Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры и электронные оболочки атомов

    В соответствии с электронной конфигурацией атома водорода Is возможны процессы, обусловленные сдвигом его электрона к более электроотрицательному атому, и, наоборот, характерны процессы со смещением электрона к атому водорода (стремление образовать замкнутую оболочку Is ). Таким образом, для Н характерны аи = —1,0, -fl, т. е. он может вести себя аналогично и элементам подгруппы IA, и элементам подгруппы VHA. С первым его объединяет сходство атомных спектров, тенденция к образованию в растворе Н+ (отсюда восстановительная,активность, в частности склонность вытеснять неактивные металлы из различных соединений, в том числе, обычно под давлением, из растворов Цх солей), а также способность взаимодействовать с неметаллами. [c.463]


    Вернемся к литию (см. выше). Каждый его атом представлен одним 25-уровнем в валентной зоне и одним — в зоне проводимости (см. рис. 28). Если кристалл состоит из N атомов лития, то в валентной зоне имеется N энергетических уровней, на каждом из которых могло бы находиться по два электрона. Но у лития имеется только один валентный электрон. Следовательно, половина уровней в этой зоне не заняты. Поэтому валентные электроны перемещаются от одного свободного уровня данной зоны к другому, двигаясь между атомными остовами — положительными ядрами атомов, отчасти заэкранированными электронными оболочками 15 литий электропроводен, это металл. Твердые вещества, такие как алмаз, имеют энергетический спектр с полностью занятыми уровнями валентной зоны, отделенной от зоны проводимости широкой запрещенной зоны. Это изоляторы. Но если ширина запре- [c.104]

    Положение сигнала, или энергия связи электрона Есв, измеряемая в спектре, определяется, как уже указывалось, прежде всего электронной конфигурацией атома. Таким образом, полный фотоэлектронный спектр атома представляет собой набор сигналов, соответствующих 5-, р-, (1-, электронам оболочек атомного остова, как показано, например, для металлического кобальта на рис. VI.4. Атом в молекуле какого-то вещества характеризуется спектром, близким по виду к его спектру в веществе сравнения, хотя сигналы могут быть несколько сдвинуты. Атомы всех элементов, исключая водород и гелий, могут идентифицироваться и определяться по фотоэлектронному спектру (методами РЭС, ОЭС и др.). Некоторые удобные для идентификации линии ряда элементов приведены в табл. IV. 1. [c.140]

    Механизм возбуждения. Чтобы атом испустил квант рентгеновского излучения hv, ему необходимо сообщить энергию. Это можно осуществить облучением пробы потоком электронов эмиссионная спектроскопия) или рентгеновским излучением достаточной энергии рентгенофлуоресцентная спектроскопия). Практически ввиду более легкого осуществления используют только второй способ возбуждения. Его преимущество заключается еще в том, что возникающий спектр флуоресценции имеет только характеристические спектральные линии, в то время как на эмиссионный спектр накладывается спектр непрерывного излучения. В рентгенофлуоресцентной спектроскопии пробу облучают полихроматическим излучением рентгеновской трубки и наблюдают возникающее вторичное излучение. Для перемещения электрона с занимаемого им основного уровня необходимо, чтобы энергия поглощаемого рентгеновского кванта hv была по меньшей мере равна работе ионизации. Если поглощаемая энергия больше, то избыточная энергия высвобождается в виде кинетической энергии фотоэлектрона. По истечении 10 с ионизированный атом ступенчато переходит в основное состояние. Рассматривая уменьшение энергии электрона при его переходе с верхнего уровня на нижний, можно заметить, что рентгеновский квант излучается не при каждом электронном переходе. Эффективной в этом отношении оказывается только часть переходов (/ij). Остальное число переходов п — () вызывает эмиссию электронов из внешних электронных оболочек атома, поскольку они воспринимают всю энергию, освобождающуюся при осуществлении внутренних электронных переходов, и вследствие этого отрываются от атома оже-эффект). Под выходом флуоресценции W понимают отношение /if/n. Величина W для различных оболочек не одинакова и возрастает с увеличением атомного номера элемента. Зависимость выхода флуоресценции для /С-оболочки от атомного номера элемента можно представить следующей полу эмпирической формулой  [c.201]


