Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нервная система роль ферментов

    С ингибированием ферментов связан механизм действия многих токсинов и ядов на организм. Известно, что при отравлениях солями сенильной кислоты смерть наступает вследствие полного торможения и выключения дыхательных ферментов (цитохромная система) тканей, особенно клеток мозга. Токсическое влияние на организм человека и животных некоторых инсектицидов обусловлено торможением активности холинэстеразы — фермента, играющего ключевую роль в деятельности нервной системы. [c.148]


    Физостигмин сыграл важную роль в истории науки. Он ингибирует фермент холинэстеразу, расщепляющую ацетилхолин (см. разд, 6,2). Благодаря этому последний, как нейромедиатор, долго сохраняется в нервных окончаниях. Это позволило выделить его из них, определить его функцию и вообще развить теорию химической передачи электрического импульса через синапсы нервной системы. [c.531]

    Собственный опыт автора в применении кинетического метода касается исследования главным образом холинэстераз — ферментов, играющих важную роль в функциях нервной системы. В связи с этим при изложении экспериментального материала приводятся в основном данные по изучению этой важной группы ферментов. Автор надеется, что такой опыт может быть полезен при исследовании и других ферментов. [c.3]

    Таким образом, между окружающей средой и животным организмом происходит постоянный обмен материи и энергии. Обмен веществ осуществляется при помощи биологических катализаторов — ферментов, которые играют большую роль в химических процессах, протекающих в организме. При выключении из процесса любого из ферментов нарушается нормальный ход обмена веществ. Процессы ассимиляции и диссимиляции находятся под контролем центральной нервной системы, которая, по определению И. П. Павлова, является распорядителем всей деятельности организма. [c.117]

    Белки выполняют поразительно много разнообразных заданий. Почти все химические реакции в организме катализируются особой группой белков, называемых ферментами. Расщепление питательных веществ для генерирования энергии и синтез новых клеточных структур включают тысячи химических реакций, возможность протекания которых обеспечивается белковым катализом. Белки также выполняют роль переносчиков, например гемоглобин переносит кислород от легких к тканям. Мышечные сокращения и внутриклеточные движения — это взаимодействие молекул белков, чье предназначение состоит в осуществлении координированных движений. Еще одна группа белковых молекул, так называемые антитела, защищает нас от чужеродных веществ, таких как вирусы, бактерии и клетки других организмов. Активность нашей нервной системы также зависит от белков, которые получают, передают и собирают информацию из внешнего мира. Белки — это также гормоны, управляющие ростом клеток и координирующие их активность. [c.116]


    Роль желез внутренней секреции. Большую роль в поддержании сахара в крови иа постоянном уровне играют надпочечники. Импульсы, идущие со стороны центральной нервной системы, вызывают добавочное выделение адреналина, образующегося в мозговом веществе надпочечников (стр. 191). Адреналин стоком крови доставляется в печень, где стимулирует расщепление гликогена. Есть указания, что адреналин резко повышает активность фосфорилазы —фермента, играющего очень важную роль в процессе мобилизации гликогена (стр. 245). В результате этого содержание сахара в крови повышается. [c.246]

    По современным представлениям ртуть и, особенно, ртутноорганические соединения относятся к ферментным яДам, которые, попадая в кровь и ткани даже в ничтожных количествах, проявляют там свое отравляющее действие. Токсичность ферментных ядов обусловлена их взаимодействием с тиоловыми сульфгидрильными группами (SH) клеточных протеинов. В результате такого взаимодействия нарушается активность основных ферментов, для нормального функционирования которых необходимо наличие свободных сульфгидрильных групп. Пары ртути, попадая в кровь, циркулируют вначале в организме в виде атомной ртути, но затем ртуть подвергается ферментативному окислению и вступает в соединения с молекулами белка, взаимодействуя прежде всего с сульфгидрильными группами этих молекул. Если концентрация ионов ртути в организме оказывается сравнительно большой, то ртуть вступает также в реакцию с аминными и карбоксильными группами белков ткани. Это приводит к образованию относительно прочных металлопротеидов, представляющих собою комплексные соединения ртути с белковыми молекулами. Ионы ртути поражают в первую очередь многочисленные ферменты, и прежде всего тиоловые энзимы, играющие в живом организме основную роль в обмене веществ, вследствие чего нарушаются многие функции, особенно центральной нервной системы. Поэтому при ртутной интоксикации нарушения нервной системы [c.250]

