Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

метилциклопентил получение

    Рнс. 1. Кривые разгонки катализатов метилциклопентана, полученных в присутствии платинированного угля нри 260 (7) и 300—303°С (2) [c.155]

Рис. 2. Кривая разгонки катализата метилциклопентана, полученного в присутствии никелевого катализатора Рис. 2. <a href="/info/13768">Кривая разгонки</a> катализата метилциклопентана, полученного в присутствии никелевого катализатора

    На основании результатов, полученных при изучении гидрогенолиза метилциклопентана и взаимной изомеризации образующихся при этом изомерных гексанов на различных Pt-катализаторах (напыленная в вакууме пленка, Pt, отложенная на АЬОз, активированном угле и пемзе), был сделан вывод [170, 171], что взаимные переходы изомерных гексанов, их Сз-дегидроциклизация в метилциклопентан и гидрогенолиз последнего проходят с образованием единого циклического переходного комплекса  [c.135]

    Полученные результаты, как указывалось выше, связываются с протеканием гидрогенолиза метилциклопентана по двум механизмам. Считают [177], что преобладание того или иного из них обусловлено увеличением (рост Рн, очистка водорода от примеси О2) или уменьшением (добавка О2 или Н2О) электрофильности катализатора. Однако, с нашей точки зрения, электрофиль-ность может являться существенным, подчас весьма важным (см., например, [175]), но отнюдь не единственным фактором, определяющим то или иное распределение продуктов гидрогенолиза алкилциклопентанов. Необходимо учитывать также способ адсорбции исходных углеводородов на поверхности катализатора, легкость атаки той или другой связи, наличие взаимодействия атомов в молекуле. [c.137]

    Рассмотрим теперь с этих позиций результаты, полученные при изучении гидрогенолиза гомологов циклопентана. В проточной системе после установления стационарного режима концентрация водорода на поверхности катализатора относительно мала, так как значительная часть его вытесняется с поверхности платины углеводородом. Наоборот, при импульсной подаче вещества молекулы реагента попадают на поверхность, которая в несравненно большей степени или даже целиком заполнена водородом. Такие значительные различия в концентрации одного из реагентов, вероятно, и сказываются специфически на ходе реакции. Для простоты обсудим возможности гидрогенолиза алкилциклопентанов в условиях обоих методов на примере метилциклопентана. В соответствий с секстетно-дублетным меха- [c.149]

    На основании результатов, полученных при превращениях в токе водорода и гелия пяти изомерных гексанов и метилциклопентана сделан вывод [115], что прн отсутствии в газовой фазе водорода структурная изомеризация алканов проходит только по одному пути — в согласии с механизмом сдвига связей. В токе гелия все названные углеводороды превращаются в бензол. Энергия активации ароматизации н-гексана 42 кДж/моль, остальных углеводородов 71—84 кДж/моль. Полагают [115], что образование бензола из всех изомерных гексанов обусловлено общей лимитирующей стадией — ско  [c.226]

    Очистка бензола. Для нолучения и очистки бензола из углеводородных смесей нефтяного происхождения посредством экстракционной перегонки требуется такая же тщательная подготовка исходного продукта, как я для получения и очистки толуола. В табл. 22 (стр. 121) приведены некоторые из известных азеотропных смесей бензола с другими углеводородами. Хорошо выраженную азеотропную смесь образуют циклогексан и бензол. Для приготовления бензольного концентрата может применяться то же оборудование, что и для приготовления толуольного концентрата, при условии соответствующего изменения температур отбора фракций. Очистка бензола путем экстракционной перегонки аналогична описанной выше очистке толуола [17], В качестве растворителя обычно применяется фенол. В бензинах и других фракциях прямой гонки содержатся очень малые концентрации бензола. Часто он получается путем дегидрирования легкого лигроина, содержащего метилциклопентаны и циклогексан. [c.107]


    В третьей и четвертой графах табл. И приведены молекулярные проценты метилциклопентана в равновесной смеси, полученной со стороны циклогексана и метилциклопентана в пятой графе — средний процент метилциклопентана и в шестой графе — константа равновесия реакции изомеризации [c.305]

    Например, Марковников [23] обрабатывал разведенной азотной кислотой фракцию Кавказской нефти, выкипающую около 70° С. Полученное азотсодержащее соединение было идентичным соединению, полученому таким же способом из синтезированного метилциклопентана. [c.12]