    В процессе неупругого рассеяния электронов пучка рентгеновское излучение может возникать за счет двух совершенно различных процессов 1) торможения электрона пучка в кулоновском поле атома, состоящего из ядра и слабо связанных электронов, приводящего к возникновению непрерывного спектра рентгеновского излучения с энергией от нуля до энергии падающего электрона, как показано на рис. 3.32 это излучение называется непрерывным, или тормозным рентгеновским излучением 2) взаимодействия электрона пучка с электронами внутренних оболочек, которое может привести к выбиванию связанного электрона, покидающего атом в возбужденном состоянии с вакансиями на электронной оболочке (рис. 3.33). При возвращении атомов в стационарное состояние происходит электронный переход с внешних оболочек для заполнения этой вакансии. При переходе происходит изменение энергии и высвободившаяся энергия атома может проявиться либо в форме испускания рентгеновского кванта, либо в форме испускания (оже) электрона. Так как энергия испускаемого рентгеновского кванта определяется разностью энергии между четко определенными атомными уровнями, это излучение называется характеристическим рентгеновским излучением. [c.66]

    Внутренняя конверсия. При внутренней конверсии энергия возбужденного ядра вместо того, чтобы быть испущенной в виде у-кванта, передается одному из орбитальных электронов обычно на /(-оболочке. Этот электрон покидает атом. Ионизованный атом переходит в основное состояние путем испускания характеристического рентгеновского излучения, которое дает в спектре соответствующую линию. Эту линию таклсе можно использовать для качественного и количественного определения радиоактивных изотопов. Однако из-за низкой разрешающей способности спектрометров в области малых энергий рентгеновское излучение редко используется для измерений. [c.234]

    Рассмотрим теперь случай, когда избыток энергии (Ау — еУ) фотона сравнительно мал. Как перераспределяются электроны, в атоме после удаления внутреннего электрона Следует ожидать, что освободившееся место на внутренней оболочке будет быстро заполнено электроном с более высокого уровня. Этот переход сопровождается испусканием кванта. Время жизни таких возбужденных состояний порядка 10 сек. В с.лучае атома аргона переход электрона с Ь- на Д -оболочку сопровождается испусканием кванта с энергией 2,95 кэв, который может быть поглощен тем же атомом. В результате поглощения с 1-оболочки могут быть удалены один или несколько электронов. Такой процесс ионизации называется эффектом Оже . На фотоснимках, сделанных в камере Вильсона, наблюдалось более 4—5 оже-электронов на атом. Аналогичный эффект (автоионизация, 3, а) имеет место и в области атомного спектра. [c.85]

    В основном состоянии атом Ф. обладает конфигурацией внешней электронной оболочки 7 s. Энергии ионизации (в эв) Fr°— Fr - Fr 4,0 и 21,5 соответственно. Ф. является самым электроположительным из всех существующих в природе элементов. Единственной устойчивой степенью окисления его является - -1 известен оптич. спектр Fr , к-рый состоит из широкого дублета в красной и тесного дублета в фиолетовой области спектра. Энтальпия образования газообразного иона Ф. 106,8 ккал моль. На основании теоретич. данных рассчитаны термодинамич. характеристики большого числа соединений Ф. В химич. отношении Ф.— самый ближайший аналог цезия, т. с. все характерные для s химич. формы должны существовать и у Ф. Будучи аналогом s и др. щелочных металлов, Ф. способен давать лишь сравнительно небольшое число труднорастворимых соединений. Основные данные по химич. свойствам Ф. получены на основании результатов по соосаждению. [c.281]

