Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы, определение в органических

    В ряде случаев процесс экстракции усложняется, в частности, вследствие химической реакции, протекающей в объеме или на поверхности раздела фаз. При определенных условиях для лучшего разделения исходного раствора применяют специфические способы экстракции. Так, например, исходный раствор, представляющий собой смесь органических веществ, оказывается целесообразным обрабатывать двумя взаимно нерастворимыми экстрагентами, между которыми распределяются извлекаемые компоненты (стр. 537). Для облегчения перехода экстрагируемых компонентов, например солей металлов, в органическую фазу иногда применяют высаливание, осуществляемое путем добавки соли с одноименными ионами в исходный водный раствор, а также регулируют кислотность или pH раствора, концентрацию экстрагента в инертном разбавителе, служащим для уменьшения его вязкости, и т. д. [c.521]


    Выход металла по току близок к теоретическому и мало изменяется при повышении плотности тока в допустимых пределах к. Осадки хорошего качества выделяются из этих электролитов в присутствии определенных органических добавок. По рассеивающей способности аммиакатные электролиты лучше кислых (без специальных добавок), но уступают цианистым. Аноды в аммиакатных электролитах растворяются в интервале рабочих плотностей тока (равных катодным) с высоким выходом по току. [c.380]

    Одним из видов физико-химического анализа является термический анализ, который основан на определении зависимости температуры кристаллизации (или плавления) изучаемой системы от ее состава. Объектами термического анализа могут быть как чистые вещества, так и системы различных веществ — металлов, солей, органических соединений и т. д. [c.27]

    Существует обширная группа ферментов, активность которых проявляется только в присутствии определенных соединений небелковой природы. Эти соединения называются кофакторами. Кофакторами могут быть, например, ионы металлов или органические соединения сложного строения — их обычно называют кофер-ментами. В большинстве случаев связь между коферментом и белком слабая и кофермент можно отделить от белка весь комплекс в целом есть холофермент, а белок (лишенный активности) без кофермента называют апоферментом. [c.356]

    Некоторые наиболее распространенные типы химической трансформации функциональных групп молекул органических веществ представлены в табл. II1.1. Достаточно широко используются химические методы подготовки проб и неорганических материалов. Помимо получения летучих хелатов металлов и органических производных некоторых анионов [33, 34 1 отметим перспективный метод реакционной газовой экстракции, включающий химическую реакцию с образованием газообразного соединения определяемого элемента, выделение этого соединения в газовую фазу и последующую его идентификацию и определение [351. [c.161]

    Определение органических веществ. Некоторые органические вещества можно определять посредством прямого титрования раствором перманганата калия. К их числу относится, например, щавелевая кислота, служащая для установки концентрации раствора перманганата. Титрование щавелевой кислоты можно также использовать для косвенного определения ряда металлов, образующих нерастворимые оксалаты кальция, лантана, тория, бария, стронция, церия, свинца, серебра. Чаще всего этот прием применяют для определения кальция. [c.409]


    ЯМР применяют и для селективного определения органических веществ. В случае проведения измерений с накоплением информации в течение оптимального времени на фурье-спектрометрах, например при определении содержания этилбензола, растворенного в хлороформе, по данным ЯМР И (диаметр ампул 5 мм) или С (10 мм) реальны интервалы концентраций 10 10 М и 10 ч-10 М соответственно. Сравнительная простота и универсальность спектров ЯМР Н обеспечивает возможность применения этого метода для исследования широкого круга объектов. Уже предложены экспрессные методы определения лютеция и празеодима, празеодима и неодима в смеси их комплексонатов при соотношении металлов от 0,1 до 6 и от 1 до 19 и общей концентрации 0,33 и 0,2 М, а также определения лютеция и иттербия при абсолютной концентрации последнего 7-10 Ч-5-10 и его относительном содержании от 1 до 15 % в смеси с суммарной концентрацией РЗЭ 5-10 М. Относительное стандартное отклонение для указанных элементов находится в пределах 0,002- 0,210. [c.737]

    Потенциально возможным способом обработки осадков сточных вод, содержащих гидроокиси металлов, с целью извлечения из них чистых металлов является экстрагирование растворителем. В основе этого процесса лежит действие органического реагента, для каждого металла своего. Основной технологический процесс включает в себя выщелачивание осадка с целью повышения растворимости металлов. Щелок от выщелачивания соединяют с органическим растворителем, в котором содержится выбранный для данного металла реагент. Этот реагент извлекает из раствора ион определенного металла. Затем органическую фазу раствора отделяют и подвергают дальнейшей обработке для извлечения металла [43]. [c.103]