    Используя данные этой таблицы, становится возможным построить график зависимости закоксовывания катализатора от температуры кипения углеводородов (рис. 2.20). Из рисунка ясно видно, что переработка фракции НК-75 °С приводит к резкому закоксовыванию катализатора из-за содержащихся в этой фракции пятичленных нафтенов. Это подтверждается в работе, где изучалось коксообразование фр. 62-85, 85-120 и 120-140 °С. Максимальный выход кокса был получен из фр. 62-85 °С, что вызвано как наличием в ней метилциклопентана, так и образованием его из гексанов. [c.33]

    Для получения индивидуальных углеводородов из сложных смесей, как уже было показано выше на примере выделения ацетиленов из смесей углеводородов С4, можно использовать способность углеводородов разных классов образовывать азеотропные смеси. На этом основан способ выделения циклогексана из нефтяных смесей [309, 310]. Вначале путем обычной ректификации отгоняется фракция, содержащая циклогексан, некоторое количество бензола, 2,4-диметилпентана, 2,2-диметилпентана и очень немного метилциклопентана и других углеводородов. К этой фракции добавляется бензол в количестве, достаточном для отгонки диметилпентанов в виде азеотропов. В процессе ректификации эти азеотропы отгоняются как дистиллат, а в кубе остается чистый циклогексан. [c.280]

    Поскольку промышленные катализаторы риформинга обычно содержат от 0,3 до 0,6% платины, следует прежде всего отметить, что изменение ее содержания в этих пределах практически не оказывает влияния на скорость дегидроизомеризации метилциклопентана [41 ]. Данные, полученные при использовании в качестве носителя фторированного оксида алюминия (0,77% Р), показали, что степень пре-, вращения метилциклопентана в бензол увеличивается только при повышении содержания платины в катализаторе от 0,012 до 0,075% [25]. По-видимому, при большем содержании платины устанавливается равновесная концентрация метилциклопентена и стадия дегидрирования метилциклопентана не влияет на скорость образования бензола.  [c.22]

    Гидрирование, н-гексена на металлических участках приводит к получению н-гексана. Приведенная выше реакция обратима и может привести к образованию метилциклопентана из гексана. [c.27]

    Важную роль в получении бензола играет реакция деги ро-изомеризации метилциклопентана, скорость же г0 Превращения в сравнении с циклогексаном в 10—20 раз меньше.  [c.152]

    Для приведенных реакций, за исключением реакции изомеризации н-гек-сана, значения кажущихся энергий активации мало различаются и при наблюдаемых отклонениях близки к 130 кДж/моль. Это обстоятельство заставляет предположить, что повышение температуры в процессе каталитического риформинга не должно приводить к очень большому увеличению селективности реакций, ведущих к получению ароматических углеводородов. Для расчета селективности реакций ароматизации гептанов и дегидроизомеризации метилциклопентана пользовались упомянутым выше методом. При степени превращения метилциклопентана [c.153]

    Реакция дегидроизомеризации метилциклопентана изучалась на платиновом катализаторе [34]. Полученные результаты дегидроизомеризации при 21 ат, мольном отношении водород углеводо- [c.22]

    Если риформинг проводится для получения бензола и толуола, сырьем служат узкие бензиновые фракции, выкипающие в пределах 62-85 и 85-105°С соответственно. В первой из них бензол образуется из циклогексана, метилциклопентана и н-гексана, во второй фракции толуол образуется из метилциклогексана, диметилциклопентана и н-гептана. [c.123]

    Для гидратации олефинов с концевой двойной связью применяют смесь муравьиной кислоты с каталитическими количествами сильной кислоты, например хлорной. Для получения спиртов нужно гидролизовать образующиеся в качестве промежуточных соединений сложные-эфиры муравьиной кислоты. При этом следует ожидать изомеризации, как показано в одном из приведенных ниже примеров. Для гидратации олефинов с разветвленной цепью лучше использовать трифторуксусную, а не муравьиную кислоту [21. При гидратации 2-метилбутена-2, метилциклопентена и метилциклогек-сена выходы спиртов составляют около 45%. Присоединение муравьиной кислоты в сочетании с серной является стереоспецифиче-ским, по крайней мере в некоторых случаях. Так, например, транс- [c.213]

    Для возмещения потерь серы катализатором в процессе работы и поддержания его активности в бензол специально вводят серу (добавляя к нему сероуглерод или насыщая сероводородом). Полученный циклогексан требует при этом специальной очистки от растворенных в нем сернистых соединений и метилциклопента-на. [c.24]


