Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валин молекулярный вес

    Образование трипсина из трипсиногена, которое в физиологических условиях происходит в основном в результате действия энтерокиназы, по крайней мере в начальной фазе активации, и последующего включения аутокаталитического механизма, обусловленного появлением трипсина (поскольку трипсин также превращает трипсиноген в трипсин), не сопровождается значительным изменением молекулярного веса. Молекулярный вес трипсиногена 23 040—23 800, а трипсина — 22 680 — 23 800. N-концевая аминокислота в трипсиногене — валин, в то время как в трипсине — изолейцин. Поскольку ни в трипсиногене, ни в трипсине других N-концевых аминокислот не обнаружено, можно считать, что молекула как трипсиногена, так и трипсина, по-видимому, построена из одной полипептидной цепи, а не из нескольких (аналогичные выводы, даже более экспериментально обоснованные, сделаны в отношении пепсиногена и пепсина). [c.332]


    Гемоглобин с ионом железа Ре + (метгемоглобин) не может действовать в качестве переносчика кислорода, и железо в нем восстанавливается с трудом если почему-либо в ДНК хромосом имеется дефект и организм получает испорченный гемоглобин, то развивается болезнь метгемоглобинемия. Обе эти болезни есть следствие нарушения правильности в распределении нуклеотидов в ДНК. В частности, причиной серповидной анемии является замена кодона ГАА на ГУА, т. е. замена аденина в одном из кодонов на урацил. Но ГАА кодирует глутаминовую кислоту, а ГАА — валин, и такой, казалось бы, пустяк приобретает большое значение. Болезни этого типа называются хромосомными или генными, и лечить их, к сожалению, очень трудно. Однако в некоторых случаях понимание молекулярной основы заболевания позволяет устранить тяжелые симптомы и угрозу гибели больного и дать ему возможность вести почти нормальный образ жизни. [c.182]

    Свойства белков зависят как от электрических свойств, так и от растворимости составляющих их аминокислот (табл. 40). В ряду глицин— аланин — валин — лейцин — изолейцин растворимость в воде заметно уменьшается по мере увеличения алкильной группы и соответственно молекулярного веса изолейцин растворим почти в два раза лучше, чем лейцин. Лейцин, содержащий большую липофильную изо-бутильную группу, может быть экстрагирован горячим бутиловым спиртом 3 смеси с глицином. По непонятной причине циклическая структура пролина придает молекуле необычайно высокую растворимость 1В воде и этиловом спирте, в то время как валин, молекулярный вес которого примерно такой же, растворяется значительно хуже. Растворимость цистина в воде необычно мала, вероятно, вследствие образования хелатов (см. стр 640). [c.634]

    Белки дрожжевых грибков представляют собой биополимеры с высоким молекулярным весом, построенные из цепочек аминокислот, связанных друг с другом. При брожении крахмала белки гидролизуются в аминокислоты. Две из них — лейцйн и изолейцин под действием ферментов (энзимов) превращаются в амиловые спирты, а валин — в изобутиловый спирт. [c.54]

    В 1902 г. английский врач А. Е. Гаррод (1857—1936) исследовал вольных, у которых моча темнела при стоянии на воздухе, и обнаружил, что изменение цвета вызвано присутствием в моче гомогентизино-вой кислоты, или 2,5-диоксифенилуксусной кислоты. Он описал это явление как врожденную ошибку обмена веществ . Позднее было установлено, что это результат генетической мутации фермент, который превращает гомогентизиновую кислоту в теле здорового человека в другие вещества, у больных или не синтезируется совсем или, возможно, синтезируется в измененной форме, не обладающей каталитической активностью. В 1949 г. была открыта причина другой генетической болезни— серповидноклеточной анемии, которая обусловлена присутствием в организме мутантного гена, детерминирующего синтез аномальной полипептидной цепи гемоглобина. В -цепи молекулы гемоглобина у больных серповидноклеточной анемией происходит замена одного аминокислотного остатка глутаминовой кислоты на валин, что уже было описано в разд. 15.6. Поскольку появление аномальных молекул гемоглобина влечет за собой болезнь, серповидноклеточная анемия была названа молекулярной болезнью. С 1949 г. обнаружены сотни молекулярных болезней. Для многих из них установлена природа генной мутации и соответствующее изменение в структуре молекулы белка, зависимого от мутировавшего гена. Для ряда таких болезней обнаружение нарушения на молекулярном уровне позволило практически полностью объяснить симптомы заболевания. [c.467]


