Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновские лучи влияние на образование

    Определение методом рассеяния рентгеновских лучей числа микротрещин в волокнах ПА-6, подверженных воздействию напряжения оо = 128 МПа на воздухе, позволило получить интересный результат [214], заключающийся в том, что скорость накопления микротрещин почти мгновенно возрастала (от 5-10 до 110-10 м-з С ) при включении ультрафиолетового облучения. Эта скорость также резко уменьшалась до своего исходного значения при выключении ультрафиолетового облучения по истечении Ю с и при повторении подобной операции. Облучение ненапряженного образца не сопровождалось образованием микротрещин и не оказывало влияния на скорость их последующего образования. Было показано, что ультрафиолетовое облучение напряженного волокна ПА-6 и натурального шелка в атмосфере гелия увеличивало накопление свободных радикалов [213. В данном случае скорость накопления радикалов ири 200<ао<600 МПа убывала в зависимости от длительности срока облучения и достигала постоянной концентрации Л (К) через 5-10 с. В ПА-6 при напряжении 600 МПа концентрация Л (К) была порядка 10 м- это значение близко к предельной концентрации, достигаемой в чисто механических испытаниях при разрыве цепей под действием напряжения. [c.321]


    Проведен ряд исследований по влиянию излучений на различные водные растворы. Кинетика этих процессов очень сложна результаты исследований во многих случаях являются противоречивыми, а поэтому можно сделать лишь небольшое число обобщений. Протекающие процессы обычно согласуются с постулированным начальным образованием Н- и ОН-радикалов из воды или (в случае присутствия газообразного кислорода) образованием пергидроксила в дальнейшем протекают реакции этих радикалов с растворенным веществом, хотя Лефор и Гайсинский сообщают о случае, когда арсенит в водном растворе, по-видимому, перешел в элементарный мышьяк под прямым действием излучений [90]. В ряде случаев скорость образования перекиси водорода оказы-ваб гся более высокой, чем при облучении чистой воды так, например, ионы галогенидов в растворе повышают количество образующейся перекиси водорода, причем йодид более эффективен, чем бромид, который в свою очередь эффективнее хлорида. В недавно проведенной дискуссии на заседании Фарадеевского общества [84] были сообщены результаты ряда новейших исследований по влиянию растворенных веществ. В этих сообщениях содержатся также ценные ссылки иа предыдуш ие работы. Из других новых работ нужно указать на облучение рентгеновскими лучами водных растворов йодноватокислого калия [101], йодистого калия [102], дезоксирибонуклеиновой кислоты [103] [c.63]

    Ионизирующее излучение. Взаимодействие с орбитальными электронами. Все три вида радиоактивного излучения, так же как и рентгеновские лучи, относятся к ионизирующему излучению, т. ., проходя через вещество, они превращают молекулы этого вещества в ионы. В отличие от ионизации, которая наблюдается при взаимодействии, например, атома натрия с атомом хлора, ионизация под влиянием ионизирующего излучения приводит к отрыву электронов от атомов и молекул, в результате чего образуются ионы и сложные радикалы. Именно это делает радиоактивное и рентгеновское излучение опасным для тканей и клеток человеческого организма. При такой ионизации нарушаются в основном валентные оболочки, что может вызвать разрыв ковалентных связей и образование весьма активных фрагментов и радикалов. Образовавшиеся соединения, стремясь к устойчивому состоянию, могут соединиться в самом различном сочетании, что приведет к образованию новых молекул. Если такое случится с ферментом или — что еще хуже — с нуклеиновой кислотой, то результат может оказаться весьма плачевным. [c.458]


