Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кулонометрическое определение органических соединений

    КУЛОНОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.538]

    ТАБЛИЦА 15.3. Примеры кулонометрического определения органических соединений [c.541]

    Другой вариант кулонометрического метода, который нашел широкое применение, заключается в титровании бромом, производимом при электролизе на аноде в результате реакции 2Вг ->-Вг,-г2е . Он используется при определении органических соединений, содержащих серу  [c.121]


    Как прямая кулонометрия, так и кулонометрическое титрование находят широкое применение в аналитической практике определения неорганических веществ. Подробная сводка возможных объектов анализа приведена в руководстве Агасяна и Николаева. Возможно определение элементов всех групп периодической системы Менделеева. Кулонометрическое титрование используют при анализе органических соединений. Для анализа газов также служит кулонометрия и на ее основе разработаны многочисленные автоматические газоанализаторы па водород, кислород, воду, оксиды углерода, азота и серы, галогены и их производные. [c.252]

    В заключение необходимо отметить, что методы получения производных для газохроматографического анализа разработаны достаточно подробно и широко используются на практике. Однако эти методы рассчитаны, как правило, на использование в последующем газохроматографическом определении только двух типов детекторов пламенно-ионизационного (ПИД) и электронно-захватного (ЭЗД). Более широкие возможности для селективного определения отдельных классов органических соединений открываются при использовании и предварительных реакций, связанных с введением в молекулу анализируемых соединений атомов серы, фосфора, азота и других элементов, для определения которых разработаны и успешно используются в хроматографической практике селективные детекторы пламенно-фотометри-ческий, термоионный, электрохимические (кулонометрический, полярографический и др.). В данном случае мы можем и должны говорить о развитии аналитической химии меченых нерадиоактивных атомов. Отметим, что в ряде случаев может быть полезным использование для тех же целей и методов введения в молекулы анализируемых соединений групп, содержащих радиоактивные изотопы, например и [154]. Особенно перспективно, по нашему мнению, использование комбинированных реагентов и детекторов для решения задачи идентификации компонентов сложных смесей, что является наиболее важной стороной использования метода предварительных реакций. Вторым перспективным направлением является применение предварительных реакций с целью концентрирования примесей. [c.49]

    Косвенная кулонометрия является одним из наиболее универсальных методов, широко используемых для определения органических веществ в различных объектах. Кулонометрический метод позволяет определять отдельные органические вещества и целые их классы. Учитывая большое число разнообразных органических соединений, определяемых методами косвенной кулонометрии, мы рассмотрели наиболее интересные и широко используемые титранты. [c.79]


    Сочетание кулонометрических методов и методов элементарного анализа позволяет значительно повысить чувствительность и точность определения кислорода, водорода и углерода как в составе различных органических соединений, так и в других состояниях (адсорбционные пленки, примеси в металлах и т. п.) [c.112]

    Методы определения водорода [872—881] почти во всех известных случаях состоят в окислении его с образованием воды, которую затем определяют тем или иным кулонометрическим методом. Наиболее распространенный вариант заключается в кулонометрическом электролизе воды после абсорбции ее различными гигроскопическими веществами, преимущественно пятиокисью фосфора. В зависимости от характера анализируемого образца и содержания в нем водорода меняются конструкции и размеры поглотительных элементов, но принцип их остается таким же, как в уже упоминавшихся выше методах определения воды [866—868]. Кулонометрические методы дают очень хорошие результаты при определении водорода в самых разнообразных органических соединениях [873— 876, 879], железе [877, 878], сталях [872], сложных газовых смесях [880] и других образцах [881]. [c.112]

    Различные варианты кулонометрического анализа используют для решения разнообразных частных задач аналитической химии, в том числе технического анализа [892—894]. Описаны методы определения непредельных соединений путем гидрирования их электрогенерированным водородом [895—898], что можно с успехом применить для решения специфических задач органического синтеза. [c.115]