    Насыщенные углеводороды имеют более высокий ионизационный потенциал, чем соответствующие ненасыщенные соединения. Например, циклогексан (ионизационный потенциал 9,88 эв) легко отличить от всех изомерных олефинов, ионизационные потенциалы которых ниже указанной величины, а также от метилциклопентана (ионизационный потенциал 10,0 эв). Поскольку в любом гомологическом ряду разность между ионизационными потенциалами соседних соединений уменьшается с увеличением молекулярного веса, для указанного метода требуется знание точных величин ионизационного потенциала. В связи с этим в последнее время велась разработка более точных ионизационных источников. Один из таких методов заключается в использовании вместо существующего источника почти моноэнергетического электронного пучка [34], а во втором методе для получения истинно моноэнергетического источника применяется ультрафиолетовое ионизирую- [c.45]

    Наличие в катализатах, полученных из 1,2-диметилциклопентанов на Rh/ и Os/ , относительно больших количеств изогексанов, а также метилциклопентана, говорит о том, что на этих катализаторах легко осуществляется гидрогенолиз любых С—С-связей, а не только связей пятичленного кольца, как на Pt/ . Установлено [155, 229, 231], что н-гексан и н-гептан над Ru-, Rh-, Ir-и Os-катализаторами также подвергаются гидрогенолизу. Было показано также [155, 229, 231], что на этих катализаторах проходит гидрогенолиз не только циклопентанов и алканов, но и циклогексанов. Таким образом, было установлено, что и шестичленные циклоалканы в присутствии ряда металлов VIII группы в сравнительно мягких условиях при атмосферном давлении водорода также претерпевают гидрогенолиз. [c.162]

    Исследовались [51] превращения метилциклопентана в присутствии Pt/AljOa в условиях, близких к условиям риформинга (470—515°С, давление Нз 0,6—4,0 МПа). Полученные результаты объясняют [51] известной схемой последовательного дегидрирования метилциклопентана в метилциклопентен, изомеризацией последнего в циклогексен с последующим превращением его в бензол и циклогексан. При этом допускается, что а) присутствие водяного пара влияет только на кислотную функцию катализатора б) старение катализатора обусловлено главным образом снижением активности Pt-центров в) лимитирующей стадией реакции является стадия изомеризации метилциклопентена в циклогексен. [c.196]

    Исследование превращений изомерных гексанов и метилциклопентана в присутствии (10% Рс1)/А120з показало [87], что основной реакцией является селективное деметилирование гексанов, а в случае метилциклопентана—гидрогенолиз пятичленного цикла. Вместе с тем, как и в присутствии Pt-катализаторов, происходит изомеризация гексанов. Анализ начального распределения продуктов реакции с использованием молекул, меченных С, показал, что структурная изомеризация гексанов проходит по циклическому механизму. В дальнейшем аналогичные превращения были исследованы [88] в присутствии Pd-, Pt-, а также нового вида катализаторов— сплавов Pd—Au и Pt—Au, осажденных па АЬОз (содержание металла везде 10%). Сплавы палладия менее активны, чем сам Pd, даже после активации воздухом при 400 °С. Основной реакцией в присутствии (Pd— Au)/АЬОз, как на Pd/АЬОз, является селективное деметилирование механизм изомеризации гексанов — циклический. Несколько неожиданный результат был получен в случае Pt-катализаторов при переходе от Pt к сплаву 15% Pt — 85% Au. В то время как на Pt/АЬОз изомеризация н-гексана проходит главным образом по механизму сдвига связей, на (Pt—Au)/АЬОз — по циклическому механизму. Аналогично гидрогенолиз метилциклопентана на указанном сплаве Pt—Au проходит неселективно, в то время как на катализаторе Pt/АЬОз — почти исключительно по неэкранированным С—С-связям цикла. Полученные результаты привели к выводу, что высокая дисперсность Pt и присутствие в непосредственной близости от атомов Pt ионов кислорода являются причинами изомеризации н-гексана по циклическому механизму и неселективного гидрогенолиза метилциклопентана [88]. [c.204]

    Прочие реакции. Дегидрокскметилированио первичных спиртов может быть использовано для получения из кислот легко очищаемых циклопентановых углеводородов [113]. Выход метилциклопентана из спирта получается высокий, и этот метод является общим для первичных спиртов. По этому способу спирт нагревают при 190°, при давлении 100 ат в атмосфере водорода в присутствии катализатора никель на кизельгуре  [c.461]

    Получение высоких выходов бензола из фракции зависит от степени конверсии метилциклопентана и циклогексана в бензол. Как показано в предыдущих разделах главы, метилциклопентан легко подвергается гидрокрекингу с образованием гексанов. Поэтому режим должен быть подобран таким образом, чтобы свести такую побочную реакцию до минимума. Это особенно необходимо в тех случаях, когда концоытра- [c.186]