    Механизм действия холина хорошо изучен. Окисляясь в бетаин, он является донором метильных групп при биосинтезе метионина, пуриновых и пиримидиновых оснований, адреналина, креатина, ансерина и др. Холин входит также в качестве составной части в активную группу фермента, ускоряющего биосинтез фосфолипидов. В организме он выполняет важную роль как составная часть медиатора парасимпатической нервной системы ацетилхолина, участвующего в проведении нервного импульса. [c.167]

    В предыдущих главах обсуждалась реакция ФОС либо с отдельными ферментами, либо с дезорганизованными системами, такими, как гомогенаты тканей. В этой главе мы рассмотрим некоторые эффекты на мало специализированные ткани, главным образом на мышечную и нервную, которые могут быть исследованы в изолированном виде. Изолирование тканей дает возможность в большинстве случаев исключить влияние таких факторов, как разрушение, активирование и выделение ФОС. Это должно помочь нам выяснить значение прямого действия тканей в целом организме и оценить роль модифицирующих ферментов в более сложных условиях. [c.178]

    Некоторые пептиды обладают гормональным действием. Эти гормоны синтезируются в разных органах - гипоталамусе, гипофизе, поджелудочной железе, плазме кропи. Пептидные гормоны, как и все гормоны, выполняют роль регуляторов активности органов и клеток, служа в основном для изменения скорости синтеза ферментов, биокатализа и проницаемости биомембран. Их синтез железами внутренней секреции и выброс в кровь находится под контролем нервной системы. Инсулин представляет собой димер, в котором унэйкозапептид связан с трикозапепти-дом двумя дисульфидными мостиками. Он вырабатывается у человека поджелудочной железой и служит регулятором уровня [c.39]

    Производные индола играют жизненно важную роль в основном обмене. Незаменимая аминокислота — триптофан входит в состав большинства белков как часть полипептидной цепи дрожжевого фермента — спиртовой дегидрогеназы он участвует совместно с НАД+/НАДН в ферментативном восстановлении ацетальдегида до этилового спирта при этом происходит отщепление гидрид-иона и образование р-алкилидениндоленинийпкатиона (стр. 306). В организмах животных из триптофана образуются два родственных по химическому строению гормона. Один из них — серотонин, тесно связанный с деятельностью центральной нервной системы, регулирует перистальтику и выделение желудочного сока, второй — мелатонин участвует в контроле смены дневного и ночного ритма физиологических функций. р-Индолилуксусной кислоте, которая [c.284]

    Наиболее подробно изученная протеиназа, химотрипсин, существует в нескольких слегка различающихся формах, которые образуются в результате расщепления определенных пептидных связей в молекуле хи-мотрипсиногена. Последняя представляет собой единую полипептидную цепь, построенную из 245 аминокислот аминокислоты в активном ферменте обычно нумеруются в соответствии с их положением в исходном зимогсне. Важную роль в выяснении механизма действия химотрипсина сыграли данные, полученные при изучении ацетилхолинэстеразы. Было показано, что этот ключевой фермент нервной системы необратимо инактивируется группой сильных фосфорсодержащих ядов, используемых как инсектициды и как отравляющие газы нервно-паралитического действия. [c.107]


    Координирующая роль мембран состоит в том, что многие ферменты активны только в связанном с мембранами состоянии (мембраны создают своеобразный биологический конвейер ). Поэтому, важна также векторная роль мембран в действии ферментов. Примерами могут быть процессы фотосинтеза трансформация энергии и биосинтез органических веществ протекает на мембранах как высокоорганизованный процесс дыхание и окислительное фосфолирование в мембранах митохондрий, а также всасывание и переваривание пищи, возникновение и передача импульсов в нервной системе, работа органов чувств, работа сердца, сокращение мышц. [c.108]

    Аммиак—очень ядовитое вещество, особенно для нервной системы. Особую роль в устранении аммиака играет глутаминовая кислота. Она способна связывать аммиак с образованием глутамина — безвредного для нервной ткани вещества. Данная реакция амидирования протекает при участии фермента глутаминсинтетазы и требует затраты энергии АТФ (см. главу 12). Непосредственный источник глутаминовой кислоты в мозговой ткани—путь восстановительного аминирования а-кетоглутаровой кислоты  [c.635]