    Физические и химические свойства. При комнатной темп-ре Р. — газ, состоящий из одноатомных молекул. Спектр Р. аналогичен спектру ксенона и др. элементов нулевой группы. Строение электронной, оболочки атома Р. 6 бр ковалентный радиус 2,14 А энергия ионизации Rn°-<-Rn+10,746 aff. Плотность газа 9,73 г л, жидкого 4,4 г/сл1 (при —62°), твердого 4 г/сж . Т. пл. —71°, т. кип. —62° критич. давление и темп-ра соответственно равны 104,4° и 62,4 атм теплота сублимации 4850 кал г-атом. На холодных поверхностях Р. легко конденсируется в бесцветную фосфоресцирующую жидкость. Твердый Р. светится бриллиантово-голубым светом, В 1 объеме воды при 0° растворяется 0,507 объемов Р., в органич. растворителях растворимость Р. значительно выше. Растворимость Р. в спиртах и жирных к-тах возрастает с увеличением их молекулярных весов. [c.247]

    Деформируемость электронной оболочки сказывается и на оптических свойствах веществ. Поглощение тех или иных лучей связано с возбуждением внешних электронов. Электронные переходы отвечают тем меньшим энергиям, чем более поляризуема частица. Если последняя устойчива, то возбуждение требует больших энергий им отвечают ультрафиолетовые лучи. Если атом (ион) легко поляризуется, то возбуждение возникает при небольших энергетических затратах им отвечает видимая часть спектра. Вещество оказывается окрашенным. Поэтому наряду с веществами, цветность которых обусловлена окраской содержащегося в них иона (ионов), существуют окрашенные соединения, образованные бесцветными ионами в таких случаях цветность соединения является результатом межионного взаимодействия. [c.220]


    Ионы щелочных металлов с зарядом +1 (Ы+, Ыа+, К+, КЬ+...) имеют устойчивую электронную оболочку, как в атомах инертных газов, а следовательно, и очень высокую энергию ионизации и возбуждения. По сложности и структуре спектр иона щелочного металла аналогичен спектру соответствующего инертного газа (с тем же числом электронов), но все линии в спектре иона смещены в коротковолновую область. Например, ион натрия цКа+ 8 -2з р имеет точно такое же строение электронных оболочек, как и атом неона юМе Поэтому их уровни имеют одинаковую струк- [c.40]

    Поляризуемость молекулы зависит от строения электронной оболочки молекулы и связана с ее подвижностью. При колебаниях и вращениях молекулы в той или иной степени меняется энергия электронов, а поэтому может меняться и поляризуемость. Иными словами, поляризуемость молекулы изменяется при изменении расстояния между атомами в молекуле. Но изменение поляризуемости в значительной степени связано с общим строением молекулы. Например, в чисто ионной молекуле валентные электроны оттянуты к более электроотрицательному атому и при колебании электронное облако практически не изменяется, не изменяется и поляризуемость молекулы. Двухатомная ионная молекула в КР спектре неактивна. [c.349]

    Для расчета тонкой структуры спектров поглощения молекул газа требуется знание потенциальных нолей составляющих их атомов. Точное вычисление потенциальных функций для атомов с более или менее сложной структурой практически невозможно. Однако в квантовой механике разработаны достаточно удовлетворительные методы приближенного их вычисления. Один из таких методов основан на использовании статистической модели атома. В этой теории электронная оболочка атома уподобляется некоторой электронной атмосфере . Принимается, что плотность электронного облака зависит от расстояния от ядра, но достаточно велика, так что атом можно описывать с помощью законов квантовой статистики. Последнее условие выполняется тем лучше, чем больше порядковый номер элемента. Расчет электронной плотности вокруг ядра атома ведется в предположении, что суммарный заряд электронного облака [c.120]

    Линии в характеристическом спектре, подобно линиям в оптическом, группируются в серии. Если рентгеновские лучи образовались в результате выбивания из ближайшей к атому электронной оболочки, то образуется /С-серия, в следующей ва ней L-серия и так далее. [c.53]