    Синтез некоторых важных для нефтехимии углеводородов (этилена из этана, пропана н жидких фракций изобутилена из изобу-тана бутена и бутадиена из бутана пентенов из пентана бензола и толуола ароматизацией парафиновых и циклопарафиновых углеводородов стирола из этилбензола) относится к процессам термического и термокаталитического разложения и подробно рассматривается в курсе технологии нефти. Там же изложены процессы синтеза компонентов моторных топлив, например, изомеризация бутана в изобутан, метилциклопентана в циклогексан, превращение изомерных ксилолов, алкилирование для получения изооктана, этил-и изопропилбензола полимеризация в низшие жидкие полимеры (полимербензнн, изооктен и компоненты смазочных масел). [c.56]

    Эта схема предполагает наличие в катализаторе платформинга двух типов активных центров [дегидрирования Д и изомеризации — И (кислотный)] и миграцию реагирующего метилциклопентана от центра Д к центру И и снова к центру Д. Иногда эту схему распространяют на все катализаторы, обладающие свойствами ускорять как реакции гидрирования и дегидрирования, так и реакции изомеризации (см., например, обзор Однако наличие двух родов активной поверхности в одном катализаторе вряд ли является распространенным явлением и такие представления подвергались справедливой критике. Тем более невероятно наличие двух центров в катализаторе без носителя (ХУЗд). Схема на стр. 235 предполагает, что все превращения, отмеченные в скобках, идут на одной и той же активной поверхности катализатора. Это доказывается экспериментально получением метилциклопентана из бензола, минуя промежуточное образование циклогексана и десорбцию с этой активной поверхности. [c.236]

    При чрезмерной кислотности катализатора скорости образования бензола и метилциклопентана становятся соизмеримыми, что должно привести к снижению селективности ароматизации циклогексана. Иллюстрацией подобного эффекта могут служить данные, полученные при каталитическом риформинге смеси этилциклогексана и ди-метилциклогексанов на двух типах платиновых катализаторов, (495. С, 2ь Г1а), ть о, . . ...., ,  [c.17]

    Таким образом, независимо от того, каким способом снижают активность металлического компонента алюмоплатинового катализатора в реакции гидрогенолиза, состав продуктов раскрытия кольца метилциклопентана во всех случаях меняется в сторону значительного преобладания н-гексана. Подобное явление можно объяснить тем, что реакция раскрытия пятичленного кольца протекает не только на платине, но и на кислотном носителе — хлорированном оксиде алюминия, [46 ]. Дислотно.-катализируемая реак1 ия приводит главным образом к получению -гексана из метилциклопентана, но" скорость ее значительно меньше скорости гидрогенолиза этого углеводорода на. платине. [c.26]

    В работах, посвященных метиленированию циклических углеводородов, прежде всего было показано, что реакция протекает и здесь по тем же закономерностям, что и в углеводородах с открь[той цепью. В табл. 77 приведены результаты метиленирования этилциклопентапа и метилциклогексана, указывающие на хорошее совпадение количества ожидаемых и образующихся при метиленировании углеводородов. Следует обратить также внимание на то, что при метиленировании этилциклопентапа получаются не все теоретически возможные гомологи состава Сд, а лишь те углеводороды, которые могут образоваться при замещении водородных атомов в исходном углеводороде на метильный радикал (например, в образовавшейся смеси изомеров отсутствуют три-метилциклопентаны, синтез которых метиленированием этил-циклопентана, естественно, невозможен). Это обстоятельство и определяет отмеченную выше специфичность в получении смесей изомеров следующего очередного гомолога. Типичная хроматограмма продуктов метиленирования приведена на рис. 80. Метиленирование осуществлялось в кварцевой пробирке объемом около 2 мл, снабженной рубашкой для непрерывного охлаждения водой. Источником облучения служила водородная лампа типа ПРК-2. Реакционная смесьнредставляла собой раствор диазометана в исходном углеводороде. Диазометан получался в самом опыте взбалтыванием нитрозометилмочевины, водного раствора щелочи и исходного углеводорода. Подробности эксперимента описаны [c.292]

    Отмечается [26], что присутствие парафиновых и нафтеновых углеводородов в бензоле нежелательно, если последний используют для синтеза капролактама и адипиновой кислоты. Например, -гептан, пройдя без изменения стадию гидрирования бензола до циклогексана, на стадии окисления превращается в гептанон и другие кислородсодержащие соединения, вызывающие пожелтение капролактама. В синтезе капролактама и адипиновой кислоты через циклогексан отрицательное влияние оказывают также содержащиеся в бензоле примеси метилциклопентана и метилцйкЯо гексана [27, 28]. Фирма 51агп1сагЬоп ограничивает содержание насыщенных углеводородов в бензоле для получения капролактама на уровне 0,02% [27]. [c.119]