    С целью создания более эффективных методов элементного анализа ведутся исследования новых способов предварительной минерализации органических веществ. Так, в Институте органической химии АН СССР изучается фотолитическое разложение, в Московском университете — разложение в тлеющем электрическом разряде. Имеются успехи в элементном анализе весьма сложных веществ, особенно прочных элементоорганических полимеров. Разработаны специфические методы определения в них галогенов, серы, фосфора, металлов. Интересны и перспективны попытки использовать рентгенофлуоресцентную спектроскопию для элементного анализа без разложения вещества (Н. Э. Гельман в Институте элементоорганических соединений АН СССР). Применяются методы элементного анализа с разнообразными электрохимическими, спектрофотометрическими, хроматографическими и другими физико-химическими приемами окончания анализа. Особенно широкое распространение получают методы кулонометрического и газохроматографического определения. [c.128]

    Для кулонометрического определения органических соединений интерес представляет электрогенерация галогенов. В отличие от ионов металлов галогены в различных степенях окисления являются более универсальными кулонометрическими титрантами. Они могут участвовать в химических реакциях не только в качестве окислителей, но и по механизму присоединения или электро-фильного замещения. В неводных средах электрогенерированные частицы галогенов живут достаточно долго и успевают вступить в реакцию с определяемым соединением. Значения редокс-потенциалов титрантов на основе галогенов и их соединений представлены в табл. 15.2. [c.534]

    Следует заметить, что кулонометрическое определение органических соединений отличается экспрессностью, высокой чувствительностью, не требует дорогостоящего оборудования. Приборы для кулонометрического титрования выпускаются в нашей стране и за рубежом. Сложные анализаторы, типа рабочих станций , представляют возможность широкого выбора режимов проведения электролиза и условий электрогенерирования титрантов. Для определения конечной точки титрования чаще всего применяется амперометрия с двумя поляризованными электродами. Как правило, способ индикации конечной точки титрования определяет нижнюю границу определяемых концентраций и метрологические характеристики метода. [c.540]

    Другие кулонометрические методы определения таллия см. [508]. Предлагается кулонометрическое определение органических соединений таллия R2TIX [381], где X —галоген. [c.112]

    Кислотно-основные взаимодействия. Электрогенерация ионов водорода с помощью палладиевого электрода, насыщенного водородом, позволяет проводить кулонометрические определения органических оснований в неводных средах. Объектами анализа в основном являются фармацевтические препараты - амидопирин, норсульфазол, папаверин и др. Диапазон определяемых концентраций достаточно широк - от г/л до мг/л. В табл. 15.3 приведены примеры кулонометрического определения некоторых органических соединений. [c.540]

    Гипобромит-ионы относительно редко применяют для определения органических соединений. В работе [668] описано определение меркаптоуксусной и р-меркаптонропионовой кислот электрогенерированным гипобромитом с потенциометрической индикацией к. т. т. при I фО. Погрешность при определении 25-ь 100 мкг меркаптанов составляет 2 %. В [294] описано определение гипобромитом бензосульфокислоты, аланина, аминомасляной кислоты, хлоргидратов аминоуксусной кислоты и ее этилового эфира, а также сульфаниловой кислоты. Показана возможность определения аминного азота в кремнийорганиче-ских аминах электрогенерированным гипобромитом на кулонометрическом анализаторе БИ-1. Генерацию титранта проводят на фоне 1 М по КВг в фосфатном буфере при pH = 3,2 [669]. Способность гипобромита количественно реагировать в водном растворе с сульфоновыми солями использована для кулонометрического определения выхода целлюлозы [670]. [c.83]


    Первым шагом в определении структуры молекулы органического соединения является элементарный анализ. Если при таком анализе в молекуле обнаружен азот, то часто бывает желательным определить его количество и (или) положение в молекуле (функциональные группы). В настоящее время в продаже имеются приборы для элементарного анализа, включая масс-спектрометры, а в литературе описано большое число соответствующих методов и типов установок (см. приложение, разд. И). Имеются, кроме того, и ГХ-детекторы, чувствительные к нитросоединениям, причем они позволяют определять нанограммные количества этих соединений (см. приложение, разд. П, Г). Высокоспецифичны по отношению к азоту кулонометрические и электролитические ГХ-детекторы по проводимости термо-ионный детектор, модифицированный для определения азота, имеет среднюю специфичность по отношению к азоту. [c.297]