    Нейрональная мембрана, рассматриваемая как цитоплазматическая мембрана, несет в клетке не только пассивную структурную функцию. Она служит барьером для поддержания внутриклеточного состава и функций клетки (ионы, электрический потенциал, метаболиты) и для ее компартментации (клеточные органеллы, везикулы нейромедиаторов), играет активную (ионные насосы, ферменты) и пассивную (ионные каналы, высвобождение медиатора) роли при передаче нервного импульса. Она обладает специфическими характеристиками, необходимыми для развития нервной системы и установления синаптических связей (клеточная адгезия и узнавание). Она проводит также межклеточные сигналы (гормоны, медиаторы, лекарства). [c.88]

    Единого холинэргического синапса не существует. Холинэргические синапсы представляют собой группу структурно, функционально и фармакологически весьма различных синапсов. Объединяет их только одно — использование ацетилхолина в качестве нейромедиатора. Особого внимания заслуживают ней-ромышечные соединения, где нервный импульс передается мышечному волокну и вызывает его сокращение. Имеются, однако, многочисленные свидетельства того, что холинэргические синапсы, кроме этой периферической функции, играют важную роль в центральной нервной системе [3, 4], участвуя в таких процессах, как поведение, сознание, эмоции, обучение и память. Доказательствами этого служат биохимические исследования метаболизма ацетилхолина и ассоциированных ферментов в центральной нервной системе, а также эксперименты с психофармакологическими веществами, влияющими на холинэргические синапсы. Ацетилхолин представляет собой также важный медиатор вегетативной нервной системы. Во всех ганглиях симпатических и парасимпатических систем имеются холинэргические синапсы. В постганглионарных, т. е. соединяющих ганглий и орган-мишень, нервных волокнах ацетилхолин опосредует передачу нервного импульса во всех парасимпатических синапсах (т. е. синапсах глаз, сердца, легких, желудка, кишечника) и в некоторых симпатических (например, синапсах потовых желез). [c.193]

    Фактор роста нерва также стимулирует поглощение уридина, образование полисом, синтез белков, липидов, РНК и потребление глюкозы. Благодаря этому он способствует росту и выживанию симпатических и сенсорных нейронов. NGF активирует рост аксонов и дендритов, осуществляя контроль за сборкой микротрубочек. Если антитела против NGF вводятся мыши, ее симпатическая нервная система дегенерирует. Роль NGF как трофического фактора можно проиллюстрировать на примере его способности индуцировать тирозингидроксилазу — ключевой фермент синтеза катехоламинов. [c.327]

    В растениях-продуцентах имеются специальные энзимы, осуществляющие реакцию Пиктэ—Шпенглера. Однако этот химический процесс может достаточно эффективно протекать и без всяких ферментов в условиях, близких к физиологическим. С этим связано образование так называемых животных алкалоидов . Если в организме млекопитающего создается избыток альдегидов или фенилэтиламинов, то происходит неферментативный синтез тетрагидроизохинолинов. Как мы видели в разд. 6.2, фенилалкиламины (катехоламины) играют важную роль в регуляции деятельности центральной нервной системы. Их избыток наблюдается при некоторых психических расстройствах. Возникновение симптомов шизофрении, депрессий, паркинсонизма связывают не только с высоким уровнем катехоламинов в мозгу, но и с неферментативным синтезом алкалоидов. Например, у млекопитающих обнаружено основание 6.231, которое, как нетрудно видеть, возникло при реакции дигидроксифенилэтиламина (ДОФА. разл. 6.2) и пиридоксаля 6.136. Избыток ацетальдегида создается в организме человека после приема алкоголя, так как последний окисляется в ацетальдегид под действием фермента алкогольдегидрогеназы. В этих условиях в мозгу образуется салсолинол (см. формулу 6.229), который, помимо прочего, обладает свойством стимулировать так называемые центры удовольствия головного мозга. Это служит одним из факторов развития пристрастия к алкоголю. [c.479]