    Влияние перезарядки ионов на радиационно-химические реакции отчетливо проявляется при разбавлении реагирующих веществ благородными газами. Так, гелий, неон и аргон ускоряют реакцию полимеризации ацетилена, инициируемую действием рентгеновских лучей [138]. Аналогичные эффекты наблюдались также [34] при разложении НВг под действием рентгеновских лучей в присутствии Ne, Кг и Хе в реакции образования NHg [29] при ос-облучении смесей Na -г Нз в присутствии Не, Аг, Кг, Хе в реакции образования окислов азота [132] при у-облучении смесей N3 + в присутствии Не, Ne, Аг при реакции СОз с углеродом [108] и в некоторых других реакциях при облучении газовых смесей [67, 69]. [c.153]

    Таким образом, следует добиваться строгого выделения процессов, происходящих в период образования поверхности раздела. Особенно необходимо всегда использовать образцы, имеющие одинаковое число потенциальных центров зародышеобразования. С другой стороны, для того чтобы провести точное исследование процесса, нужно использовать чувствительные физические методы наблюдения для независимого измерения влияния химической реакции, протекающей на поверхности раздела, и процесса образования зародышей критического размера (измерения электропроводности, магнитной восприимчивости и поверхностного потенциала, инфракрасная спектроскопия, дифракция рентгеновских лучей или электронов — для выяснения роли первого процесса электронная или оптическая микроскопия, рентгеновские лучи или дифракция электронов — для выяснения роли второго процесса). [c.207]

    Мутагенное и канцерогенное действие оказывают ультрафиолетовые лучи, рентгеновские лучи и у-излучение. Во всех случаях имеет место повреждение ДНК. Например, ультрафиолет вызывает образование пиримидиновых димеров. Результатом облучения могут быть разрывы одной или двух цепей ДНК, поперечные сшивки. Все это лежит в основе мутагенного и канцерогенного эффекта облучения. Рентгеновские и у-лучи помимо прямого влияния на ДНК [c.353]

    Полученные данные объясняют причину расхождения величин прочности воды на разрыв, определяемых теоретически, из адсорбционных измерений и прямыми измерениями объемной воды. Последнее значение (27—29 МПа при 20°), вероятно, занижено по сравнению с адсорбционным значением 100 МПа [9], близким к теоретической прочности. Причины понижения — образование зародышей под влиянием космических лучей. Радиус зародышей, образованных рентгеновским излучением в объемной воде, близок к радиусу зародышей, образующихся в порах Гц 100 нм под действием космических лучей. Точка а на рисунке р ра — 0,70) соответствует радиусу зародыша 3 нм. Прочность воды на [c.212]

    Заметное влияние типа излучений на выход разложения воды по энергии, вероятно, зависит от степени разделения возникших Н- и ОН-радикалов, образовавшихся в треке ионизирующего луча, или от аномального распределения Н- и ОН-радикалов [86, 94]. Например, предполагается, что положительные ионы, возникшие по каждому следу а-частицы, протона или дейтона, быстро диссоциируют на Н" и радикал ОН, тогда как электрон, появившийся от первичного процесса, захватывается только на некотором расстоянии от этого пути. Вследствие этого создается избыток ОН-радикалов вдоль центра пути и избыток Н-радикалов в зоне, окружающей этот центр. Это увеличивает вероятность рекомбинации двух гидроксильных радикалов с образованием перекиси водорода и двух Н-атомов в молекулу водорода. При облучении рентгеновскими, у- или -лучами логично предполагать, что ОН- и Н-радикалы образуются в значительно меньшей концентрации и распределены более равномерно, что увеличивает вероятность их рекомбинации с образованием исходной воды. Аллен [96] показал, что потеря энергии быстрыми электронами, проходящими через воду, происходит внезапными толчками, что приводит к образованию скоплений пар ионов вдоль пути этих электронов, что также должно влиять на распределение ОН- и Н-радикалов. У нас очень мало сведений об относительных выходах по энергии в водяном паре по сравнению с выходами в жидкой воде. Однако близость между молекулами воды и наличие водородных связей в жидком состоянии, как можно предполагать, обусловливают значительные различия в механизмах реакций в обеих фазах. [c.62]