    Разнообразные варианты кулопометрического титрования электрогенерированными ионами Н" и ОН" используются для определения минеральных кислот и оснований [290, 291, 318, 320, 326, 448, 538, 552—554, 559—575], слабых органических оснований [555—558, 576, 577] и кислот (бензойной, фталевой, адининовой и др. [299, 552, 573—581]). Широко применяются способы определения углерода в различных объектах, основанные на поглощении углекислого газа стандартным раствором едкого бария и оттитровывании остаточного основания электрогенерированными ионами Н+ [582—586]. Кулонометрическое определение малых количеств бора основано на титровании маннитового комплекса Н3ВО3 электрогенерированными ионами ОН" с фотометрическим [587, 588] (индикатор — метиловый красный) или потенциометрическим [589] определением конечной точки. При определении борного ангидрида в тяжелой воде [589] поступают следующим образом. В электролитическую ячейку, снабженную генераторным платиновым катодом, стеклянным электродом, трубкой для подачи азота и соединенную солевыми мостиками [c.66]

    Оргагшческие соединения, содержащие серу, определяли в воздухе в концентрациях от 1 ч на миллион до 1 ч на миллиард, используя обычные приемы газохроматографического анализа [244]. Применяли колонки из тефлона. Твердым носителем служил порошкообразный тефлон. В работе [245] подробно изучены хроматографические систе.мы для анализа микропримесей сернистых соединений. Лучшие результаты получаются при использовании полифенилового эфира (рис. 39), а также графитированной сажи с нанесением 0,3"о карборанполисилок-сана Дексил. Такие колонки использованы при анализе содержащих серу летучих продуктов, выделяющихся из каучука при вулканизации [246]. Для высокочувствительного детектирования органических соединений серы успешно применяют селективные детекторы— фотометрический [247] и кулонометрический. Эти детектирующие системы использованы в упомянутых работах для анализа в воздухе следов сульфидов, меркаптанов, тиоальдегидов. Диметилсульфат в количестве 1 ч/млн. определяли с использованием хромато-ыасс-спектрометрии [248]. В работе [249] описано определение в воздухе нанограммовых количеств бис (2-хлорэтил) сульфида (иприта). Некоторые летучие сернистые соединения определяли в работе [250]. Метод концентрирования микропримесей органических сернистых соединений описан в работе [251 ]. [c.114]

    При определении органических веществ в качестве титранта наиболее широко используют галогены, в частности бром. Рассмотрена возможность определения электрогенерированным хлором фталевой и ненасыщенных жирных кислот, метилтио-уранила, гидразида изоникотиновой кислоты, фенола, крезола, пирокатехина, резорцинола, гидрохинона, некоторых циклических р-дикетонов, кофеина и теобромина и др. [294]. Кулонометрическое титрование электрогенерированным бромом предложено также для аминов и енольных эфиров различной структуры, дифенацена и др. Титрование проводят в 50 %-ном водном растворе уксусной кислоты, 0,2 М по бромиду калия [659, 660]. Этот же титрант предложен для экспрессного опре-деления аминного азота после разложения органических соединений сплавлением с гидросульфатом калия [661]. При определении органических веществ электрогенерированным бромом [c.81]

    Описаны кулонометрические методы определения хлорид-иона в металлическом натрии [994], халькогенидах кадмия [850], жидком топливе [519, 985], органических соединениях [463, 714], полимерах [501], биологических материалах [706], в смеси с другими галогенидами [866, 1013]. [c.118]

    Широкое применение для определения хлор-, серу- и фосфорсодержащих соединений находит устройство, в котором содержащиеся в газе-носителе вещества после прохождения через разделительную колонку сжигают в кварцевой трубке в токе кислорода или же восстанавливают водородом при высокой температуре продукты реакции затем непрерывно определяют в кювете кулонометрическим титрованием 72-174 Хотя по сравнению с определением при помощи электронозахватного детектора этот способ менее чувствителен, его показания элементспецифичны и испытывают меньшее влияние других присутствующих органических соединений. Этот метод пригоден для определения органических фосфатов в различных материалах 175-1/8 - р комбинации этого метода с экстракционным способом можно было определять фосфаты 7э в концентрации 25—50 нг в л воды. [c.214]