    СЯ в повышении активности различных ферментов. Входя в состав витамина В , весьма активно влияющего на поступление азотистых веществ и увеличение содержания хлорофилла и аскорбиновой кислоты, К. активирует биосинтез и повышает содержание белкового азота в растениях, а также играет значительную роль в ряде процессов, происходящих в живом организме. В повышенных концентрациях К. весьма токсичен, прием внутрь большой дозы К. может вызвать быструю гибель. У лиц, подвергавшихся хроническому воздействию соединений К., снижается артериальное давление, в тканях наблюдается увеличение содержания молочной кислоты, нарушаются функции печени. При этом выраженные, клинические проявления могут быть стертыми или отсутствовать вовсе. Изменения в углеводном обмене связаны с нарушениями в эндокринных отделах поджелудочной и щитовидной желез. Нарушения углеводного обмена изменение формы гликемической кривой (уплощение), нарушение толерантности к глюкозе. Ионы К. вступают в хелатные комплексы с белками, разрушающими последние. Нарушается активность мембранных ферментов, что ведет к увеличению проницаемости клеточньгх мембран, повышению в крови уровня трансаминаз, лактатдегидрогеиазы, альдолазы. Действие К. и его соединений на организм приводит к расстройствам со стороны дыхательных путей и пищеварительного тракта, нервной системы, влияют на кроветворение, а также нарушают многие обменные процессы, избирательно действуют на обмен и структуру сердечной мышцы. Все это позволяет считать К. ядом общетоксического действия. [c.457]

    А цетилхолин является нейрогормоном парасимпатической нервной системы, в качестве которого он играет игключительпо важную роль в организме. При прохождении импульса через нерв этой системы у его конца возникает ацетилхолин, передающий импульс мышцам. Этот эффект приостанавливается спустя очень короткое время благодаря участию фермента холинэстер азы, находящегося в тканях, который гидролизует ацетилхолин, превращая его в уксусную кислоту и холин. При этом нерв подготовляется для передачи нового импульса. [c.349]

    Физиологическое значение холинэстеразы в этих тканях остается пока окончательно неясным хотя на этот счет и высказывались различные точки зрения, так, например, высказано предположение, что холинэстераза эритроцитов играет важную роль в клеточной проницаемости [22] холинэстераза крови и тканей рассматривалась как своеобразный защитный аварийный фермент на случай значительных выходов в кровяное русло ацетилхолина при перевозбуждении нервной системы [20]. По мере изучения холинэстераз различных тканей оказалось, что по своим свойствам эти ферменты можно разделить на два типа тип истинной холинэстеразы и тип ложной или псевдохол инэстеразы. К первому типу относились ферменты нервной ткани и эритроцитов, ко второму — ферменты сыворотки крови, печени, поджелудочной железы и других органов. Основные различия между названными типами холинэстераз сводились к следующему истинная холинэстераза катализировала гидролиз ацетилхолина и ацетил-Р-метил- [c.140]

    Ацетилхолин является нейрогорлмоном вегетативной нервной системы и поэтому играет важную роль в организме. Когда нервный импульс проходит через нерв, на его конце выделяется ацетилхолин, который и передает импульс далее в мускул. Это действие ацетил-холина вскоре прекращается в результате реакции с участием фермента холинэстеразы, который имеется в живой ткани и гидролизует ацетилхолин в уксусную кислоту и холин. Ацетилхолин используется также как лекарственный препарат, снижающий артериальное давление. [c.182]

    Основной путь метаболизма С. в животном организме — окислительное дезаминирование. При действии фермента моноаминооксидазы С. превращается в 5-оксииндолилацетальдегид, а последний в присутствии альдегиддегидрогеназы — в 5-окси-З-индолил-уксусную к-ту. Наиболее характерным действием С. является сокращение гладкой мускулатуры кишечника и др. органов, антидиуретич. свойства, усиление дыхания, угнетение сердечно-сосудистой системы. С. уменьшает время свертывания крови, играет важную роль в процессах передачи возбуждения в центральной нервной системе, являясь медиатором нервных импульсов. С обменом С. связано лекарственное действие резерпина, к-рый освобождает связанный тканями С. и выводит его в кровяное русло, где С. быстро дезактивируется. Препараты, являющиеся антиметаболитами С., применяют при лечении гипертонии и шизофрении. [c.418]

