм , температура комнатная) при этом в осадке содержалось около 47% кобальта. Осадки имели коэрцитивную силу 132 эрстед, остаточную индукцию 4000—9000 гаусс и коэффициент прямоугольности 0,73—0,84. [c.69]

    Можно работать нри значительно более низких давлениях, если использовать в качестве катализатора алкилалюминий в смеси с тетрахлорэтаном [266, 267], окисью хрома на носителе [268— 270], никелем или кобальтом на древесном угле [271] или промо-тированным молибдатом алюминия [272]. При этом полимеры имеют более линейную структуру. Подобным образом может быть получен и полипропилен. Из этилено-нропиленовых и этилено-бутеновых смесей можно получить высокомолекулярные сополимеры с хорошей эластичностью. Полиэтилен представляет интерес прежде всего с точки зрения его отличных электроизоляционных свойств его химическая стойкость, легкость обработки, легкий вес и большая упругость дают возможность его применения для многих других целей. [c.581]

    Убедительным примером применимости теории регулирования механических свойств дисперсных структур могут быть водные гели и органогели гуминовых веществ — природных ионсобменников и структурообразователей почв. Так, структурно-механический анализ дисперсий гуминовых кислот и полученных на их основе гуматов кальция, магния и кобальта показал, что в этих системах при малом содержании твердой фазы (5—10%) образуются типичные коагуляционные структуры со всеми присущими им упруго-пластично-вязкими свойствами и способностью к тиксотропному упрочнению. Установлено, что наибольшая склонность к структурообразованию среди образцов гуминовых веществ (гуминовые кислоты, гуматы металлов) выражена у гуминовых кислот, о объясняется тем, что в гуминовых кислотах, в отличие от гуматов кальция, магния, кобальта и др., функциональные группы свободны , а поэтому их дисперсные частички легко взаимодействуют друг с другом не только за счет сил Ван дер Ваальса, но и по водородным связям. [c.253]

    На конечном этапе получения кобальта и никеля оксиды (смесь Со.О и СогО, в производстве Со и N10 в производстве N1) восстанавливают з глеродом в электропечах. Выпла.рленные кобальт и никель очищают электролизом (электролиты — водные растворы Со504 или N 504 с добавками). Мировое производство кобальта составляют в год несколько десятков тысяч тонн, никеля — сотни тысяч тонн. Никель отделяют часто от других металлов в виде карбонила N (00)4. Сопутствующая никелю медь карбонила не образует, а карбонилы Со2(СО)з и Ре(СО)б сильно отличаются по давлению пара от N (00)4. Полученный восстановлением оксидов высокодисперсный продукт, содержащий N1, Со, Ре, Си и различные примеси обрабатывают СО при давлении 7—20 МПа и температуре 200°С. Образовавшийся карбонил никеля очищают рек-Таблица 3.11. Некоторые свойства железа, кобальта, никеля [c.556]

    Сочетание процессов деасфальтизации и каталитической деметалли-зации полученного деасфальтизата позволяет цри минимальных затратах получить максимальный выход целевого продукта с требуемыми свойствами. Исследованием в качестве контактов деметаллизации систем. состоящих иэ железа, кобальта, никеля или молибдена, нанесенных на окись алшиния, показано преимущество контакта, представляющего собой специально подготовленную окись алшиния с нанесенный молибденом. Библ.9. табл.4. [c.130]

    СТЕКЛО (обыкновенное, неорганическое, силикатное) — прозрачный аморфный сплав смеси различных силикатов или силикатов с диоксидом кремния. Сырье для производства стекла должно содержать основные стеклообразующие оксиды 510а, В Оз, Р2О5 и дополнительно оксиды щелочных, щелочноземельных и других металлов. Необходимые для производства С. материалы — кварцевый песок, борная кислота, известняк, мел, сода, сульфат натрия, поташ, магнезит, каолин, оксиды свинца, сульфат или карбонат бария, полевые шпаты, битое стекло, доменные шлаки и др. Кроме того, при варке стекла вводят окислители — натриевую селитру, хлорид аммония осветлители — для удаления газов — хлорид натрия, триоксид мышьяка обесцвечивающие вещества — селен, соединения кобальта и марганца, дополняющие цвет присутствующих оксидов до белого для получения малопрозрачного матового, молочного, опалового стекла или эмалей — криолит, фторид кальция, фосфаты, соединения олова красители — соединения хрома, кадмия, селена, никеля, кобальта, золота и др. Общий состав обыкновенного С. можно выразить условно формулой N3,0-СаО X X65102. Свойства С. зависят от химического состава, условий варки и дальнейшей обработки. [c.237]

