Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислота окисленная

Рис. 87. Схема производства жирных кислот окислением парафина воздухом. Рис. 87. <a href="/info/63180">Схема производства</a> <a href="/info/1737084">жирных кислот окислением парафина</a> воздухом.

Рис. 78. Схема производства уксусной кислоты окислением ацетальдегида Рис. 78. <a href="/info/471271">Схема производства уксусной кислоты</a> окислением ацетальдегида
    Некоторые процессы окисления ароматических углеводородов применяют давно, другие нашли промышленное применение лишь в последние годы. Среди них — получение бензойного альдегида окислением толуола, фталевого ангидрида и фталевой кислоты окислением ортоксилола или нафталина, изо- и терефталевых кислот окислением мета- и параксилолов, фенола и ацетона окислением изопропилбензола (с гидролизом продукта окисления) и антрахино-на окислением антрацена. Сырье для этих процессов (кроме антрацена) получают из нефти. [c.169]

Рис. 95. Схема получения жирных кислот окислением парафина. Рис. 95. <a href="/info/1804571">Схема получения жирных кислот</a> окислением парафина.
    Реактор для окисления толуола в бензойную кислоту. Окисление толуола в бензойную кислоту кислородом воздуха проводится под давлением 2—4 ат и прп температуре 125—140° С в присутствии 1% катализатора. [c.175]

Рис. 6.1. Схема производства синтетических жирных кислот окислением твердых парафинов Рис. 6.1. Схема <a href="/info/1640149">производства синтетических жирных кислот</a> <a href="/info/858739">окислением твердых</a> парафинов
    Исследования по переработке высокомолекулярных парафиновых углеводородов (за исключением производства жирных кислот окислением парафинов) начались лишь сравнительно недавно. Стимулом для этих работ явилось главным образом стремление организовать производство мыл, сульфонатов, алкилсульфатов и других веществ, которые играют исключительно важную, но часто недооцениваемую роль в про мышленности моющих средств, эмульгаторов, вспомогательных мате риалов для текстильной промышленности, флотационных реагентов Это стремление диктовалось желанием отказаться от использо вания жиров в области промышленного органического синтеза с тем чтобы полностью направить их на производство пищевых про дуктов. [c.8]


    Эта форма катализатора способна к прямому окислению циклогек-1 ана или промежуточных продуктов его окисления, которое протекает более селективно, чем обычный радикально-цепной процесс. (Сообщается, что при 80—90%-ной степени конверсии циклогексана достигается 70—75%-ная селективность по адипиновой кислоте. Окисление ведут в барботажной колонне из реакционной массы затем отгоняют непревращенный циклогексан, уксусную кислоту п образовавшуюся воду. Воду выводят из системы, а циклогексан и уксусную кислоту возвращают на окисление. На следующей установке разделения отгоняют побочные вещества и регенерируют катализатор адипиновую кислоту направляют на очистку. [c.394]

    Циклогексан является важнейшим исходным материалом для получения адининовой кислоты окислением его воздухом. Для этой цели гидрируют бензол и полученный таким образом циклогексан окисляют. В связи с тем, что бензол в нефтехимической промышленности получают путем дегидрирования циклогексана в различных процессах каталитического риформинга, а затем снова в чистом виде его гидрируют в циклогексан, высказывались сомнения в целесообразности этого процесса. Сомнения эти однако не основательны, и по следуюш им причинам. Во-первых, циклогексан в исходных фракциях, выделенных из нефти перегонкой, содержится не только как таковой, а в смеси со значительным количеством метилциклопентапа, который изомеризуется в циклогексан при каталитическом риформинге и тотчас же дегидрируется в бензол. Во-вторых, к тому времени как вырос спрос на циклогексан, в промышленности уже была создана серия установок для получения бензола нефтехимическим путем. [c.99]

    Кроме указанного метода и метода оксосинтеза, н-пропанол может быть получен одним из следующих методов 1) гидрированием аллилового спирта 2) гидрированием эфиров кислот Са—С4, являющихся отходом при производстве синтетических жирных кислот окислением парафинов 3) гидрированием акролеина 4) гидрированием окиси пропилена в присутствии никеля 5) каталитическим окислением пропана (совместно с ацетоном). [c.59]

    Пероксид водорода является, однако, дорогостоящим веществом, поэтому более экономичны способы получения надуксусной кислоты окислением ацетальдегида  [c.404]