    Несмотря на большой успех в объяснении спектров атом( в водорода, теория Бора оказалась не в состоянии объяснить спектры других атомов. Это побудило к созданию более общей квантовой теории, которая могла бы быть применена к различным сложным системам столь же успешно, как теория Бора для водорода. Дальнейшие исследования строения электронных оболочек атомов и характера взаимодействия электронов привели к рождению квантовой механики, которая позволяет успешно изучать системы, состоящие из микрочастиц. В отличие от классической механики, исследующей законы движения тел с большими массами, квантовая механика является механикой частиц малых масс. Хотя математический аппарат квантовой механики довольно сложен, а ее некоторые постулаты абстрактны, это не помешало бурному развитию квантовой теории строения вещества и привело к настолько важным практическим решениям, значение которых трудно переоценить. [c.16]

    Атомные орбитали и их заполнение электронами. Для более тяжелых атомов, чем атом водорода, могут быть написаны уравнения Шредингера, но их нельзя решить точно из-за математических трудностей. Однако воз-можны приближенные решения, из которых можно сделать важные выводы. Многие сведения о строении электронных оболочек атома могут быть получены, как это первым показал Бор (1922), при исследовании оптических спектров и химических свойств. [c.81]

    Из того факта, что (ср. стр. 175 и сл.) основными термами спектров поглощения атомов щелочных металлов являются s-термы, следует заключить, что каждый атом обладает одним электроном, который в нормальном состоянии атома находится на энергетическом уровне с побочным квантовым числом I = 0. Этот электрон лежит каждый раз вне электронной оболочки предшествующего инертного газа, т. е. главные квантовые числа соответствующих основных орбит каждый раз на единицу больше, чем у предшествующих инертных газов. Таким образом, основные орбиты у внешних электронов щелочных металлов обозначаются следующими квантовыми числами  [c.164]

    Такую же десорбцию можно ожидать в том случае, когда молекула (атом) в возбужденном состоянии связывается поверхностью менее прочно, чем в нормальном (рис. 2, в), т. е. когда Щ > / о и q < q. Для молекулы такое соотношение может иметь место, когда возбуждение электронной оболочки приводит к упрочению связи атомов или переходу из нормального состояния со свободными валентностями в замкнутое невалентное состояние. Последнее может иметь место и для атома (например, переход D атома кислорода). В таком случае десорбция приведет к появлению свободных возбужденных молекул (атомов), которые смогут быть обнаружены по испусканию их спектра. [c.128]

    Являясь одним из наиболее тяжелых элементов, уран отличается очень сложным рентгеновским спектром. Нейтральный атом урана в своем наиболее низком энергетическом состоянии имеет целиком законченные электронные оболочки К (2 электрона), L (8 электронов), М (18 электронов), N (32 электрона) и частично заполненные оболочки О (21 электрон), Р (9 электронов) и р (2 электрона). Распределение шести наружных электронов по группам 5/ (Оу1—уп), 6с1(Р1у-у) и 75 (РО соответствует, вероятно, конфигурации (см. стр. 49). Эти шесть электронов являются валентными электронами урана в результате их возбуждения получается оптический спектр. Остальные 86 электронов представляют собой внутренние электроны , и их возбуждение дает рентгеновский спектр, который, таким образом, должен состоять из серий К, I, М, М, О и Р. Однако линий, принадлежащих последним двум ультрамягким сериям, до сих пор еще не обнаружено. [c.14]

    Лучше это можно проследить на соединениях, содержащих ароматические радикалы, так как их спектры лежат в области доступной обычным спектральным приборам, и они лучше изучены. Пока атом серы отделен от ароматического хромофора несколькими насыщенными углеводородными звеньями, спектр почти количественно является суммой спектров поглощения алкилсульфида и алкиларила. При непосредственной связи атома серы с ароматическим радикалом тонкая структура спектра, характерная для последнего, исчезает, интегральная интенсивность поглощения резко возрастает. В большинстве случаев изменяется не только форма и интенсивность полос поглощения, но и их положение относительно соответствующих параметров монофункциональных соединений (насыщенных соединений серы и ароматических или непредельных углеводородов). Отсутствие аддитивности в ультрафиолетовых спектрах непредельных (в.том числе ароматических) органических соединений двухвалентной серы свидетельствует о наличии более или менее значительного взаимодействия 1г-связей с неподеленными Зр-электронами атома серы, осложненного, вероятно, влиянием Зй-орбиталей серы. Фрагмент структуры, состоящий из ненасыщенного элемента с присоединенной к нему серой становится новым хромофором, с характерным для него спектром, а присоединенные к нему углеводородные насыщенные радикалы действуют на спектр поглощения как ауксохромы. Вопрос же о характере взаимодействия электронной оболочки атома серы с тг-электронами ненасыщенных хромофоров в настоящее время еще не решен, теория явления стала предметом оживленной дискуссии, по-видимому, еще далекой от завершения. [c.162]