    При выборе модификатора и условий концентрирования следует руководствоваться известными закономерностями процессов экстракции, причем в качестве модификаторов можно использовать большинство реагентов, рекомендованных для экстракционного извлечения ионов металлов и органических соединений, действующих избирательно при определенных условиях (pH раствора, маскирующие вещества, растворители, ионная сила и т.п.). Сенсорная часть ХМЭ должна содержать определенное количество экстрагента, обеспечивающее его устойчивую работу в течение требуемого времени. [c.491]

    Привести примеры полярографического определения а) ионов металлов б) органических соединений с различными функциональными группами. [c.257]

    С медью в нейтральном, кислом и щелочном растворах образует желто-коричневый осадок или коллоидный раствор бурого цвета. Образует устойчивые внутрикомплексные малорастворимые соединения со многими элементами. Диэтилдитиокарбаминаты металлов извлекаются органическими растворителями с образованием окрашенных в разные цвета экстрактов. Применяют для отделения, концентрирования, а также фотометрического определения следов элементов (меди, висмута, кобальта, никеля, хрома, ванадия и др.). В присутствии маскирующих веществ (тар-трата, цианида, комплексона П1 и др.) при различных значениях pH диэтилдитиокарбаминаты металлов обладают различной устойчивостью, что используется для их разделения. [c.151]

    В инверсионных электрохимических методах используют электроды из углеродных материалов и ртутно-графитовые, поверхность которых подвергают механической, электрохимической или специальной химической обработке. Химическая модификация поверхности осуществляется путем химической реакции, адсорбции или нанесения полимерной пленки, оно представляет интерес при определении органических соединений и комплексов металлов [25]. [c.318]

    Установление точки эквивалентности. Для прямого титрования катионов применяют специальные индикаторы— органические красители, образующие с катио-нами окращенные комплексные соединения, которые менее прочны, чем соединения этих катионов с комплексоном. Перед титрованием к раствору соли металла добавляют индикатор, образуется его комплекс с металлом определенной окраски. Если теперь к раствору добавлять комплексон, то индикатор будет вытесняться из его комплекса с катионом. В точке эквивалентности катионы связываются комплексоном, а индикатор полностью высвобождается. Поскольку свободный индикатор имеет иной цвет, то в точке эквивалентности происходит изменение окраски. [c.174]

    До настоящего времени нет единых рекомендаций по технике безопасности при работе с перхлоратами. Выше уже было сказано, что ряд перхлоратов металлов и органических перхлоратов, а также перхлораты гидразина и фтора исключительно чувствительны и с ними надо обращаться с величайшей осторожностью как с инициирующими взрывчатыми веществами. Смеси некоторых перхлоратов с окисляемыми веществами также очень взрывчаты и требуют соответствующего обращения. Во всех этих случаях важно избегать трения, нагревания, искры или удара от любого источника и предусматривать определенную изоляцию, ограждения и защитную одежду для персонала. Требования техники безопасности при работе с перхлоратами и другими смесями для ракетного топлива, касающиеся местоположения завода, конструкции здания, оборудования, рабочих процессов, хранения и перевозки были обобщены Уорреном . [c.214]


    Эта книга посвящена практическим аспектам использования переходных металлов в органическом синтезе, поэтому вполне естественно, что некоторые ее главы связаны с получением определенного класса соединений (например, получение карбонильных соединений), в то время как другие имеют дело с определенным типом реакций (например, восстановление, изомеризация). Таким образом, каждая глава имеет свой характер. Перекрестные ссылки, приведенные в тексте книги, объединяют материал и делают легкодоступной всю имеющуюся информацию. [c.19]

    Образование окрашенных комплексов металлов с органическими реагентами широко используют в качественном и количественном неорганическом и органическом анализе. Для определения металлов чаще всего используют комплексообразующие реагенты. Собственно хромофорные группы, поглощающие свет в видимой области электромагнитного излучения, представляют собой группы, содержащие атомы [c.58]