    У человека было обнаружено свыше 50 аномальных разновидностей гемоглобина. В одной из них остаток глутаминовой кислоты в каждой из р-цепей замеш ен остатком валина. Столь ничтожное, казалось бы, изменение снижает ионный заряд молекулы и степень диссоциации между гемом и глобином. Пониженная полярность облегчает, по-видимому, кристаллизацию несимметричных молекул гемоглобина, не содержащих кислород, заставляя эритроциты принимать несвойственную им форму. Такие эритроциты быстро разрушаются селезенкой, что приводит к гемолитической анемии. Эта молекулярная болезнь (термин введен Л. Полингом) известна под названием серповидноклеточной анемии. [c.493]

    Точковые мутации в экзонах глобиновых генов могут вести к появлению мутантных Г. с единичной аминокислотной заменой. Это м. б. причиной молекулярных болезней — наследств, гемоглобинопатий. Наиб, известный пример мутантного Г,- HbS, в к-ром шестой от N-конца р-глобино-вой цепи остаток глутаминовой к-ты заменен на остаток валина. Такой Г. содержится в эритроцитах больных серповидноклеточной анемией. Точечная мутация, делеция (выпадение участка ДНК) или другой дефект глобннового гена, [c.516]

    Гемоглобин — основной компонент эритроцитов (красных кровяных шариков)—представляет собой белок молекулярного веса около 68 ООО. На примере гемоглобина легко проиллюстрировать важную роль состава и структуры белка для его функции. Так, при незначительном изменении аминокислотного состава гемоглобина (замещение глутаминовой кислоты на валин) свойства этого белка резко нарушаются такой аномальный гемоглобин обусловливает развитие тяжелого наследственного заболевания—серповидноклеточной анемии. [c.483]

    Лиганды индуцируют формирование ферментов. В отличие от рассмотренного выше случая для треониндеаминазы, димерного фермента с молекулярной массой 360 ООО, содержащего две пири-доксальфосфатные группы (рис. 8,3), L-валин (или ь-изолейцин) служит только в качестве катализатора и не присоединяется к молекуле фермента [468]. Неактивный олигомер при этом проходит дополнительное формирование, в результате которого получается ферментативно активный препарат. При рЯ 7,5 и выше для этого процесса, являющегося непременным условием активации [4691. L-валин совершенно необходим. [c.191]

    Определены первичные структуры многочисленных анормальных гемоглобинов человека некоторые из них изучены методом рентгеноструктурного анализа, что сделало возможным объяснение патологических следствий генетических ошибок на молекулярном уровне. Серповидная анемия, названная так вследствие того, что эритроциты пациентов при низких значениях р(02) сплющиваются, приобретая форму серпа, является причиной смерти примерно 80 000 детей ежегодно. Анормальный гемоглобин ИЬЗ содержит в р-цепи Уа1-6 вместо 01и-6. Деоксигенированная форма НЬ8, по-видимому, агрегирует с образованием нерастворимого полимера. Один из предложенных методов лечения анемии заключается во введении низких концентраций цианат-иона, что, как полагают, вызывает карбомоилирование аминогруппы Л -концевых остатков валина-1 в а- и р-цепях. Первый из этих остатков участвует в межцепочечном взаимодействии в дезоксигемоглобине, а второй образует электростатическую связь с 2,3-дифосфоглицератом. Кар-бамоилирование предотвращает оба типа взаимодействий, способствуя тем самым сдвигу в сторону конформации оксигемоглобина и уменьшению риска агрегирования. [c.559]

    Создание новой фазы [153], обладающей малой летучестью и высокой стабильностью, открыло новые возможности для ис пользования ГХ—МС для анализа энантиомеров Эта фаза была создана на основе L валин трет бутиламида и сополиме ра диметилсилоксана и карбоксиачкилтриметилсилоксана с за данными вязкостью и молекулярной массой, структура этой фазы приведена ниже [c.96]

    В последние годы вьыснено, что время полужизни белков детерминировано природой его N-концевой аминокислоты. Если она легко соединяется с убиквитином — небольшим белком с молекулярной массой 8,5 kDa, состоящим из 74 аминокислотных остатков, то такой убиквитированный белок атакуется протеиназами и разрушается. Наиболее подвержены убиквитированию аргинин, лизин, аспарагиновая кислота, аспарагин, триптофан, лейцин, фенилаланин, гистидин, глутаминовая кислота, тирозин, глутамин, изолейцин менее подвержены — метионин, серин, аланин, треонин, валин, глицин, цистеин, их относят к стабилизирующим гидролитический распад белков. [c.369]