    Деформируемость электронной оболочки сказывается и на оптических свойствах веществ. Поглощение лучей связано с возбуждением внешних электронов. Электронные переходы характеризуются тем меньшими, энергиями, чем более поляризуема частица. Если частица малополяризуема, возбуждение тр ует больших энергий, им отвечают ультрафиолетовые лучи. Если атом (ион) легко поляризуется, то возбуждение требует квантов небольшой энергии им отвечает видимая часть спектра. В этом случае вещество оказывается окрашенным. Таким образом, наряду с веществами, цвет которых обусловлен окраской содержащихся в них ионов, существуют окрашенные соединения, образованные бесцветными ионами, окраска таких соединений является результатом межионногх) взаимодействия. Чем больше поляризация и поляризующее действие ионов, тем больше оснований ждать появления окраски. Очевидно также, что с усилением этих эффектов окраска должна углублят1ч я. [c.122]

    Спектры атомов щелочных металлов, имеющих один электрон на внеш. электронной оболочке, схожи со спектром Н, но смещены в область меньших частот число спектральных линий в них увеличивается, а закономерности в расположении линий усложняются. Пример-спектр Na, атом к-рого имеет электронную конфигурацию ls 2s 2p 3s с легковозбуждаемым внеш. электроном 3s. Переходу этого электрона из состояния Зр в состояние 3a соответствует желтая линия Na (дублет X = 589,0 им и X = 589,6 нм) это-наиб. яркая линия, с к-рой начинается т. наз. главная серия Na. Линии этой серии в спектре испускания соответствуют переходам из состояний Зр, 4р, 5р,. .. в состояние 3s. [c.219]

    Если атом при возбуждении теряет электрон, то образуется ион, который также может переходить в возбужденные состояния и затем испускать излучение. Спектр излучения иона отличен от спектра соответствующего атома, так как его электронная оболочка содержит на один электрон меньше. Поэтому спектр однократно ионизированного атома данного элемента схож со neKfpoM, который испускается атомом элемента, атомный номер которого на единицу меньше аналогично двухкратно заряженный ион элемента дает спектр, похожий на излуче-ние элемента с атомным номером, меньшим на две единицы. [c.78]

    К началу XX столетия на основании изучения оптических спектров элементов, природы катодных и каналовых лучей, явлений электролиза, термо- и фотоэлектронной эмиссий и самопроизвольного радиоактивного распада атомов тяжелых элементов было установлено, что атом является сложной системой, состоящей из положительно заряжещюго ядра и движущихся электронов, составляющих в совокупности его электронную оболочку. [c.37]

    Деформируемость электронной оболочки сказывается и на оптических свойствах веществ. Поглощение лучей связано с возбуждением внешних электронов. Электронные переходы отвечают тем меньшим энергиям, чем более поляризуема частица. Если частица малополяризуема, то возбуждение требует больших энергий им отвечают ультрафиолетовые лучи. Если атом (ион) легко поляризуется, то возбуждение требует квантов небольшой энергии им отвечает видимая часть спектра. В этом случае вещество оказывается окрашенным. Таким образом, наряду с веществами, цвет которых обусловлен окраской содержащихся в них ионов, существуют окрашенные соединения, образованные бесцветными ионами, окраска которых является результатом межионного взаимодействия. Чем больше поляризация и поляризующее действие ионов, тем больше оснований ждать появления окраски. Очевидно также, что с усилением этих эффектов окраска должна углубляться. Эти положения можно подтвердить множеством примеров. Ограничимся некоторыми нз них, причем предоставим читателю возможность самому объяснить каждый. РЫг окрашен, ala бесцветен среди сульфидов металлов встречается гораздо больше окрашенных соединений, чем среди оксидов в ряду Ni b — NiBrs — Nib окраска соли углубляется если бромид данного элемента не окрашен, то вряд ли будет окрашен его хлорид молено назвать ряд веществ, приобретающих окраску при нагревании. [c.115]

