Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектр поглощения аминокислот

    Спектры поглощения аминокислот [c.35]

    Заметим, что именно аминокислоты фенилаланин, тирозин и триптофан обусловливают спектры поглощения белков в ультрафиолетовой области спектра. Обычно считают, что максимум поглощения белков соответствует 280 нм. [c.30]

    Рнс. 180. Спектры поглощения большинства аминокислот (1) и пролина (2) после окрашивания нингидрином, а также самого нингидрина (3) [c.519]


    ПОЛОСЫ с достаточной степенью точности определяется формой полос поглощения указанных ароматических аминокислот с учетом содержания последних в белке. Спектры поглощения простых амидных производных фенилаланина, тирозина и триптофана в этой области представлены на рис. 13-7 и 13-9. Низкоэнергетическая полоса триптофана соответствует двум перекрывающимся переходам Ьа и [26]. Полоса, соответствующая Ьь-переходу, имеет четко выраженную колебательную структуру, тогда как полоса Ьа носит более диффузный характер. Максимум О—О-полос для обоих указанных переходов у производных трип- [c.21]

    В качестве примера рассмотрим спектр КД медьсодержащего белка (рис. 13-8). КД в области d—d-полос спектра поглощения меди отчасти обусловлен асимметрией окружения иона меди в структуре белка. Такова же причина и нередко наблюдаемого кругового дихроизма ароматических аминокислот белков. Для тирозина знак КД может быть как Положительным, так и отрицательным, но при этом он остается постоянным для всей полосы поглощения. Вследствие этого полосы КД по форме сходны с полосами поглощения [19, 46]. Фенилаланин ведет себя сложнее. Колебательные полосы, следующие за О—0-полосой с [c.25]

    О конформационных изменениях полимеров часто можно судить по-изменению спектров поглощения ароматических боковых цепей аминокислот, а также пуриновых и пиримидиновых оснований (рис. 2-28). Другими ценными методами являются инфракрасная спектроскопия раман-спектроскопия, флуоресцентный анализ и КД-спектроскопия все эти методы рассматриваются в гл. 13. [c.191]

    ИК-спектры [43, 44]. В спектрах аминокислот отсутствуют полосы нормальных валентных колебаний в области 3300 — 3500 см , наблюдается поглощение при 3070 см , которое можно отнести к ИзМ" "-группе. Эта полоса наблюдается также в спектрах гидрохлоридов аминокислот. Кроме того, две характеристические полосы НзК-группы находятся в области 1500 — 1600 СМ+. [c.35]

    УФ-спектры. Алифатические аминокислоты не имеют максимумов поглощения выше 220 нм. Аминокислоты с ароматическими заместителями (Try, Туг, Phe) поглощают в области выше 250 нм. [c.345]

    Ультрафиолетовые спектры поглощения определяются возбуждением электронных уровней атомов и молекул и обладают максимумами, положение которых характерно для определенных атомных группировок, сопряженных двойных связей и др, В белках ультрафиолетовые спектры поглощения в основном определяются ароматическими аминокислотами — фенилаланином /--макс— 260 м х), тирозином и триптофаном 280 жр-), причем спектры поглощения могут быть даже использованы для аналитического определения этих аминокислот. Нуклеиновые кислоты и нуклеопротеиды обладают настолько резким максимумом поглощения при 260—265 лр., что при помощи фотографирования в ультрафиолетовом микроскопе легко определить их содержание в отдельных клетках (Брумберг). Зависимость ультрафиолетовых спектров поглощения от pH, сос- тава среды, от образования комплексов с другими соединениями позволяет исследовать изменения состояния растворенных веществ так, по смещению максимума поглощения с 280 до 260—265 м а было обнаружено образование комплекса между белками и полисахаридами (Розенфельд). Линейные полимеры обычно не имеют интенсивных полос поглощения в видимой и ближней ультрафиолетовой областях спектра. [c.61]


    Инфракрасные спектры поглощения хелатных соединений аминокислоты с металлами при температуре жидкого воздуха. [c.231]

    Многие химические и физические свойства D- и L-изомеров определенной аминокислоты совпадают у них, например, одинаковы растворимость в оптически неактивных растворителях, ультрафиолетовые и инфракрасные спектры поглощения, точки плавления или разложения, способность к химическим реакциям (с оптически неактивными реагентами). Изомеры аминокислот можно распознавать по оптическому вращению, по реакциям с определенными оптически активными веществами, по их отношению к действию ферментов и иногда хроматографическими методами. Было показано, что оптические изомеры аминокис- [c.95]