    Отношение простых веш,еств к разбавленным кислотам. Окисление простых веществ за счет выделения водорода в растворах кислот протекает активнее, чем в чистой воде. Повышение концентрации ионов ОНз отвечает уменьшению отрицательного значения электродного потенциала системы Н+(р) + е == /аН2(г), поэтому число металлов, взаимодействующих по этому механизму, резко увеличивается. К тому же присутствие избытка ионов ОНз препятствует образованию гидроксидов, что также способствует переходу простых веществ в катион-иые аквокомплексы  [c.240]

    В нефтехимической технологии сравнительно немного процессов синтеза с получением целевых продуктов (продуктов потребления), использующих в качестве сырья газовые или нефтяные фракции (смеси углеводородов). Среди них — некоторые процессы производства моющих веществ типа алкиларилсульфонатов из крекинговых бензинов, эмульгаторов из керосина или газойля, жирных кислот окислением смеси твердых или жидких парафинов, нафтеновых мыл из керосиновых и масляных фракций, крезолов из бензиновых фракций (крекинга) и т. д. [c.46]

    Производство синтетических жирных кислот окислением парафинов. Намечается переработка парафинистых нефтей Мангышлакского месторождения, при этом будет получено большое количество низкоплавких парафинов, окислением которых намечено получать синтетические кислоты для мыловарения. Окисление парафинов, как известно, ведется кислородом воздуха в присутствии катализатора—перманганата калия. Внедрение этого процесса позволит высвободить значительное количество пищевых жиров, расходуемых на мыловарение. Кроме указанных кислот, здесь будут получаться также низкомолекулярные жирные кислоты, находящие применение в парфюмерной промышленности, а также в производстве высококачественных пластификаторов. [c.374]

    Типичными примерами ХТС с обратными технологическими связями являются ХТС синтеза аммиака, синтезов метилового спирта из окиси углерода и водорода, этилового спирта каталитической гидратацией этилена в паровой фазе ХТС производства ацет-альдегида гидратацией ацетилена в жидкой фазе ХТС производства уксусной кислоты окислением ацеталь-дегида, моторного топлива и т. д. [c.29]

    Наиболее экономичный способ производства уксусной кислоты-окисление в жидкой фазе природного газа или легкой нефтяной фракции, содержащий 95% к-бутана. Процесс идет при температуре 150—225°С я давлении 5,5-10 Па в присутствии ацетатов переходных металлов, обычно кобальта. Сжатый воздух и жидкий бутан подаются в реактор. Продукты [c.272]


    В настоящее время серная кислота производится двумя способами нитрозным, существующим более 200 лет, и контактным, освоенным в промышленности в конце XIX и начале XX в. Контактный способ вытесняет нитрозный (башенный). Первой стадией сернокислотного производства по любому методу является получение диоксида серы при сжигании сернистого сырья. После очистки диоксида серы (особенно в контактном методе) ее окисляют до триоксида серы, который соединяется с водой с получением серной кислоты. Окисление ЗОг в 50з в обычных условиях протекает крайне медленно. Для ускорения процесса применяют катализаторы. [c.115]

    Существуют, кроме этого, полупромышленные и промышленные установки для получения ЗОд, синильной кислоты, окисления аммиака и т. д. [c.310]

    Получение адипиновой кислоты окислением циклогексана. Окисление циклогексана является основным промышленным методом получения адипиновой квслоты — важнейшего сырья для получения синтетических волокон типа найлок. Оно может осуществляться как в одну, так и в две стадии. [c.187]

    Синтетических жирных кислот окислением парафинов [c.332]

    Разделение на фракции проводили ректификацией. О положении хлора в молекуле судили по физическим константам фракций (температура кипения, показатель преломления, плотность), сравнивая их с литературными данными. Омылением фракции, принятой за первичный хлористый ундецил, получен спирт, который был переведен в ундекано-вую кислоту окислением перекисью водорода в щелочной среде. Выход по отдельным стадиям авторы не приводят. [c.558]

    Недостаток ииродюзитного метода заключается в том, что ири увеличении концентрации кислоты окисление замедляется, ири концентрации 20% —практически прекращается. Это связано со снижением растворимости кислорода и диоксида серы в растворе серной кислоты и нарушением цепного механизма процесса. [c.61]

    В самом деле, проведение в промышленном масштабе окисления о-ксилола во фталевый ангидрид зависит от разности в стоимости продукта, полученного этим способом и окислением нафталина. Вместе с тем получить достаточно чистый п-ксилол также трудно, поэтому необходимо сравнивать эффективность производства терефталевой кислоты окислением п-ксилола с эффективностью ее получения другими методами. [c.173]