    Крам с сотр. наблюдали влияние структуры макроцнклического полиэфира на константы ассоциации лри взаимодействии этих хозяев с алкиламмониевыми соединениями в качестве гостей [180]. Среди множества соединений они получили серию производных, общая формула которых соответствует (114). (5)-Дикарбоновая кислота (114, / = СН2ОСН2СО2Н) преимущественно образует комплекс [182] с (5)-валином с преобладанием над его энантио-мером в 1,3 раза. Рассмотрение молекулярных моделей показывает, что в таком преимущественном комплексе одна из карбоксильных групп хозяина в ионизованной форме может образовывать ионную пару с аммониевой группой гостя, которая взаимодейст- [c.422]

    Молчащие мутации. Если под мутацией в традиционном смысле понимают внезапное изменение признака, т. е. изменение генотипа, проявляющееся в фенотипе, то на молекулярном уровне любое стабильное наследуемое изменение ДНК рассматривают как мутацию. Однако ввиду вырожденности генетического кода понятно, что не всякая мутация такого рода будет проявляться в фенотипе. Во многих триплетах изме- нение третьего основания остается без последствий ( молчапще мутации). Даже замена первого или второго основания триплета не всегда приводит к серьезным последствиям. Хотя структуры высшего порядка (третичная и четвертичная) определяются первичной структурой белка (т.е. последовательностью аминокислот), разные аминокислоты играют в этой структуре не одинаково важную роль. Например, мутация АиС->ОиС ведет к замене изолейцина валином, т.е. к замене одной липофильной группы на другую. Однако мутация Сии- ССи приведет к замене лейцина пролином, и последствием такой замены будет отклонение от нормальной пространственной конфигурадии полипептидной цепи, что может сильно изменить структуру высшего порядка. Из этого понятно, что различные мутации в одном и том же структурном гене определенного фермента могут по-разному сказываться на его активности возможны любые изменения-от едва заметного снижения каталитического действия до полной инактивации. [c.442]


    Спектры ЯМР-д протона и дейтрона для растворов гемоцианина [7] сравниваются на рис. 9.4, из которого с учетом сказанн ого выше следует, что для протонов лишь около половины релаксационного процесса протекает внутримолекулярно. Имеется еще сравнимый вклад, который должен быть обусловлен взаимодействиями протонов растворителя и растворенного вещества (неопубликованные данные для растворов конкана-валина А молекулярной массы 54 ООО, из молекулы которого удален металл, имеют такой же характер). Заключение о важности взаимодействия протонов растворителя и растворенного вещества подтверждается также непостоянством величины А для протонов уравнение (1)], так как они разбавлены дейтронами [15]. Особенно красноречивый пример приведен на рис. 9.5, из которого видно, что если исключить одно из этих взаимодействий, то скорость релаксации немного уменьшается, а затем заметно увеличивается. Ясно, что протоны растворителя должны взаимодействовать с протонами растворенного вещества. Ознакомление с оригинальной работой [15] показывает, что, вопреки ожиданию в экспериментах с частично дейте-рированным растворителем, величина V для ЯМР-д спектров как протонов, так и дейтронов остается неизменной. Кроме того, в цитированной работе показано, что появление минимума на кривой изменения параметра А можно объяснить в терминах аддитивности меж- и внутримолекулярных процессов релаксации, а не в терминах вх раздельных вкладов в величину А. Связь измеряемой способности к релаксации с этими взаимодействиями определяется парой сопряженных дифференциальных уравнений, мгновенные значения которых и являются скоростями релаксации. [c.169]