    Реакции фотолиза и радиолиза. При облучении ультрафиолетовым светом или другими видами излучений (рентгеновским, Y-лучами) молекулы под влиянием поглощенных ими квантов энергии переходят в возбужденное состояние. При достаточно большой энергии кванта происходит разрыв связей и образование свобод- ных радикалов. Поскольку это возбуждение протекает под влиянием не температуры, а внешнего источника энергии, скорость распада вообще не зависит от температура, а определяется интенсивностью облучения. В этом состоит большое преимущество фото- и радиационнохимических способов проведения реакций, вполне осуществимых при низких температурах. [c.111]


    Под влиянием жесткого рентгеновского излучения или -лучей с большой энергией кванта, значительно превосходящей энергию связи, способны разрываться все связи в молекуле с образованием не только радикалов, но даже ионов. Однако преимущественно рвутся те связи, которых больше в единице объема, или же связи, занимающие в молекуле периферийное положение, например С—Н 8 молекуле углеводородов  [c.112]

    Таким образом, кристаллизация в пачках сводится к согласо- ванному повороту звеньев , полимерных цепей, обеспечивающему наиболее выгодное размещение боковых групп. Относительная легкость осуществления такого поворота находится в полном соответствии со сравнительно большой скоростью кристаллизации большинства регулярных полимеров при оптимальной температуре. Пачки при кристаллизации, вследствие возникновения границы раздела, приобретают поверхностное натяжение. Под влиянием избыточной поверхностной энергии они способны путем многократного изгибания на 180° самопроизвольно складываться в ленты с меньшей поверхностью . Требование дальнейшего снижения поверхностного натяжения приводит к соединению лент в ламели (см. рис. 120) и наслоению ламелей друг на друга с образованием правильного кристалла. Этот процесс наслоения происходит не путем присоединения отдельных макромолекул к растущей грани кристалла, а за счет упорядоченной агрегации все более крупньгх структурных единиц, что подтверждается данным , полученными методом рассеяния рентгеновских лучей под малыми >1лами (см. с. 430). Возникающие при этом ленты , ламели и единичные кристаллы видны под электронным микроскопом. [c.437]

    Эти соображения позволяют дать новое и более правдоподобное объяснение результатов, полученных Эстерманом, Лейво и Стерном. Эти авторы, облучая КС1 рентгеновскими лучами (стр. 59), обнаружили, что в глубине кристалла быстро появляются анионные вакансии. Действие рентгеновских лучей на кристалл приводит к появлению электронов с большой энергией (и положительных дырок), которые, проходя около внутренних дислокаций, вызывают местное нагревание, достаточное для того, чтобы произошло образование вакансий на уступах Зейтца. Возникшие таким образом анионные вакансии захватывают электроны, образуя /"-центры, в то время как катионные вакансии захватывают положительные дырки, причем получаются так называемые 1/-центры, вызывающие поглощение в ультрафиолетовой области. Применяя этот новый механизм, можно избежать трудностей, которые встречаются при объяснении относительно быстрой миграции вакансий с поверхности (стр. 60) кроме того, он объясняет с более общей точки зрения результаты экспериментов Пржибрама и других, которые отмечали влияние механической и термической обработки кристал- [c.63]

    Растворение кислорода или воздуха в воде заметно повышает как начальную скорость образования перекиси водорода, так и ее стационарную концентрацию при облучении рентгеновскими лучами вместе с тем присутствие кислорода не оказывает заметного влияния на результаты бомбардировки ь.-луча-ми [92]. Джонсон, Шолс и Вейс [99] сообщили, что в присутствии кислорода число молей перекиси водорода, образующейся в начальном периоде при рентгеновском облучении в расчете па единицу поглощенной энергии, не зависит от pH в интервале 1—12 и что скорость образования перекиси резко падает при потреблении всего кислорода. С другой стороны, Луазлёр [100] сообщил, что снижение pH увеличивает образование перекиси водорода под действием рентгеновских лучей. В последних работах [92] сообщалось, что при рентгеновском облучении льда, приготовленного из насыщенной кислородом воды, количество перекиси водорода, образующейся на единицу поглощенной энергии, падает с понижением температуры в интервале от О до — 116° и при температуре ниже — 116° перекись вообще не обнаружена. Вода, насыщенная кислородом при 0°, образует значительно больше перекиси водорода, чем лед при этой же температуре, и выход перекиси возрастает с повышением температуры до 20°, т. е. до максимальной из изученных температур. Для а-излучения этого влияния температуры не обнаружено, но все же было показано заметное различие в выходе перекиси водорода при переходе воды в лед. Выше мы уже останавливались на начальных реакциях, которые были приняты для ионизированных молекул и электронов. Если присутствует также растворенный кислород, то за начальную реакцию принимается следующая  [c.63]