    Дальнейшее исследование инфракрасных спектров поглощения и их дихроизма показало, что синтетические полипептиды, состоящие из остатков Ь-аминокислот, у которых водород р-уг-лерода замещен на какие-либо другие группы, имеют большей частью неспиральную конформацию. В табл. 1 аминокислоты были расположены в порядке, соответствующем их тенденции образовывать в полипептидах а-спиральные или неспиральные структуры. Так, поли-Ь-лейцин образует а-спираль, а поли-Ь-ва-лин — складчатую р-структуру. Тот факт, что полипептиды, образованные из этих весьма похожих друг на друга аминокислот, имеют столь различные структуры, указывает на существенную зависимость вторичной структуры от свойств аминокислотных остатков, входящих в полипептидную цепь. Вполне возможно, что степень спирализации некоторого участка белка зависит от числа и порядка расположения аминокислот, способствующих образованию спиральной конформации. [c.256]

    Разностные ультрафиолетовые спектры. Поглощение света белками в области 250—300 ммк обусловлено в основном наличием в их молекулах ароматических аминокислот трех типов. К ним относятся триптофан и тирозин (последний в ионизованной форме), максимум поглощения которых лежит при 280 ммк, и фенилаланин, для которого наблюдается более слабое поглощение при 260 ммк. Более сильное поглощение белка при 270 ммк, чем при 280 ммк, свидетельствует обычно о том, что большую часть ароматических остатков в белке составляют остатки фенилаланина. [c.298]

Рис. 31. Ультрафиолетовые спектры поглощения типичной белковой молекулы сывороточного альбумина (кривые 2 и 4) и аминокислот полученных после его разрушения (кривые / и 5). Кривые 1 и 2 получены в кислом растворе, где фенольные группы неио-низированны кривые 3 и 4—в щелочном растворе, где фенольные группы находятся в виде фенолят-ионов . Рис. 31. <a href="/info/104606">Ультрафиолетовые спектры поглощения</a> типичной белковой <a href="/info/915682">молекулы сывороточного альбумина</a> (кривые 2 и 4) и <a href="/info/20635">аминокислот полученных</a> после его разрушения (кривые / и 5). Кривые 1 и 2 получены в <a href="/info/58826">кислом растворе</a>, где <a href="/info/104783">фенольные группы</a> неио-низированны кривые 3 и 4—в <a href="/info/6286">щелочном растворе</a>, где <a href="/info/104783">фенольные группы</a> находятся в <a href="/info/55481">виде фенолят</a>-ионов .
    Ароматические аминокислоты при облучении в водном растворе проявляют свойства, которые типичны как для ароматических соединений, так и для аминокислот. Например, тирозин и диоксифенилаланин, подобно некоторым другим фенольным соединениям (стр. 173), после облучения в водных растворах, содержащих кислород, подвергаются характерным изменениям в спектре поглощения. Изменения сходны с изменениями, производимыми окислительными энзимами ЬбО, Г61, N16]. При нагревании облученных растворов ароматических аминокислот образуются неидентифицируемые вещества большего молекулярного веса. Из алифатических аминокислот такие вещества не возникают [Ь65]. [c.246]

    Большинство соединений не поглощает в видимой области спектра. Поэтому анализаторы снабжаются прибором, который вводит в поток элюата постоянное количество реагента, воспроизводимо реагирующего с анализируемым соединением. Продукты реакции обнаруживаются на различных длинах волн. Именно к этому типу детекторов относятся аминокислотные анализаторы, в которых в поток элюата вводят нингидрин. Большинство аминокислот дают с нингидрином окрашенные соединения спектры их поглощения показаны на рис. 8.19. Спектр поглощения продуктов реакции пролина отличается по положению максимума. При проведении количественного анализа боль- [c.68]

    Ультрафиолетовые спектры поглощения определяются возбуждением электронных уровней атомов и молекул и обладают максимумами, положение которых характерно для определенных атомных группировок, сопряженных двойных связей и др. В белках ультрафиолетовые спектры поглощения в основном определяются ароматическими аминокислотами — фенилаланином (А зх=260 ммк), тирозином и триптофаном (А зх=280 ммк), причем спектры поглощения [c.55]

    Оказалось, что в оптическом спектре поглощения 2>10" М раствора [Со(Н20)в] с добавкой 0,5 М глицина при 215° К наблюдаются только две полосы с максимумами около 400 нм (lge = = 1,7) и 606 нм (1 8 = 1,6), которые характерны для ионов ГСо(Н 0)в] [66], что свидетельствует о стабильности таких ионов по отношению к присутствующей аминокислоте. По мере стояния кислых растворов Со(П1) с добавками глицина или других а-аминокислот идет комплексообразование, о котором можно судить по изменению цвета раствора от небесно-голубого к сине-зеленому. Согласно данным работы [67], в этом случае протекает следующий процесс  [c.121]