    Все волокнообразующие белки, например фиброин шелка и коллаген, построены преимущественно из бифункциональных аминокислот это практически линейные, хорошо кристаллизующиеся полипептидные цепи (см. ниже). Они обладают высокой разрывной прочностью при сравнительно низком удлинении. Нерастворимость шелка обусловлена кристаллизацией фиброина после выделения раствора из желез шелковичного червя. Растворение белка, так же как и растворение целлюлозы, затрудняется вследствие образования большого числа водородных связей между пептидными группами (растворители для целлюлозы, см, стр. 142—143, пригодны также для шелка из этих растворов белок люжет быть высажен добавлением раствора соли). Коллаген, по-видимому, имеет слабо выраженную сетчатую структуру, которая разрушается при гидролизе (образование желатины). Молекулярный вес коллагена превышает 1-10 (установлено путем измерения вязкости в 0,1%-ном растворе моно-хлоруксусной кислоты в воде). Очень высокий молекулярный вес этих полимеров вполне вероятен, очевидно, этим объясняется неудача попыток Грассмэна обнаружить концевые группы.. Эластин представляет собой высокоэластичное вещество с изотропной структурой, которая при вытягивании превращается в анизотропную. Поэтому эластин при вытягивании ведет себя как натуральный каучук. Его молекула также состоит преимущественно из бифункциональных аминокислот, которые вследствие своего строения затрудняют кристаллизацию (валин, пролин, фенилаланин) наличие некоторого числа химических связей между макромолекулами обусловливает абсолютную нерастворимость эластина. Эластин чрезвычайно устойчив к гидролизу (устойчивее, чем коллаген). Роль, выполняемая эластином в животных организмах, находится в соответствии с его аминокислотным составом больпюе количество [c.101]

    Важнейшим в этой группе является валиномицин (молекулярная масса 1111) каждая его молекула [9, 10] содержит три молекулы L-валина (L-Val), три молекулы D-валина (D-Val), три молекулы L-молочной кислоты (L-La ) и три молекулы D-a-ги-дроксиизовалериановой кислоты (D-Hov)  [c.215]

    В настоящее время нет сомнений в том, что анионные и катионные детергенты притягиваются к белкам при помощи ионизированных групп белковых молекул однако весьма вероятно и то, что неполярные углеводородные цепи детергентов также принимают участие в образовании этих соединений. Неполярная углеводородная группа соединяется, повидимому, с неполярными группами белка, т. е. с алифатическими цепями аланина, валина, лейцина и изолейцина, с бензильной группой фенилаланина и с группами СНг пирролидинового кольца пролина. При помощи этих неполярных группировок белки соединяются с жирами и жирными кислотами [39], а также с простыми углеводородами. Так, например, было установлено, что 2-процентный раствор эдестина в 10-процентном хлористом натрии способен удержать в растворе 5 000 молекул пентана на одну молекулу белка [40]. Адсорбция кишечной стенкой полярных соединений с низким молекулярным весом (например, четыреххлористого углерода) [c.225]

    Физико-химические свойства антител очень близки к физикохимическим свойствам [ глобулинов нормальной сыворотки. В большинстве случаев их изоэлектрическая точка лежит около pH 6 [38]. Молекулярный вес антител крови кроликов и обезьян равен 157 ООО, а крови лошади, овцы и быка 920 ООО [39]. При гидролизе антител получаются те же самые аминокислоты, которые удается обнаружить в гидролизате нормальных т-глобули-нов [40]. В глобулинах нормальной сыворотки кролика и в антителах крови кроликов аминокислоты расположены в одной и той же последовательности. Оба белка содержат аспарагиновую кислоту, валин, лейцин, а на концах пептидных цепей находится аланин со свободной аминогруппой [41]. [c.335]

    Значительные усилия были направлены на установление абсолютной конфигурации ряда а-оксикислот [17—21, 216—233], Наряду с этим большой интерес вызвали хироптические свойства а-аминокислот в связи с тем, что эти небольшие молекулы являются строительным материалом для биологически важных макро.мо-лекул (разд. 4.1, 5.1) [17—21]. Правило секторов для карбоксила позволяет предсказать предпочтительную конфигурацию многих аминокислот и сложных эфиров. а-Оксикислоты и а-аминокислоты ь-конфигурации обладают положительным эффектом Коттона вблизи 215 нм, тогда как их о-энантиомеры проявляют эффект Коттона противоположного знака [216—233]. Таким образом, алифатические аминокислоты обнаруживают специфический эффект Коттона, знак которого отражает стереохимию асимметрического центра. Точная длина волны, при которой проявляется п-> л -эффект Коттона карбоксила, а также его интенсивность изменяются с изменением pH среды. Аминокислоты, исследованные в кислой среде, имеют на кривой ДОВ первый экстремум приблизительно при 225 нм, Хо — около 210—212 нм и второй экстремум в области 195—200 нм. Молекулярная амплитуда зависит от размера алкильных групп. ь-Ала-ннн, наиболее симметричная аминокислота [264—270], имеет наименьшую амплитуду. Изменение алкильной группы при переходе от ь-валина к а-аминомасляной кислоте последовательно увеличивает интенсивность эффекта Коттона [19—21, 264—271]. [c.54]