    Интересен вопрос и о физиологическом действии перекиси водорода на молекулярном уровне. Показано, что перекись водорода может вызвать мутации, и в ряде литературных источников [442] описываются условия и природа этого эффекта. Последний иногда считают радиомиметическим эффектом, причем он представляет интерес с точки зрения образования перекиси водорода в живых организмах прн действии ионизируют,их излучений (см. стр. 60). Механизм этого мутагегпюго действия точно еще не известен, а поэтому заслуживают внимания различные высказанные мнения и точки зрения. Процессы мутации находятся в близком родстве с карциногеиезом, и, как указывает Дженсен (см. в работе [443] стр. 159), необходимо различать возникновение опухоли и ее развитие факторы, имеющие значения для одного из этих явлений, могут ие оказывать влияния на другое. Мутагенное действие перекиси водорода изменяется также в зависимости от легкости доступа ее к клеточным ядрам (см. в работе [443] стр. 116). Процесс может зависеть и от возможного изменения содержания каталазы в разных частях клетки. Шнейдер (см. в работе [359] стр. 273) считает, что каталаза в клеточном ядре почти отсутствует и находится в растворимой форме в цитоплазме однако мнения по этому предположению расходятся [443]. Тем не менее установлено [444], что каталаза устойчива против рентгеновского облучения. Логическим выводом из того, что рентгеновские лучи и подавляют опухоли и вызывают образование перекиси водорода, была мысль, что перекись водорода может оказывать благоприятное влияние на лечение рака. Такого рода опыты проводились (см. в работе [443] стр. 149 [445]) и проводятся сейчас, но пока еще положительных результатов не получено. Возможно, что перекись, образующаяся при действии излучения, представляет органическую перекись или перекись водорода в форме аддитивного соединения, причем высказана мысль (см. в работе [443] стр. 149), что эти соединения не разлагаются каталазой. Большинство авторов в на- [c.358]

    Р. Бек И Н. Миллер (84] определили начальные радиационно-химические выходы продуктов радиолиза ряда алифатических углеводородов (табл. 14). Выходы. водорода и ненасыщенных углеводородов оказались заметно выще, чем в работах, проведенных при значительных дозах поглощенной энергии, и следовательно, больших глубинах лревращения. Не наблюдалось также образования заметных количеств жидкости или полимера, установленного ранее (85]. Влияние природы излучения на соотношение выходов продуктов радиолиза не имеет общего характера и заметно лишь для отношения 0(СН4)/ / (На). При радиолизе углеводородов С4—Се это отношение больше в случае действия рентгеновских лучей, чем при действии а-излучения. Авторы предположили, что указанное различие связано с протеканием реакций разложения близ поверхности и большей ролью диффузионных процессов в случае действия а-лучей. [c.65]