    Минеральные удобрения анализируют на содержание в них NH4, NO3, азота органических соединений и т. д. Методы определения общего азота для анализа всех видов удобрений описаны в [685, 1205]. Предложены автоматические методы определения содержания азота в минеральных удобрениях [662, 738]. Ионы NH4 и NOg определяют титриметрически [160, 592, 595, 911, 954, 997, 1233]. Показана возможность нейтронно-активационного определения азота в удобрениях [1135] использования рентгеновского дифракционного метода для определения NO3, NH в различных типах смешанных удобрений [8] ИК-спектроскопии для определения NHJ, NO3 [769] термометрического метода, основанного на измерении теплоты, выделяющейся при специфической реакции с азотом аммиака, мочевины, нитрата [1243] кулонометрического метода, основанного на кислотном разложении вещества и дальнейшем окислении NHg до N2 посредством гипо-бромита, электрогенерированного на Pt-электроде нри амперометрическом определении КТТ [609]. Разработан спектрофотометрический метод определения N0 в смешанных и сложных удобрениях, основанный на измерении оптической плотности при 310 нм [367]. [c.254]

    Наиболее подходящим растворителем при определении перечисленных соединений оказалась смесь 0,5 н. водного раствора Li l с метиловым спиртом (1 4). Присутствие больших количеств органических соединений других классов, в том числе альдегидов и кетонов, не мешает определению. Конечно, посторонние вещества не должны содержать нитрозогрупп, нитратов, нитритов, а также групп, восстанавливающихся при потенциалах восстановления нитрогруппы или ниже этих потенциалов. Этот факт открывает большие возможности для определения суммарного содержания нитротел в различных органических продуктах. Особенно следует отметить пригод-ность этого метода для определения ароматических нитрокис-лот, которые другими методами определить трудно. Точность, достигаемая кулонометрическим методом, в большинстве случаев достаточная, так как отклонение среднего результата четырех и более параллельных определений от истинного содержания нитросоединения, как правило, не превышает 1%. [c.33]

    При определении органических галогенпроизводных кулонометрическим методом при контролируемом потенциале [309] электролит, содержащий Li l, непригоден. В этом случае восстановление проводят в метанольных растворах галогенидов четвертичных аммониевых оснований (например, бромида тетраэтиламмония). В этой среде некоторые нитросоединения (нитробензол, нитрометан, нитропропан, хлорнитробензолы) восстанавливаются количественно, в то время как нитроанилины, нитробензальдегиды, нитрофенолы, метиленбромид и йодоформ восстанавливаются неполностью. В случае определения индивидуальных соединений, а также при совместном присутствии ряда компонентов, потенциалы восстановления которых отличаются более чем на 0,35 в, ошибки определения не превышают 1 отн. %  [c.33]

    Ниже приводится методика кулонометрического титрования /г-хинондиоксима, пригодная также для определения других диоксимов и органических соединений, восстанавливающихся трехвалентным титаном. Определение проводят на установке, схема которой показана на рис. 9, с использованием описанной выше ячейки (рис. 11). В качестве генераторного катода служит поверхность ртути площадью 7 см , налитой в чашечку диаметром - -3 см генераторный анод — платиновая спираль. Ход кулонометрического титрования контролируют биамперометрически, налагая на индикаторные электроды потенциал порядка 67 мв. В качестве электролита для катодной камеры используют раствор, приготовленный разбавлением 100 жл Ti U до 250 мл дистиллированной водой. Электролитом в анодной камере служит 0,1 н. раствор НС1. В титрационную ячейку вносят 15,0 мл приготовленного указанным образом раствора ( 3,6 М по Ti 4 и 7,4 М по НС1), добавляют туда же 40—50 мл 2,8 н. раствора H2SO4, а затем дистиллированную воду до общего объема 120 мл. После этого продувают раствор током очищенного азота (10— ХЪмин), размешивая электролит с помощью магнитной мешалки, приливают аликвотную порцию спиртового раствора пробы, содержащую 1—3 мг л-хинондиоксима, и титруют электрогенерированным титаном также при энергичном размешивании раствора. Титрование проводят при силе генераторного тока 25—40 или 10 ма. В первом случае титрование ведут с перерывами генерирования через каждые 50—60 сек (вблизи конечной точки чаще), после каждого прекращения генерирования раствор размешивают 1—2 мин, замеряют силу индикаторного тока и продолжают титрование. Во втором случае (малая скорость генерирования титана) титрование ведут непрерывно, контролируя силу индикаторного тока через равные промежутки времени (30 сек). Титрования проводят при комнатной температуре и непрерывном продувании электролита током азота. [c.82]