    В результате некоторых реакций этерификации, галоидировання, присоединения хлорноватистой кислоть , окисления до эпоксидов, сопровождающихся последующим гидролизом, могут также образоваться гидратированные соединения (косвенная гидратация). [c.188]

    Окислением этих азотистых соединений Мэбери получил тетракар-боксилпиридиновую и тетрака,рбоксилметилп1фидиновую кислоты. Окислением азотной кислотой и перегонкой кальциевых солей образующихся кислот можно получить р-метилхинолин. [c.162]

    Некоторые исследователи использовали перманганатное окисление в условиях межфазного катализа для менее обычных субстратов. Например, Димрот [561] превращал боковую цепь-фосфорсодержащего гетероцикла, показанного на схеме 3.229, в соответствующий альдегид. В этих условиях гетероцикл не окисляется. Реакцию, приведенную на схеме 3.229, можно осуществить и при использовании хромовой кислоты. Окисление сульфидов (и особенно сернистых гетероциклов с малым размером цикла) до сульфонов с использованием водного или твердого КМПО4 при комнатной температуре в присутствии боль- [c.383]

    В переносе энергии принимают участие еще две другие молекулы, с которыми следует познакомиться, прежде чем перейти к рассмотрению цикла лимонной кислоты. Одной из них является никотинамидадениндину-клеотид (НАД), структура которого показана на рис. 21-22. Эла молекула напоминает АТФ, так как тоже содержит адениновую группу, рибозу и фосфатную группу. Однако важнейшей частью НАД является никотиновое кольцо, которое может попеременно восстанавливаться и окисляться. Эта молекула является окислительно-восстановительным переносчиком энергии. Когда какой-либо метаболит окисляется на одной из стадий цикла лимонной кислоты, окисленная форма никотинамидадениндннуклеоти-да, НАД , может присоединить два атома Н и восстановиться с образованием НАД Н и Н . Другим важным переносчиком энергии является флавинадениндинуклеотид (ФАД). который восстанавливается в ФАД Н2. Оба этих переносчика энергии питают последнюю производственную линию биохимической фабрики запасания энергии, завершающ ю окислительный цикл дыхательной цепи. Она представляет собой четырехстадийный процесс, в котором принимают участие ферменты-цитохромы и происходит повторное окисление восстановленных переносчиков энергии НАД Н и ФАД Н2. В этом процессе кислород восстанавливается до воды, а выделяющаяся энергия запасается в молекулах АТФ. Каждый раз, когда происходит повторное окисление восстановленной молекулы-переносчика энергии, выделяемая при этом окислении энергия запасается путем синтеза нескольких молекул АТФ. [c.328]

    Сточные воды производства низкомолекулярных полиамидных смол включают в себя этнлендиамин, высшие полиамиды, жирные кислоты, метиловый спирт, глицерин, уксусную кислоту, окисленные полимеры, льняное и соевое масла, ацетат калия, воду. Надежное обезвреживание этих сточных вод осуществляется в циклонных печах при температуре 960 °С. [c.49]

    В некоторых производствах образование взрывоопасных концентраций вообще исключается. Однако в боль-шлнстве химических производств возможность образования взрывоопасных концентраций определяется е мим характером производства. В ряде производств крупно-тоннажного синтеза заданный продукт получают окис-лением веществ кислородом воздуха. Например, формальдегид получают окислением метанола нитрил акриловой кислоты — окислением пропилена в присутствии аммиака окись азота — окислением аммиака. В таких случаях неизбежно образование смесей взрывчатых веществ с кислородом, поэтому технологический процесс разрабатывается так, чтобы концентрации этих смесей были ниже нижнего или выше верхнего концентрационных пределов взрываемости. [c.143]

    На рис. 120 изображена схема одностадийного получения терефталевой кислоты окислением -ксилола. В реактор /, снабженный мешалкой, подают /г-ксилол, воздух, рециркулирующую уксусную кислоту и катализатор (потери двух последних компонентов восполняют, подавая свежий раствор катализатора в уксусной кислоте, что на схеме не изображено). Реакционное тепло отводят за счет испареиия уксусной кислоты и воды, пары которых конденсируются в холодильнике 2. Конденсат отделяют от воздуха в сепараторе 3 и возвращают в реактор. [c.403]