    Химические свойства. Железо является металлом со средней восстановительной активностью. При окислении его слабыми окислителями получаются производные двухвалентного железа сильные окислители переводят его в трехвалентное состояние. Эти два валентных состояния являются наиболее устойчивыми, хотя известны соединения железа с валентностью 1, 4 и 6. Являясь аналогом рутения и осмия (аналогия по подгруппе), железо имеет также много сходного с кобальтом и никелем (аналогия по периоду). При определенных условиях оно вступает в реакции почти со всеми неметаллами. При невысоких температурах (до 200° С) железо в атмосфере сухого воздуха покрывается тончайшей оксидной пленкой, предохраняющей металл от дальнейшего окисления. При высокой температуре оно сгорает в атмосфере кислорода с образованием Fe Oi. Во влажном воздухе и кислороде окисление идет с получением ржавчины 2Fe20a HgO. Галогены активно окисляют железо с образованием галидов FeHlgj или FeHlgg (иодид железа (III) не образуется). При нагревании железо соединяется с серой и селеном, образуя сульфиды и селениды. В реакциях с азотом и фосфором получаются нитриды и фосфиды в случае малых концентраций азота образуются твердые растворы внедрения. Нагревание с достаточным количеством [c.348]

    Адсорбционно-комплексообразовательные колонки с носителем ДАУХ и реагентом диметилглиоксимом или 1-нит-розо-2-нафтолом впервые были использованы для очистки сульфатов цинка и кадмия от следов меди, железа, никеля и кобальта — металлов, которые даже в микроколичествах оказывают сильное воздействие на оптические свойства люминофоров, полученных на основе сульфидов цинка и кадмия. При pH = 6,8—7,2 в присутствии HjOa в растворах солей цинка, кадмия, щелочных и щелочноземельных элементов концентрация указанных примесей после очистки снижается на несколько порядков и составляет 1 10 — 4 Ю г/мл при концентрации очищаемых солей, равной 8—10%, что свидетельствует о высокой эффективности метода. [c.249]

    Несколько иными свойствами обладают п-полифенилены, получен ные из дилитийбензола в присутствии бромистого кобальта  [c.419]

    Каучук СКДК получается методом ионной полимеризации бутадиена в растворе нефраса под действием кобальтосодержащей каталитической системы октаноат кобальта-диизобутилалюминийхлорид-вода. При этом используется специальная технология получения готового каталитического комплекса, обеспечивающего образование однотипных активных центров. Как показывает опыт освоения данного процесса скорость полимеризации, молекулярно-массовые характеристики и, соответственно, свойства полимеров в широких интервалах зависят от многих факторов, особенно от дозировки каталитического комплекса, соотношений компонентов, температуры и т.д. С другой стороны, поведение каталитической системы изучено явно недостаточно. Поэтому для промышленного освоения технологии СКДК целесообразно провести математическое моделирование данного процесса. [c.59]

    Порошок карбида вольфрама W , по твердости близкого к алмазу, служит для получения металлокерамических пластинок с кобальтом в качестве связующего. Такие пластинки (марка WK-6) употребляют для изготовления режущего инструмента (резцов, сверл, фрез), способных обрабатывать самые твердые материалы. Карбид хрома СгдСг в сплаве с никелем тоже обладает высокими режущими свойствами. Поверхность стали, содержащей хром, сильно упрочняется за счет образования на ней карбидов или нитридов. Оксид хрома (И1) служит для полирования и шлифования различных изделий, употребляется в производстве искусственных рубинов (гл. XI, 3). Хроматы и бихроматы используются в качестве окислителей. Смесь бихромата калия с серной кислотой (хромовая смесь) применяется для очистки химической посуды от загрязнений. [c.340]