    Примером кулонометрического определения индивидуального органического соединения по количеству содержащегося в нем галогена является метод определения метилбромида в воздухе [747]. Метод состоит в поглощении паров метилбромида спиртовыми (С2Н5ОН, СНзОН) растворами NaOH йли КОН с последующим титрованием выделившихся при этом Вг" электрогенерированным Ag+ Оптимальные условия поглощения и щелочного гидролиза метилбромида таковы температура реакционного раствора 60° С продолжительность гидролиза 15 мин объем щелочного раствора 1 мл. Генерирование [c.93]

    Определение углерода в органических соединениях [874, 875] проводят на установке, описанной выше (стр. 112) при изложении методов определения водорода [874]. Собственно говоря, углерод определяют одновременно с водородом. Углекислый газ, полученный в результате разложения пробы, уносится из кулонометрической ячейки азотом и поступает в стеклянную трубку (диаметр 7—8 мм-, длина 200 мм), заполненную порошком безводной и нагретой до 205—225° С гидроокиси лития. При этом СОг образует ЫгСОз и НгО. Пары воды уносятся из трубки током азота во вторую кулонометрическую ячейку, где поглощаются пленкой пятиокиси фосфора. Дальнейший анализ ничем не отличается от описанного для случая водорода. Абсолютная ошибка определения углерода в перечисленных выше органических веществах составляет 0,3%. [c.115]

    Методы определения следов описаны для Ag, А1, Аз, Ва, В1, Са, С(1, Се, Со, Сг, Си, Ей, Ре, N(1, Кр, №, РЬ, Ри, 8е, 8н, 8г, ТЬ, Т1, и, V, У, Ь, 2п, С1, Вг, I, Р, 8, и этот перечень не полон. Список генерируемых титрантов включает Хг, Вгз, С1г, А +, Ag +, Си+, Ре +, Мп +, 8н +, ТР+, иОз, У0 +, Се +, ОН , Н+. Разнообразные органические соединения можно также определить кулонометрически. [c.304]

    Кулонометрическое определение воды прямым электролизом дает возможность интересного аналитического определения. При пропускании смеси водяных наров с газом над пленкой нятиокиси фосфора в результате поглощения воды пленка становится электропроводной [192]. Сконструирована специальная электролитическая ячейка, состоящая из платиновых электродов, намотанных спирально на пластмассовую оправу и покрытых пленкой Р2О5. Электролиз с выделением водорода и кислорода идет до момента, когда вследствие удаления воды пленка становится непроводящей ток электролиза является мерой абсорбированной воды. Такие устройства можно, например, использовать при определении влажности и для онределения воды, получающейся при сншгании органических соединений. В гигрометрических определениях 1-10" % водяного пара в воздухе при скорости 100 мл мин получается ток электролиза силой 13 мка. [c.307]

    Термические детекторы универсальны в том смысле, что они реагируют в той или иной мере на присутствие любых компонентов пробы, если свойства ни одного из них не совпадают со свойствами газа-носителя. Ионизационные детекторы полууниверсальны в том смысле, что они реагируют на присутствие большинства органических соединений и лшпь в незначительной степени на неорганические соединения. Для большинства анализов желательна универсальность сигнала. Однако в ряде случаев на колонке невозможно или неудобно разделить все компоненты сложной смеси. Тогда можно использовать иногда селективный детектор, который видит только одну определенную группу соединений, обладающих некоторыми специфичными свойствами. Например, сконструирован кулонометрический детектор, чувствительный лишь к соединениям галоидов и серы. При получении аналитических данных это позволяет избежать тщательной предварительной обработки пробы или полного разделения всех компонентов на колонке. Селективные детекторы, следовательно, могут быть весьма полезны и должны быть рассмотрены при разработке новых аналитических методик наряду с обычными методами детектирования. [c.54]