    Гормоны воздействуют на скорости ферментативных процессов, на поступление в кровь самих ферментов. Стероидный гормон—кортикотрипин повышает активность фермента фосфорила-зы продукты, получающиеся из гормона щитовидной железы, влияют на ход окислительного фосфорилирования и т. д. Гормоны могут стимулировать или тормозить работу нервной системы. Им принадлежит важная роль в процессах деления клеток. Гормоны влияют на синтез ферментов (икоферментов), а это, как мы уже отмечали, представляет собой одно из наиболее надежных средств быстрого регулирования химических реакций в клетках. [c.149]

    АТФ не только обеспечивает энергией мышечное сокращение, но и играет важную роль в деятельности нервной системы. Нервные клетки образуют важное для них химическое вещество — ацетилхолин — с помощью фермента холинацетилазы, и необходимая для его синтеза энергия берется от АТФ. АТФ может быть связан также с ферментными системами, обеспечивающими движение одноклеточных организмов, как это известно, по крайней мере для одного случая, а именно для продвижения сперматозоида к неоплодотворенному яйцу. [c.172]

    Ролл (Rail, 1972) обобщает большой литературный материал с целью выяснить возможную роль цАМФ в нервных структурах, в образовании и функции КА. Фактов еще недостаточно, и интерпретация их затруднена сложностью условий, но некоторые данные заслуживают внимания нейрохимиков и позволяют автору высказать соображения о возможной роли цАМФ в обмене КА в нервной системе. Напомним, что обратное действие — влияние КА на обмен цАМФ — исследовано очень тщательно и послужило началом изучения всей проблемы. В проблеме участия цАМФ в обмене КА, в изменении уровня некоторых ферментов, участвующих в их биосинтезе (повышение уровня тирозингидроксилазы и дофамин- -гидроксилазы в симпатических ганглиях после некоторых воздействий) еще много неясного и противоречивого, в частности то, что сдвиги в содержании цАМФ при изменении уровня медиатора и гиперполяризации ганглия более выражены в глиальных клетках, а не в нейронах. Этот интересный вопрос требует дальнейших исследований, так же как и вопрос о взаимоотношении цАМФ и адренорецепторов, их тождестве, различии и функциональной взаимосвязи. [c.172]

    Основное назначение холинэстеразы нервной ткани — быстрый гидролиз выделяющегося ацетилхолина, без которого невозможна передача нервных импульсов. Обнаружено, что ферментативный гидролиз ацетилхолина может осуществляться не только нервной, но и другими тканями присутствие холинэстеразы было выявлено в сыворотке и эритроцитах крови, в мышечной ткани, печени, поджелудочной железе. Считают, что холинэсте-раза эритроцитов играет важную роль в клеточной проницаемости. Холинэстераза крови и тканей рассматривается как своеобразный защитный ( аварийный ) фермент на случай значительных выходов в кровяное русло ацетилхолина при перевозбуждении нервной системы. [c.51]

    В мозге млекопитающих обнаружены также и другие ферменты, принимающие участие в репликативном и репаратив-ном синтезе ДНК. Наиболее подходящей по своим каталитическим свойствам на роль репаративной экзонуклеазы является ДНКаза ВШ, которая, по-видимому, относится к мозгоспецифическим ферментам. В ядрах нейронов и глии мозга взрослых морских свинок выявлена ДНК-лигаза, участвующая в завершающих этапах репаративного синтеза. Непонятной остается функция обнаруженной в мозге человека терминальной дезок-синуклеотидилтраисферазы, способной к нематричному синтезу ДНК. Интересно, что этот широко распространенный у млекопитающих фермент обнаруживается только в клетках тимуса и нервной системы. Высказываются предположения, что его роль связана с уникальной способностью этих клеток запасать и хранить ненаследуемую информацию. [c.13]

    Как установлено, протеинкиназа В II типа составляет примерно 0,4% от общего белка головного мозга млекопитающих, что свидетельствует о важной регуляторной роли фермента в этом отделе ЦНС. В-киназа II типа преимущественно связана с мембранной фракцией в отличие от цитоплазматической киназы В I типа. Мембраносвязанный фермент II типа сконцентрирован в области постсинаптического уплотнения в тех отделах нервной системы, которые связаны с обучением (гиппокамп у позвоночных и сенсорные нейроны у беспозвоночньпс). Киназа В II типа обладает свойствами двухфазного переключателя со стабильностью, необходимой для кодирования долговременной памяти. [c.351]