    Планетарная теория строения атомов. Резерфордовская нуклеарная модель атома для химиков не могла представить особого интереса. Она была еще слишком обща, слишком обезличена. Из того, что по сравнению с атомом аргона атом калия содержит лишнюю единицу положительного заряда в ядре и лишний электрон в электронной оболочке, никак не вытекал столь резкий скачок в свойствах между этими двумя элементами. Но исследование атома на нуклеарной модели атома не остановилось. Нуклеарная теория атома развилась в планетарную теорию. Что атом, есть нечто очень сложное, легко было заключить уже из крайней сложности спектров элементов искровой спектр железа заключает, например, в себе тысячи линий. Опираясь на теорию испускания световой энергии малыми, но конечными порциями — квантами, а также используя метод аналогии с коперниковой теорией солнечной системы, Нильс Бор создал планетарную теорию строения атомов. [c.78]

    Изучение химических связей в молибдените, где атом Мо" имеет координационное число 6, приводит к заключению, что 6 атомов серы образуют вокруг молибдена не октаэдр, а в силу особенности строения электронной оболочки атома молибдена треугольную призму с отношением осей, равным единице. В образовании связей участвуют dsp-орбиты. По мнению большинства исследователей, здесь происходит 5р-гибридизация, т. е. в образовании связей участвуют 4d-, 5s- и 5р-электроны центрального атома, а единственная из не участвующих в связи орбита (пятая ячейка) атома молибдена занята двумя электронами. Р. Л. Ба-ринский и Э. Е. Вайнштейн [365] подтверждают d s/7-гибрпдиза-цию исследованием тонкой структуры рентгеновских спектров поглощения и испускания в MoSj. [c.152]

    Другой весьма важной особенностью характеристич. спектров Р. л. является то обстоятельство, что каждый элемент дает свой спектр независимо от того, возбуждается ли этот элемент к испусканию Р. л. в свободном состоянии или в химич. соединении. Эта особенность характеристич. спектра Р. л. исиользуется для идентификации различных элементов в сложных соединениях и является основой рентгеноспектралъ-ного анализа. Спектральные линии характеристич. спектра Р. л. образуют закономерные последовательности или серии. Эти серии обозначаются буквами К, Ь, M,N..., причем дл шы волн этих серий возрастают от К к Ь, 01 Ь к М и т. д. Наличие этих серий теснейшим образом связано со строением электронных оболочек атомов (см. Атом). Химич. и биологич. действие Р. л. аналогично действию Лучей (см. Радиационная химия). [c.326]

    Волновое число в с = 3- 10 раз меньше обычной частоты, измеряемой в сек . Свободные атомы испускают линейчатые спвкктры, которые состоят из отдельных спектральных линий. Простейшим атомом является атом водорода. Электронная оболочка его состоит из одного электрона, поэтому спектр водорода является наиболее простым. [c.9]


Смотреть страницы где упоминается термин Спектры и электронные оболочки атомов: [c.142]    [c.211]    [c.37]    [c.226]    [c.331]    [c.6]    [c.183]    [c.54]    [c.37]    [c.114]    [c.15]    [c.124]    [c.275]    [c.52]    [c.115]    [c.453]    [c.228]    [c.12]   
Смотреть главы в:

Задачи по теории строения молекул -> Спектры и электронные оболочки атомов




ПОИСК





Смотрите так же термины и статьи:

Оболочка

Спектры электронные

Электрон в атомах

Электронная оболочка



© 2024 chem21.info Реклама на сайте