    В большинстве технических каталитических процессов небольшое количество катализатора способствует превр1ащению весьма зна1 [и-тельных количеств реагирующих веществ. Так, одна массовая часть катализатора в производстве серной кислоты вызывает превращение 1(И, окисления нафталина во фталевый ангидрид - 1(Р, в производстве азотной кислоты окислением аммиака -10 мае. частей реагирующего вещества. [c.91]

    С одной стороны, неразветвленные парафины являются наиболее легко застывающей частью нефтяных продуктов, в том числе дизельных и реактивных топлив, смазок и т. д. Вы.деление хотя бы основного количества н-парафинов является необходимым условием возможности надежного использования этих продуктов при низких температурах. С другой стороны, именно н-парафины в последнее время приобретают значение как исключительно ценный вид сырья для ряда важных технических синтезов получения синтетических жирных кислот окислением, синтеза белково-витаминных концентратов, дегидрирования в линейные моиоолефины и т. д. Вследствие этого установки карб- [c.314]

    Процесс изомеризации фталевой и изофталевой кислот в терефталевую был реализован на нескольких небольших установках в ФРГ и Японии. Однако в 1974 г. в связи с увеличением цен на энергию и щелочь установка фирмы Mitsubishi была переоборудована для процесса получения терефталевой кислоты окислением п-ксилола. [c.96]

    П01учекие терефталевой кислоты окислением п-ксилола. Терефталевая кислота является одним из важнейших мономеров для синтеза полиэфирных волокон и пленок типа полиэтилентерефталата. [c.182]

    Производство циклогексана и aftHnnHOBov кислоты окислением циклогексана. Под ред. [c.191]


Смотреть страницы где упоминается термин Кислота окисленная: [c.197]    [c.139]    [c.373]    [c.273]    [c.674]    [c.692]    [c.692]    [c.692]    [c.692]    [c.701]    [c.703]    [c.704]    [c.189]    [c.190]   
Очерк общей истории химии (1969) -- [ c.366 , c.390 , c.391 ]




ПОИСК





Смотрите так же термины и статьи:

Азотистая кислота окисляющее действие

Выделение жирных кислот из окисленного парафина

Декарбоксилирование щавелевой кислоты з окисляющемся циклогексаноле

Иодистоводородная кислота, регенерация окисленных растворов

Кинетика совместного окисления двух медленно окисляемых субстратов пероксидазы (аскорбиновая кислота и ферроцианид калия)

Кинетика совместного окисления медленно и быстро окисляемых субстратов пероксидазы (аскорбиновая кислота и гидрохинон)

Кислоты не окисляющие

Надсерная кислота как окисляющий реагент

Натрия боргидрид—хлористая кислота, определение карбонильных групп в окисленной

Натрия боргидрид—хлористая кислота, определение карбонильных групп в окисленной целлюлозе

Обнаружение растительных веществ, окисляющихся до слизевой кислоты

Образование и превращение кислот в окисляющихся углеводородах

Окисленная йодной кислотой

Окисленные битумы содержание кислот

Окисленные жирные кислоты и простагландины

Окисленные минеральные масла, металлические соли содержащихся в них кислот

Окисляющее действие азотной кислоты

Окисляющее действие мышьяковой кислоты

Окисляющее действие хлорноватистой кислоты и гипохлоритов

Олеиновая кислота, окисленная, смешанные полиамиды

Определение примесей, окисляемых перманганатом калия в слое кислоты сырой смеси

Определение примесей, окисляемых перманганатом калия, в слое кислоты сырой смеси и в азотной кислоте

Продутые окисленные жирные масла, продукты взаимодействия с фосфорной кислотой

РАБОТЫ КАЗАНСКОГО ПЕРИОДА Об окисляющем действии осмиевой кислоты на органические вещества

Разделение гуминовых кислот окисленного каменного угля методом непрерывного электрофореза

Синтез на основе кислот из окисленного парафини стого дистиллята

Смазочные масла из окисленной нефт мыла нафтеновых кислот

Смазочные масла из окисленной серной кислотой

Физико-химические свойства гуминовых кислот. Изменение содержаУ ния гуминовых кислот при старении углей. Гуминовые кислоты , окисленных углей Остаточный уголь

Физико-химические свойства гуминовых кислот. Термическое разложение гуминовых кислот. Изменение содержания гуминовых кислот при старении углей. Гуминсвые кислоты окисленных углей Остаточный уголь

Хлорноватистая кислота, окисляющее действие



© 2025 chem21.info Реклама на сайте