    По мере изучения свойств металлического бериллия он приобретал все большее значение в технике. Необычайно широкое применение получили медно-бериллиевые сплавы — так называемые бериллиевые бронзы , на изготовление которых до недавнего времени расходовалось около 80% всего производимого бериллия. Это непревзойденные по многим качествам материалы, в частности, по способности противостоять усталости и износу при высокой температуре и при этом сохранять электропроводность. Пружины, изготовленные из них, более гибки, чем пружинная сталь их применяют при работе в условиях вибрации. Бериллиевые бронзы применяются также при изготовлении шасси самолетов, неискрящих инструментов, в обоймах спецподшип-ников, работающих в условиях усиленного трения. В некоторых случаях к медно-бериллиевым сплавам делают различные присадки, например кобальта—для получения мелкозернистой структуры, серебра — для снижения сопротивления контактирующей поверхности 46]. [c.187]

    Кобальт и никель часто сопутствуют друг другу в природе, поэтому при их получении сталкиваются с проб-лемой разделения соединений этих элементов. Для их разделения используются такие методы, как разделение, основанное на различии свойств соединений (например, различная растворимость в воде) электролиз растворов солей кобальта и никеля (при электролизе вначале выделяется один металл, потом — другой) экстракцию разделение с помощью ионообменных смол. [c.290]

    Синтезированы циклические карбонаты на основе оксидов а-олефинов С з-Си, оксида октадиена-1,7 в присутствии каталитической системы хлорид кобальта-диметилформамид определены их физические свойства, получены опытные образцы. Исследован процесс сульфироваиия масляных дистиллятов с целью получения белых масел и сульфонатных присадок. Показана возможность замены олеума в процессе кислотной очистки самым сильным сульфирующим агентом - триоксидом серы. Эго позволило значительно сократить расход сульфирующего агента, продолжительность ведения процесса, а также существенно уменьшить образование кислого гудрона. Показано, что каталитическая система хлорид кобальта - димегилформамид является эффективной для широкого ряда эпоксисоединений. [c.64]

    Эффективность очистки тетрахлоридом титана тяжелых фракций нефти представлена в табл. 52. В качестве объектов исследования взяты вакуумные дистилляты (360—500°С) промышленной западно-сибирской нефти. Выбор этих дистиллятов объясняется тем, что в них сосредоточена значительная часть АС при практическом отсутствии асфальтенов и металлсодержащих соединений. Исследованы вакуумные дистилляты двух типов (см. табл. 52). ВД-1 представляет собой широкую фракцию 360— 490°С, которую используют в качестве сырья для каталитической и гидро-генизационной переработки в производстве смазочных материалов и топлив. Около 60% АС являются АО. ВД-2 представляет собой тяжелый дистиллятный компонент, вовлекаемый в нефтепереработку и используемый в производстве вязкого компонента моторных масел. По характеристикам ВД-2 приближается к нефтяным остаткам. В связи с повышенным содержанием гетероорганических соединений, аренов и смол этот дистиллят не применяется в процессах каталитической и гидрогениза-ционной переработки, хотя принципиально может служить сырьем для получения более легких топлив после соответствующей очистки. Из представленных данных видно, что тетрахлорид титана и хлорид кобальта довольно эффективно удаляют АС из вакуумных дистиллятов. При выборе неводных растворителей руководствовались общими требованиями к свойствам экстрагентов — их высокой плотности, несмешиваемости с углеводородами, высокой температуре кипения и разложения, низкой температуре застывания, хорошей растворимости в воде, способности к эффективному взаимодействию с комплексообразователем с целью его максимально полного извлечения из рафината, доступности и дешевизне. Свойства использованных в исследованиях неводных растворителей пред- [c.100]

    Таким образом, на основании анализа свойств карбидов различных элементов и их влияния на процесс графитации можно сделать вывод о целесообразности использования лри производстве рекристаллизованных графитов методом ТМХО следующих карбидообразующих элементов бора, кремния, титана, циркония, гафния, ванадия, ниобия, тантала, хрома, молибдена, вольфрама, и в меньшей степени железа, кобальта, никеля. Большинство из указаннь1Х карбидообразующих элементов в отдельности или в различном сочетании используют при получении различных марок рекристаллизованных графитов. [c.196]


Смотреть страницы где упоминается термин Кобальт получение и свойства: [c.146]    [c.181]    [c.256]    [c.128]    [c.129]    [c.158]    [c.23]    [c.317]   
Успехи химии фтора (1964) -- [ c.86 , c.111 ]

Успехи химии фтора Тома 1 2 (1964) -- [ c.86 , c.111 ]




ПОИСК





Смотрите так же термины и статьи:

Кобальт, свойства

получение и свойства



© 2025 chem21.info Реклама на сайте