    При изучении фотохимической деструкции полиэфирных волокон под действием ртутных кварцевых ламп установлено, что в полимере не образуется разветвлений процесс связан с разрывом эфирных связей 2458. при длинах волн света 270— 340 ммк в чистом кислороде деструкция не ускоряется. При более коротких волнах кислород ускоряет деструкцию. Облучение линейных алифатических полиэфиров электронами высокой энергии (1 1Q5—5-10 эв), а также у- и рентгеновскими лучами приводит к образованию сшитых продуктов, обладающих по-, вышенной стойкостью к растворителям и теплостойкостью 459. Для полиэфиров строения Н0[—( H2)nOO ( H2)m] OOH, где п = 2, 3 и m = 4, 7 и 8, исследовано изменение характеристической вязкости и числа НООС- и НО-групп в результате облучения у-лучами от источника Со ° (6000 кюри) при дозах облучения от 18 до 299 рад. При этом было обнаружено закономерное снижение [т ] и рост количества СООН-групп в полиэфирах с увеличением дозы облучения. Наименьшее влияние оказывало облучение на полидекаметиленсебацинат24бо. [c.213]

    Влияние растворенного в воде воздуха на радиолиз воды было обнаружено в первых исследованиях, посвященных этому вопросу. Риосе [1] и затем Фрикке и Браунскомб [2], облучая рентгеновскими лучами чистую обезгаженную воду, не обнаружили ее разложения, в то время как в присутствии растворенного воздуха вода разлагалась с образованием Н2, Н2О2 и О2. Позднее Аллен [3] показал, что быстрые электроны, радиационно-химическое действие которых пе отличается от действия рентгеновских лучей, разлагают чистую обезгаженную воду, но концентрация образующихся Нг и Н2О2 очень низка. Так, стационарное давление водорода, но данным Аллена, для электронов с энергией в 1 Мэв составляет 10—20 мм рт. ст. [c.7]

    Атомы газа, возбужденные и ионизированные электронами, при переходе в нормальное состояние и рекомбинации дают люминесцентное излучение — испускают фотоны ультрафиолетового спектра. Последние, попадая на катод, вызывают фотоэффект — вырывают из него новые электроны. При высоких напряжениях (на участке IV) лавино-образование происходит не только под влиянием внешних квантов рентгеновских лучей, но и от фотоэлектронов, вырванных из катода. В результате разряд, возникший в некоторой части прибора, мгновенно распространяется по всему пространству, а после прохождения на электроды первого каскада лавин процесс лавинообразования спонтанно возобновляется. Разряд поддерживается неопределенно долгое время под действием самого поля подобно тому, ак это имеет место в ионной рентгеновской трубке. Рентгеновский квант играет в этом случае лишь роль активатора , дающего первый толчок самостоятельному разряду. [c.166]

    При исследовании влияния ионизируюш,их излучений на электропроводность возникают методические затруднения, об словленные как спецификой работы с источниками, так и сложностью процессов, протекающих в веществе под воздействием излучения. Например, комптоновское поглощение фотонов сопровождается возникновением электрического тока даже без внешнего источника напряжения. Это, приводит к возникновению э. д. с. под воздействием излучения, аналогичной фото-э. д. с. [33, с. 445]. Значение этой э. д. с. может достигать сотен и тысяч вольт [34, 35]. Коломейцев и Якунин связывают образование э. д. с. в облучаемых образцах с поглощением излучения и неодинаковой концентрацией носителей заряда но объему образца. Действительно, интенсивность излучения убывает при проникновении в диэлектрик. Поэтому концентрация носителей будет уменьшаться при удалении от облучаемой поверхности образца, т. е. экспериментально наблюдаемая электропроводность есть результат усреднения эффекта облучения по всему объему образца. При изучении влияния толщины образцов полистирола на добавочнзто электропроводность и возникающую под воздействием рентгеновских лучей э. д. с. было установлено [36], что первая падает, а вторая возрастает при увеличении толпщны образца. Это согласуется с представлениями о концентрированном механизме возникающей э. д. с. [c.29]