    Первоначальная методика использования такого детектора была описана Коулсоном и др. [81. Поток, выходящий из хроматографа, смешивают с кислородом и пропускают через кварцевую трубку для сжигания размером 30 X 1,25 см, нагреваемую до 800° и содержащую три тампона из платиновой сетки длиной 2,5 см. При прохождении через трубку хлорированные углеводородные пестициды сжигаются до воды, углекислого газа и хлористого водорода большинство же природных компонентов растительной ткани будут образовывать только первые два из указанных веществ. Поток газа из трубки для сжигания барботируют затем через титрационную ячейку и содержание хлора определяют кулонометрически. Метод основан на непрерывном автоматическом титровании хлорида ионами серебра, которые генерируются электрически в титрационной ячейке. Электрический ток, необходимый для поддержания постоянной концентрации ионов серебра в ячейке, регистрируется на ленте самописца как функция времени. Как обычно принято, снимают ряд прямых, причем природа пестицида определяется положением пика на ленте, а количество — площадью под пиком. Если нужно определять количество серусодержащего компонента, газ-носитель, входящий в трубку для сжигания, следует смешивать не с кислородом, а с водородом, вследствие чего расложение органических соединений происходит в атмосфере восстановителя. Образуется сероводород, который также может быть определен кулонометрически. Согласно другому методу (более желательному с точки зрения безопасности), пробу сжигают в атмосфере кислорода, а образующийся сернистый газ измеряют в ячейке с золотым электродом для определения окислительно-восстановительного потенциала. [c.578]

    Определение влажности газообразных сред, содержания воды в минералах, кремнийорганических соединениях, органических растворителях, адсорбированной воды и другие подобные проблемы являются актуальными в технологии получения различных материалов, полупродуктов, оценки их качества. Классический способ определения следов воды, основанный на применении реактива Фишера, представляющего собой смесь иода и диоксида серы в среде метанола и пиридина, может бьхть реализован и в условиях кулонометрического титрования. Титрантом здесь является иод, генерируемый на платиновом электроде. Преимущество кулонометрического титрования перед классическим вариантом в том, что этот метод позволяет определять воду на уровне 10 - 10 %, исключив необходимость стандартизации растворов. Кроме того, при кулонометрическом титровании можно анализировать малые количества образца за счет снижения генераторного тока и времени его пропускания. [c.537]

    В кулонометрической бромометрии при определении медленно бромирующихся органических веществ иногда генерируют определенный избыток брома, выдерживают раствор до завершения основной реакции и затем оттитровывают остаточный бром электро-генерированной одновалентной медью. Такой прием использован при определении нипагина [3981, анилина [4101, метилвинилке-тона [450] и других соединений [388, 400, 402, 410]. При этом варианте титрования необходимо хорошо герметизировать титрационную ячейку и вести титрование в атмосфере инертного газа (например, очищенных от кислорода углекислом газе или азоте), так как побочное окисление одновалентной меди может приводить к значительным ошибкам. [c.51]

    С использованием кулонометрических методов определяют эквивалентные веса [636], изучают стехиометрию и механизм реакций окисления, гидролиза и комнлексообразования [191, 637—642], исследуют кинетику реакций [643—645] и каталитические процессы [646—648]. Очень широко применяется техника микрокулонометрии для определения числа электронов, принимающих участие в реакциях окисления — восстановления самых разнообразных органических и неорганических соединений [125, 649]. [c.70]


Смотреть страницы где упоминается термин Кулонометрическое определение органических соединений: [c.210]    [c.245]    [c.28]    [c.59]    [c.18]    [c.436]    [c.278]    [c.161]    [c.69]    [c.113]    [c.427]    [c.49]   
Смотреть главы в:

Основы современного электрохимического анализа -> Кулонометрическое определение органических соединений




ПОИСК





Смотрите так же термины и статьи:

Органические кулонометрическое

Соединение определение



© 2025 chem21.info Реклама на сайте