    Многие соединения металлов с органическими реагентами сравнительно мало растворяются в воде, но хорошо —в органических растворителях. Например, нерастворимые в воде оксихинолинаты металлов легко растворяются в органических растворителях (бензоле, хлороформе, эфире) и образуют окрашенные растворы. Поэтому для отделения и определения элементов в виде оксихиноли-нлтов (и многих других соединений) их вместо отфильтровывания, высушивания и взвешивания просто экстрагируют и определяют концентрацию элементов, измеряя интенсивность окраски растворов методами фотометрии (см. гл. X). [c.130]

    Следовые компоненты могут быть чисто органическими (ПАУ, ХОС, ПХБ, ПХДД) или неорганическими (радионуклиды, тяжелые металлы), либо иметь смешанный состав (металлоорганическис соеданения, комплексы металлов с органическими лигандами, белками, ДНК и др) Заметим, что последние играют важнейшую роль в биологии, но для их определения на уровне следовых количеств обычно применяют специфические биохимические методы. [c.153]

    При отборе проб льда куски, взятые в различных мест 1х, очищают со всех сторон на фильфовальной бумаге ножом и помещак1т в стеклянную (для определения органических зафязнителей) или полиэтиленовую (для определения тяжелых металлов) чашу, откуда перекладывают в другой сосуд и оставляют на некоторое время. Затем лед переносят в широ-когорлую емкость и оттаивают при комнатной температуре. [c.184]

    Осознание важности экологических проблем заставляет исследователей привлекать для контроля суперэкотоксикантов все современные высокочувствительные методы аналитической химии. Так, при определении низких содержаний ионов высокотоксичных металлов в основном применяются методы оптической спектроскопии и люминесценции (атомноэмиссионная спектроскопия с возбуждением от высокочастотного плазменного факела (ИСП-АЭС), атомно-абсорбционная спектроскопия (ААС) с электротермической атомизацией и др.) (3 , а также инверсионная вольтамперометрия (ИВА) с химически модифицнрова1Шыми электродами [41. Для определения органических загрязнителей наряду с хроматографией наблюдается тенденция к более широкому использованию хромато-масс-спектрометрии, иммунохимических и флуоресцентных методов 2,5 Следует заметить, что в области разработки методов контроля за состоянием загрязнения природных сред суперэкотоксикантами имеется много нерешенных проблем В первую очередь это относится к методам экспрессного определения органических веществ. [c.244]

    Электроосаждение металлов в присутствии определенных органических веществ, называемых выравнивающими агентами, обеспечивает заполнение рисок, царапин и впадин на поверхности металла и получение гладких осадков. В качестве выравнивающих агентов используют кумарин, хинолин, 2,2-дипиридил и другие органические вещества. Большинство выравнивающих агентов является одновременно и бле-скообразователями. Блеск осадка существенно улучшается, если в раствор вместе с выравнивающим агентом добавляют специальные органические вещества — блескообразова-тели (я-толуолсульфамид, сульфонаты ароматических эфиров и др.). Выравнивающие и блескообразующие добавки адсорбируются преимущественно на различных выступах поверхности и препятствуют осаждению металла на них, тогда как в углублениях плотность тока соответственно повышается. Преимущественная адсорбция органических веществ на выступах связана прежде всего с тем, что условия диффузии органических [c.375]

    Электроосаждение металлов в присутствии определенных органических веществ, называемых выравнивающими агентами, обеспечивает заполнение рисок, царапин и впадин на поверхности металла и получение гладких осадков. В качестве выравнивающих агентов используют кумарин, хинолин, 2,2-дипиридил и другие органические вещества. Большинство выравнивающих агентов является одновременно и блескообразователями. Блеск осадка существенно улучшается, если в раствор вместе с выравнивающим агентом добавляют специальные органические вещества — блескообразователи (п-толуол-сульфамид, сульфонаты ароматических эфиров и др.). Предполагается, что выравнивающие и блескообразующие добавки адсорбируются преимущественно на различных выступах поверхности и препятствуют осаждению металла на них, тогда как в углублениях плотность тока соответственно повышается. Преимущественная адсорбция органических веществ на выступах связана прежде всего с тем, что условия диффузии органических молекул к выступающим участкам поверхности оказываются более благоприятными. Механизм блескообразо-вания изучался в работах Н. Т. Кудрявцева, К. М. Горбуновой, Ю. Ю. Матулиса, С. С. Кругликова и др. [c.391]