    Двоякое поведение жидкой воды следует также из большого числа других экспериментальных данных. Так, зависимость плотности воды от температуры и понижение температуры максимальной плотности жидкости с возрастанием давления можно хорошо объяснить, если учесть возможность самоперехода объемной структуры воды в более плотную форму. Таким же образом вызываемые давлением разрушения объемной структуры с образованием в жидкости менее плотных компонентов можно объяснить влиянием температуры на вязкость воды, находящейся под высоким давлением [33]. Данные по поглощению ультразвука водой также согласуются с развитыми представлениями о пребывании воды в виде двух отличающихся по состоянию жидкостей. Минимум, наблюдаемый при 55° на кривой поляризуемость электрона — температура, объясняется термическим разрушением структурных пустот и степенью заполнения этих пустот ближайшими молекулами воды [35]. Кроме этого, близкие значения энергии активации диэлектрической релаксации, ламинарного потока и самодиффузии (4,6 ккал/люль) также позволяют предположить, что лимитирующей стадией для всех этих процессов является разрушение структуры [36]. Количественная обработка такого двойственного поведения воды дает возможность определить степень разрушения водородных связей, которая меняется в зависимости от выбранной модели от 0,1 до 70% при 0° [37]. Очевидно, эти величины относятся к различным моделям или к различным степеням разрушения водородных связей. Как следует из данных по дисперсии рентгеновских лучей, многие физические свойства воды, которые свидетельствуют о ее существовании в двух жидких состояниях, можно объяснить, используя существенно отличающиеся друг от друга модели [29, 38]. Следовательно, точное определение природы менее связанного плотного состояния воды представляет значительную трудность, [c.15]

    Вообще, предположение о возможности определения степени кристалличности по данным ядерного магнитного резонанса оказалось несостоятельным. Так, Ремпел с сотрудниками 2 и фу. шилло с сотрудниками установили, что кристалличность, определенная методом ядерного магнитного резонанса, изменяется с температурой не так, как кристалличность, измеренная по дифракции рентгеновских лучей, а именно, при снижении температуры от 60° С первая величина постепенно возрастает, а вторая остается практически неизменной. Более того, Фушилло с сотрудниками нашли, что в облученных образцах полиэтилена, в которых рентгеновская кристалличность равнялась нулю, кристалличность, рассчитанная методом ядерного магнитного резонанса, достигала 93%. Шлихтер 3 также обнаружил исчезновение узкой компоненты резонансной кривой под влиянием интенсивного облучения, что может быть объяснено повышением жесткости материала вследствие образования поперечных сшивок. [c.339]

    Фактически новый этап в развитии теоретических представлений о влиянии распределения заряда, а также энергетики атомов и молекул, на рассеяние электронов и рентгеновских лучей) открылся с работ Бартелла и Гэвина [171--174], Бартелла и Кола [175, 176], Та-вара с сотр. [177—182] и ряда других авторов [129, 183—186]. В этих работах в борновском приближении были установлены основные соотнощения, связывающие интенсивность рассеяния электронов (и рентгеновских лучей) с полной (а также корреляционной и другими составляющими) электронной энергией атомов и молекул, энергией образования молекул, с распределением зарядовой плотности в атомах и молекулах. Было показано, что электронографический эксперимент в принципе дает возможность определить не только ядер-ядерную, но п ядер-электронную О г) и электрон-электронную Р г) функции распределения в отдельности и даже трехмерную функцию распределения электронной плотности в молекулах р(г) [c.251]

    Винилстеарат. Вннилстеарат полимеризован в жидкой и твердой фазах у-излуче1П1ем Со [227] и потоком электронов (1 Мэе) [265]. Изучено влияние температуры на скорость полимеризации и молеку лярный вес полимера. Рассмотрены кристаллографические характеристики мономера в твердофазной полимеризации [266]. Радиационный иоливинилстеарат, полученный в твердой фазе, является более изотактическим, чем полимер, полученный из жидкого мономера. Дифракцией рентгеновских лучей изучена ориентация боковых цепей мономерных звеньев в кристалле при образовании макромолекулярной цепи [267]. [c.141]