    Переходя теперь к основному источнику получения нафтенов — сырой нефти, следует указать, что в ней установлено присутствие циклопентана, метилциклопентана, ди- и триметилциклопентанов, этилциклопентана циклогексана, метилциклогексана, ди- и триметилциклогексанов, этил-циклогексана и метилэтилциклогексанов. Обычно исследованию подвергались только бензиновые фракции с концом выкипания около 150—180°, так что не удивительно, что наиболее тяжелый из обнаруженных нафтенов [c.234]

    Некоторые бензины очень богаты нафтеновыми углеводородами. Так, например, в бензине прямой гонки (т. кип. 37—117°), полученном из нефти, добытой в Саксете (США), содержится 5 об.% метилциклопентана, 15% циклогексана и 37% метилциклогексана [8]. [c.235]

    Достаточно чистый циклогексан получен из нафтеновой фракции, содержащей 30% гексанов, 37% метилциклопентана, 20% циклогексана и 7% бензола с помои(ью следуюн его процесса. Удалив сначала бензол обработкой серной кислотой, разрушали парафины, подвергая смесь кратковременному (10—20 сек.) крекингу при 55O—650°, и в заключение удаляли весь бензол, образовавшийся при этом крекинге. Утверждают, что полученный таким способом циклогексан содержал больше 95% СвН а- [c.236]

    В смешанных катализаторах, в которых компоненты находятся в соизмеримых количествах, могут образоваться новые, более активные соединения. При этом свойства смешанного катализатора не являются простой суммой свойств его компонентов. К числу модификаторов можно отнести и носители (трегеры), особенно часто применяемые для получения дорогостоящих металлических катализаторов (Р1, Р(1, N1, Со). Роль носителей состоит в повышении активной поверхностп, увеличении термостойкости и механической прочности катализатора и т. п. В качестве носителей используют алюмосиликаты, оксиды алюминия, хрома или кремния, активированный уголь, пемзу, кизельгур и другие природные и синтетические материалы. Так, например, дегидрирование метилциклопен-тана платиной, нанесенной на активированный уголь, ведет к образованию метилциклопентана и пентадиена, а при дегидрировании на Р1-А120з образуются бензол и циклогексан. Носители могут изменять активность и избирательность катализатора и т. п. Следовательно, роль носителя как модификатора свойств катализатора может быть очень большой, и его выбор является существенным при создании оптимального катализатора для данного процесса. [c.442]

    Прямогонная фракция 62-105 °С, используемая для получения бензола и толуола, практически состоит только из углеводородов Сб и Ст. Для данной фракции начало кипения выбрано таким образом, чтобы фракция полностью включала в себя максимальное количество бензола, циклогексана и метилциклопентана, содержащиеся в бензине, из которого выделена фракция 62-105 °С причём желательно минимальное содержание во фракции изогексанов (температура кипения не превышает 63 °С) - не более 10-15%, так как в обычных условиях риформинга гексаны почти не подвергаются ароматизации. [c.14]

    Циклогексан-сырец содержит около 3% непрореагировавшего бензола, до 2% метилциклопентана, 0,5—0,7% тяжелокипящих соединений, а также растворенный сероводород. Отделение только легколетучих примесей ректификацией недостаточно для получения циклогексана, пригодного для окисления. Остающиеся тяже-локипящие примеси (сернистые соединения) тормозят процесс окисления и снижают выход полезных продуктов. Поэтому цикло-гексан-сырец подвергают двухступенчатой ректификационной очистке и от легколетучих, и от тяжелокипящих примесей. [c.29]

    К первой группе относятся технологии, направленные на удаление предшественников бензола из сырья процессов каталитической конверсии углеводородов Сб и выше с получением КАУ за счет фракционирования из него основной части циклогексана, метилциклопентана, а также части метилциклогексана и гептанов. В результате применения данной технологии на НПЗ США в 1995-1996 гг. было достигнуто снижение содержания бензола в бензине до уровня 0,9 %. Однако эта технология не исключает образования бензола в результате реакций деалкилирования аренов, дегидродеалкилирования циклоалканов, а также деалкилирования и дегидроциклизации алканов Су и выше  [c.20]


Библиография для метилциклопентил получение: [c.340]   
Смотреть страницы где упоминается термин метилциклопентил получение: [c.242]    [c.50]    [c.130]    [c.144]    [c.143]    [c.60]    [c.531]    [c.178]    [c.185]    [c.185]    [c.340]   
Общая органическая химия Т6 (1984) -- [ c.375 , c.379 , c.380 ]




ПОИСК







© 2025 chem21.info Реклама на сайте