    Описан [1679] анализ концевых групп цепей привитого полиметилметакрилата, выделенного из привитых сополимеров с шерстью. По этому методу привитые полимеры практически полностью выделяли из анализируемого материала, вываривая в соляной кислоте. В выделенном привитом полимере содержалось небольшое количество концевых аминокислотных остатков. Ззтем проводили динитрофенилирование выделенного полимера. Полученный продукт имел почти такие же спектральные характеристики, как и обычные динитрофенилированные аминокислоты типа валина, лейцина и метионина с максимумом поглощения в УФ-области при 340—345 нм. По данным колориметрического анализа было определено число динитрофени-лированных концевых аминокислотных групп, из которого, определив молекулярную массу выделенного полимера, можно рассчитать число аминокислотных концевых групп, связанных с привитым полимером, которое оказалось равным примерно [c.339]

    Аминокислотный состав церулоплазмина человека приведен в табл. 10.1. О последовательности аминокислот в его белковой цепи данных пока не имеется. Вторичная структура имеет р-кон-фигурацию и беспорядочную укладку с небольшой примесью а-спи-ралей или при их отсутствии. Судя по гидродинамическим свойствам церулоплазмина (табл. 10.2), третичная структура его молекулы представляет собой очень плотную упаковку. Недавно Саймонс и Берн [29] на основании своих исследований предложили тетрамерную модель четвертичной структуры белка, которая включает две полипептидные цепи с молекулярной массой 15 900 и Ы-концевыми аминогруппами валина и две полипептидные цепи с молекулярной массой 59 ООО, в которых в качестве М-концевых выступают остатки лизина. В табл. 10.3 и 10.4 представлены некоторые оптические, электрофоретические и кристаллографические свойства церулоплазмина человека. [c.365]

    Вышеприведенные методы основаны на синтезе производных аминокислот, имеюш,их более высокий молекулярный вес, чем их предшественники, но обладающих повышенной летучестью вследствие меньшей полярности. Удается также получить соединения, которые можно подвергнуть хроматографическому разделению, используя реакции разложения. К этим реакциям в первую очередь относят реакцию окисления до альдегида, содержащего в цепи на 1 атом углерода меньше, чем исходная аминокислота. Окисление сопровождается дезаминированием. Продукт, полученный, например, из а-аланина, является ацетальдегидом. Лангхелд [33] показал, что эта реакция протекает при обработке щелочным раствором гипохлорита. Байер [6] использовал указанный реактив для окисления аланина, а-аминомасляной кислоты, норвалина, валина, норлейцина и лейцина. Он получил хорошее разделение образовавшихся альдегидов при проведении хроматографического анализа на колонке, заполненной динонилфталатом, при 92°. Он обнаружил, что, к сожалению, кислые и серу-содержащие аминокислоты дают сложные смеси летучих веществ. Кроме того, при обработке различных аминокислот иногда образуются одинаковые соединения. Это ограничивает применимость данного метода для анализа сложных смесей аминокислот. [c.537]

    Минимальный молекулярный вес пептида можно рассчитать, если известна его приближенная формула. Например, пептид, в котором обнаружены лей-дни, валин и аланин в молярном отношении 1 1 1, всегда содержит п основных единиц (лей.вал. ала), причем если этот пептид является открытым , то его молекулярный вес равен 301 п— 18 (п— 1). Трудность заключается в определении п. Бблышая часть пептидов относится к интервалу между областью малых молекул (для которых хорошие результаты дают стандартные методы, основанные на законе Рауля) и областью м-анромолекул (для которых имеются специальные методы). [c.163]


Смотреть страницы где упоминается термин Валин молекулярный вес: [c.648]    [c.669]    [c.1092]    [c.407]    [c.446]    [c.214]    [c.342]    [c.26]    [c.27]    [c.655]    [c.10]    [c.64]    [c.122]    [c.366]    [c.125]    [c.209]    [c.306]    [c.528]    [c.551]    [c.506]    [c.722]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Валин



© 2025 chem21.info Реклама на сайте