    В монографии впервые о отечественной литературе рассмотрены основы ионохроматографического анализа вод — лучшего современного метода оиределеиня анионов в растворах. Описаны последние достижения в развитии ионной хроматографии, существенно расширяющие ее возможности, такие новые системы подавления фонового сигнала, как детекторы 1[ сорбенты. Особое внимание уделено определению неорганических анионов. Обсуждаются способы определения органических веществ, главным образом кислотного характера. Приводятся методы определения металлов, в частности, описан разработанный авторами метод определения металлов в виде оксоанионов. Отдельно рассмотрен анализ вод различных типов — поверхностных пресных, сточных, морских, а также атмосферных осадков. [c.216]

    В аналитической практике хемилюминесцентные реакции используют 1) для установления точки эквивалентности при титровании мутных или окрашенных растворов (применение хемилюминесцентных индикаторов в методах нейтрализации, окисления — восстановления, комплексообразования) 2) для определения основных компонентов хемилюминисцентных реакций (хемилюминесцентного реактива, окислителя или восстановителя), 3) для определения микроколичеств ионов металлов, которые являются катализаторами или ингибиторами хемилюминесцентных реакций 4) для определения органических веществ, которые являются ингибиторами хемилюминесцентных реакций, по их окислению. [c.364]

    Способ адсорбционного концентрирования (как комплексов металлов с органическими лигандами, так и органических соединений) по своему принципу близок к рассмотренному в предыдущем разделе. Особую популярность он получил в последние годы. Благодаря адсорбционному концентрированию с помощью инверсионной вольтамперометрии удается определять щелочные и щелочноземельные металлы, элементы подгруппы алюминия и иттрия, не говоря уже о традиционных для инверсионной вольтамперометрии элементах, таких как 8п, РЬ, Сс1 и др. Как правило, адсорбционное концентрирование связано с применением поверхностно-активных веществ, вводимых в анализируемый раствор. При этом существенно, чтобы потенциалы электропревращения органического реагента и его соединения с металлом различались на максимально возможную величину. Преимуществом адсорбционного концентрирования является также слабое влияние потенциала электрода на адсорбцию комплексов, что позволяет проводить концентрирование даже при разомкнутой цепи. Нижняя граница определяемых концентраций в ряде случаев, например при определении серосодержащих соединений, достигает 10 - 10 моль/л и ниже. [c.431]

    Для кулонометрического определения органических соединений интерес представляет электрогенерация галогенов. В отличие от ионов металлов галогены в различных степенях окисления являются более универсальными кулонометрическими титрантами. Они могут участвовать в химических реакциях не только в качестве окислителей, но и по механизму присоединения или электро-фильного замещения. В неводных средах электрогенерированные частицы галогенов живут достаточно долго и успевают вступить в реакцию с определяемым соединением. Значения редокс-потенциалов титрантов на основе галогенов и их соединений представлены в табл. 15.2. [c.534]

    Контроль (мониторинг) химических величин также важен для охраны окружающей среды, в технике безопасности и медицине. Контроль pH и мутности воды представляет относительно простую задачу. pH можно измерять с по-кющью стеклянного электрода, а мутность —с помощью оптического сенсора. Предположительно, загрязнение воды тяжелыми металлами и органическими соединениями возможно непрерывно контролировать с помощью сенсоров, а ие методами off-line в лаборатории с предварительным отбором проб. Химические сенсоры нужны не только для определения индивидуальных веществ, но и для измерения суммарных параметров. [c.494]

    Почти для каждого иона металла известны органические хелатообразующие реагенты. Они образуют окрашенные комплексы и/или комплексы с переносом заряда, которые можно экстрагировать из водной фазы в органическую, провести концентрирование и количественное определение. Важной по сравнению с другими методами отличительной чертой является селективность комплек-сообразования по отношению к различным состояниям окисления элементов (см. разд. 7.5). [c.158]