    Количественный анализ катализаторов методом диффракции рентгеновских лучей сложен и не очень точен по следующим причинам а) диффузный фон, образующийся как из-за особенностей аппаратуры, так и из-за различного рода неупорядоченности в кристаллитах б) расширение линий в) различие в отражениях от различных фаз вследствие различий в рассеивающей силе составляющих атомов г) различия в интенсивности рассеивания, определяющиеся размерами единичной ячейки и степенью асимметрии д) случайная интерференция линий е) флюоресцентное излучение от образца и трудности, присущие методам измерения интенсивности линий. Применение в качестве стандарта кристаллического образца с диффракционными линиями, близкими к линиям определяемой фазы, смягчает влияние некоторых из указанных факторов. Интенсивность рассеянного рентгеновского излучения, вызванного наличием данной фазы, с поправкой на различные. эффекты, указанные выше, линейно зависит от ее концентрации, но четкость диффракционной картины зависит от величины и упорядоченности кристаллитов. Большие кристаллиты дают резкие интенсивные диффракционные линии, в то время как маленькие кристаллиты дают широкие размытые линии. В некоторых случаях вещества с очень маленькими кристаллитами, например голи аморфной окиси железа, дают очень широкие диффракционные линии, которые с большим трудом можно отличить от фона беспорядочно отраженного рентгеновского излучения [8]. Поскольку многие катализаторы приготовляются методами, обусловливающими образование относительно аморфных структур с сильно развитой поверхностью, их рентгенограммы получаются слабыми и расплывчатыми и даже качественный анализ по рентгенограммам представляет большие трудности. Смесь малых количеств кристаллического вещества с большим количеством почти аморфг ного вещества может дать диффракционную картину только кристаллического вещества. Интенсивность диффракпионных линий увеличивается с ростом порядкового номера атомов, образующих кристаллическую решетку. В отработанных железных, кобальтовых или никелевых катализаторах синтеза углеводородов из окиси углерода и водорода обычно нельзя установить характеристическиа линии углерода, даже если он присутствует в значительных количествах. Однако углерод, присутствующий в виде карбидов, можно обнаружить, поскольку расстояния между отражающими плоскостями из атомов металлов в карбидах обычно отличаются от этих расстояний в чистом металле. [c.37]

    Надсон Г. А., Филиппов Г. С. О влиянии рентгеновских лучей на половой процесс и образование мутантов у низших грибов (Мисогасеае)//В кн. Классики советской генетики. Л., 1968. [c.572]

    Влияние излучений высоких энергий на белки привлекает все больший интерес исследователей. Открытие Чарлзби [365] реакции сшивания полиэтилена под действием ионизирующей радиации стимулировало развитие обширной области радиационной физики и химии макромолекул. В настоящее время достоверно установлено, что радикалы, образующиеся в полимерах под действием излучения, могут рекомбинировать с образованием поперечных химических связей между соседними цепями. Однако хорошо известен также процесс деструкции полимеров под действием излучения, причем в случае уже упоминавшегося полиэтилена, нанример, сумма числа образующихся двойных связей и разорванных связей основной цепи равна числу образующихся в продукте сшивок [380]. Было показано, что действие ионизирующих излучений на белки приводит к разрушению дисульфидных [364, 371], пептидных [366] и водородных связей [367]. В монографии Бовея [362] подробно рассмотрены вопросы действия на белки рентгеновского излучения, у-лучей, электронов, нейтронов, протонов и а-частиц. В ранее опубликованном обзоре Мак-Ларена [363] рассмотрены наиболее важные достижения в этой области до 1949 г. [c.430]


Смотреть страницы где упоминается термин Рентгеновские лучи влияние на образование: [c.72]    [c.229]    [c.97]    [c.256]    [c.188]    [c.315]    [c.389]    [c.84]    [c.49]    [c.74]    [c.148]    [c.208]    [c.69]    [c.37]    [c.316]    [c.59]   
Перекись водорода (1958) -- [ c.61 ]




ПОИСК





Смотрите так же термины и статьи:

Лучи рентгеновские

лучами рентгеновскими лучами



© 2025 chem21.info Реклама на сайте