    Этот связанный со структурами и локализующийся в митохондриях фермент легко реагирует с такими субстратами, как триптамин, 5-окситриптамин и тирамин. На распад норадреналина фермент влияет в меньшей степени. Моноаминоксидаза играет важную роль в процессах детоксикации и в метаболизме аминов. Его функциональное значение выяснено еще не во всех деталях. В нервной системе активность МАО подавляют амфетамин и марсилид она часто служит индикатором аминэргических структур. [c.217]

    С расширением наших знаний о биохимических основах нейрологической памяти следует особо подчеркнуть несомненно огромную роль соответствующих ферментов и гормонов, обеспечивающих непрерывный и притом высокий уровень метаболизма в нервной системе, и особенно в головном мозгу в энергетическом обмене, обмене аминокислот, распаде и биосинтезе нейромедиаторов, метаболизме специфических белков, РНК. и липопротеидных комплексов, участвующих на всех стадиях нейрологической памяти, включая и воспроизведение памятп. [c.254]

    Эфиры фосфорной кислоты и соединения адени-ловой системы, участвующие во внутриклеточном обмене веществ, требуют для своего действия обязательного присутствия солей калия. Дефицит ионов К+ нарушает фосфорилирование. Подобный процесс наблюдается при хирургических вмешательствах, при тиреотоксикозе и ряде других патологических состояний. Ионы К+, На+, Са + участвуют в синтезе АТФ, ацетилхолина. Ионы a + являются ингибитором фермента трансфосфорилазы, принимающего участие в обмене АТФ, пировиноградной кислоты, биосинтезе никотиновой кислоты и т. д. Известна роль ионов a + в функциях нервной, сердечно-сосудистой систем, пищеварении, мышечном сокращении и других процессах. [c.175]

    Ионы натрия играют важную роль в обеспечении постоянства внутренней среды человеческого организма, участвуют в поддержании постоянного осмотического давления биожидкости осмотического гомеостаза). В виде противо-ионов в соединениях с фосфорной кислотой (фосфатная буферная система N32HP04 + ЫаНгР04) и органическими кислотами натрий обеспечивает кислотно-основное равновесие организма. Ионы натрия участвуют в регуляции водного обмена и влияют на работу ферментов. Вместе с ионами калия, магния, кальция, хлора ион натрия участвует в передаче нервных импульсов и поддерживает нормальную возбудимость мышечных клеток. При изменении содержания натрия в организме происходят нарушения функций нервной, сердечно-сосудистой и других систем, гладких и скелетных мышц. Натрий хлорид Na l служит основным источником соляной кислоты для желудочного сока. [c.236]

    Принимая во внимание данные о влиянии К , ГАМК и других веществ на мембранную активность и на метаболические сдвиги в нервных клетках, можно предположить, что именно эти вещества выполняют роль информатора в мембранно-метаболическом взаимоотношении нейрона и нейроглии. Интенсивность и направленность действия окислительных ферментов в нейроне и нейроглии должна быть обусловлена в первую очередь различием физико-химических свойств мембран. Можно предположить, что сдвиги в функциональном состоянии нейронов транслируются на нейроглию специальными информаторами (К , ГАМК, ацетилхолин). При этом во всех случаях мембрана глии деполяризуется. Возрастает активность экто-АТФазы глии (Hyden, 1962), облегчается выход метаболитов из глии, и в нейронах создаются условия для нормального функционирования. По всей вероятности, в этом и должен выражаться механизм обратной связи в системе нейрон—нейроглия. [c.136]


Смотреть страницы где упоминается термин Нервная система роль ферментов: [c.230]    [c.152]    [c.408]    [c.243]    [c.155]    [c.35]    [c.491]    [c.566]    [c.288]    [c.291]    [c.247]    [c.145]    [c.229]    [c.252]    [c.128]   
Биологическая химия Издание 4 (1965) -- [ c.426 ]




ПОИСК







© 2024 chem21.info Реклама на сайте