    Изготовление слоев оксидов редкоземельных элементов, тория, урана, протактиния, нептуния и транснептуниевых элементов электроосаждением из неводных сред имеет неоспоримые преимуш,ест-ва по сравнению с водными растворами. Образуюш,иеся на катоде при электролизе в водной среде гидроксиды лантаноидов и актиноидов аморфны. При дальнейшей термической обработке они образуют оксидные слои с большим количеством структурных дефектов. При электролизе из органических растворов на катоде образуются кристаллические структуры, которые при прокаливании легко переходят, теряя органическую составляюш,ую, в кристаллические структуры оксидов РЗЭ и актиноидов. Кроме того, метод электроосаждення из неводных растворов характеризует большая скорость проведения процесса, полнота выделения металла, прочность сцепления о подложкой слоев толщиной 1—5 мг/см , равномерность распределения покрытия на больших площадях. Наилуч-шие результаты получены из спиртовых растворов нитратов и ацетатов РЗЭ и актиноидов. Растворимость солей данных металлов в органических растворителях низка, поэтому в основном применяют насыщенные растворы. Из-за низкой проводимости растворов и окисной пленки на электроде используются высокие напряжения (порядка сотен вольт), плотности тока низкие. Большое значение при подборе оптимальных условий осаждения имеют площадь электродов, расстояние между ними, объем электролита, предварительная обработка электродов. Катодный процесс сопровождается газовыделением, вызывающим образование неравномерной пленки. Для уменьшения газовыделения добавляют специальные добавки, в частности этиловый спирт [221]. Катодный продукт наряду с металлом и кислородом содержит обычно азот, водород и углерод. Результаты количественного анализа показывают загрязнение катодного осадка растворителем или продуктами его разложения, но не образование соединений определенной стехиометрии [1077]. При термической обработке катодного осадка происходит уменьшение объема и перестройка кристаллической решетки, в результате чего слои растрескиваются и осыпаются, и лишь в случае тонких слоев оказывается достаточно поверхностных молекулярных сил сцепления для сохранения прочной связи с подложкой. Для получения покрытий толщиной порядка 1—5 мг/см необходимо многослойное нанесение продукта [1060]. [c.156]

    Содержание сульфонов может быть определено полярографически. Moho-, ди- и трисульфокислоты можно разделить методом бумажной хроматографии. Последующее определение компонентов в каждой зоне проводят спектрофотометрическим или полярографическим методом. Кроме того, разработан целый ряд реакции, специфических для индивидуальных сульфокислот. Особенно широко применяется качественное и количественное определение сульфокислот в виде солей с металлами или органическими основаниями типа бензидина, фенилгидразина и т. п. [c.54]

    Эти реакции широко используют в многочисленных тест-методах на ионы металлов, реже — в методах определения органических веществ. Специфических реакций образования комгшексных соединений почти нет, поэтому во многих тест-средствах предусматривается регулирование pH, использование маскирующих веществ и другие способы повышения селективности. [c.213]

    Метод каталиметрического титрования применяют для определения с повьшхенной точностью микросодержания ионов металлов или органических соединений, образующих с ионом металла устойчивые, каталитически неактивные комплексы, и следов органических веществ в неорганических солях особой чистоты. При титровании органического соединения избыток титранта (иона метал-ла-катализатора) уже в концентрации 10" -10 М вызовет протекание каталитической реакции и тем самым определит конечную точку титрования [3, 9,12,14]. [c.272]

    При определении содержания железа, титана, алюминия в силикате пробу сплавляют со щелочными плавнями при определении суммы щелочных металлов — спекают с СаО и СаСОз. Способ разложения пробы и переведения ее в раствор определяется также целью анализа и во многом зависит от выбранного аналитического метода. Например, различаются подготовки проб при определении органических соединений в биологических объектах хроматографическими или спектрофотометрическими методами. [c.45]

    За последние годы появилось много работ, посвященных изучению комплексообразования в системе ион металла — анион — органическое основание. Исследования ведутся главным образом в трех нанравлениях а) синтез соединений ацидокомплексов металлов с органическими основаниями и изучение их свойств б) исследование состава комплексов и равновесий комплексообразования в растворе в) разработка новых методик аналитических определений, основанных на образовании соединений ацидокомплексов с аминами. Значительная часть публикаций посвящена разработке весовых, объемных или электрохимических методов анализа с помощью указанных соединений за последние годы выполнено также много исследований по экстракционнофотометрическому определению и разделению металлов. [c.114]


Смотреть страницы где упоминается термин Металлы, определение в органических: [c.20]    [c.105]    [c.297]    [c.115]    [c.76]    [c.69]    [c.107]    [c.41]    [c.217]    [c.43]    [c.351]    [c.159]   
Основные начала органической химии том 1 (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Органические металлы



© 2025 chem21.info Реклама на сайте