    Методика накопления заключалась в адсорбции органического вещества на активированном угле марки ОУБ-кислый с последующей десорбцией ацетоном и щелочью. В составе выделенного органического вещества были определены углеводы, фенолы, пуриновые и пиримидиновые основания (аминопроизводные гетероциклических соединений, входящие в состав нуклеопротеидов — специфических веществ живых клеток), различные аминокислоты (гликоколь, лизин, аспарагин и др.), уроновые кислоты, сахара, фульвокислоты, ароматические вещества, порфирины и др. [40, 41]. Спектры поглощения в инфракрасной области указали на присутствие таких функциональных групп как ОН, СО, СОС, СП. В результате кислотного гидролиза выделенного органического вещества было получено смолообразное вещество, представляющее собой продукт конденсации в кислой среде природных органических соединений подземных вод. Содержание углерода в этом продукте оказалось низким — 35—40%- Это может быть объяснено [c.73]

    Цветное зрение ассоциируется скорее с колбочками, чем с палочками. Как мы уже отмечали, максимум поглощения иодопсина незначительно смещен в длинноволновую область по сравнению с максимумом поглощения родопсина палочек. Чувствительность колбочек меньше, чем палочек. Спектральная чувствительность глаза, как и ожидалось, сдвигается в сторону больших длин волн при переходе от тусклого к яркому свету. Позвоночные воспринимают цвет посредством системы цветного зрения, опирающейся на три основных цвета. Должны участ-сдвать три различных пигмента колбочек, поглощающие в синей, зеленой и красной областях спектра. Хотя микроспектроскопия показывает наличие ряда пигментов, выделить их не удается. Вероятно, пигменты очень сходны с родопсином палочек. Один подход к изучению структуры белков связан с исследованием кодирующих их ДНК и определением таким способом их аминокислотных последовательностей. Заряженные аминокислоты, расположенные вблизи п-системы ретиналя, изменяют энергии основного и возбужденного электронных состояний, а установленные структуры пигментов колбочек не противоречат модели, согласно которой спектр поглощения ретиналя испытывает спектральные сдвиги при взаимодействии хромофора с соседними заряженными аминокислотами. Каждая кол- [c.240]

    Ультрафиолетовые спектры белков отличаются сильным поглощением, характеристическим для ароматических фрагментов аминокислот, входящих в их состав фенилаланин, тирозин, триптофан. Эти спектры поглощения используют для аналитического определения остатков указанных аминокислот. Резкий максимум поглощения, характерный для нуклеиновых кислот и нуклеопро-теидов, позволяет определить их содержание в отдельных клетках. [c.361]

    Нуклеотиды, как и многие другие поглощающие свет соединения, определяют количественно по их спектрам поглощения (рис. 13-11 и 13-12) 146]. Еще более чувствительным методом является флуоресцентный анализ. Например, он позволяет обнаружить на тонкослойной хроматограмме рибофлавин в количестве 3 пикомоль (1 нг) (рис. 2-34) [147]. Один из новых реагентов, флуорескамин, взаимодействует с любым первичным амином, образуя интенсивно флуоресцирующие продукты. С его помощью можно обнаружить очень малые количества аминокислот— менее 50 пикомолей (рис. 2-36) [148]. [c.180]

    Белковые АК - твердые вещества, выделяемые в виде белого порошка, обычно хорошо растворимые в воде и в полярных растворителях. Многие аминокислоты поглощают в ультрафиолетовой (УФ) области, но особенно специфическое поглощение при 280 нм имеют ароматические АК (фенилаланин, тирозин и триптофан) и поэтому содержание белка часто определяют именно по характеру спектра поглощения в УФ-об-ласти. [c.8]

    Циклизация является критическим этапом реакции назависимо от того, идет ли реакция с аминокислотой, с пептидом или с белком. Спектры поглощения ФТК-производного и циклизованного ФТГ-производного имеют различные максимумы 270 и 240 нм соответственно. Поэтому за процессом циклизации можно следить спектрофотометрически при 240 нм реакция заканчивается, когда перестает изменяться экстинкция при этой длине волны. Если циклизация идет слишком медленно, процесс можно ускорить, увеличив концентрацию кислоты или осторожно нагревая смесь. Однако нужно помнить, что существуют устойчивые пептидные связи, циклизация которых идет очень медленно или не идет вообще. [c.287]

    Спехтрофотомгтричесхие методы применимы в тех случаях, когда детектируемые вещества обладают характерным спектром поглощения в видимой или ультрафиолетовой области. В табл. 7.2 приведшы характерные максимумы поглощения для компонентов нуклеиновых кислот (максимальные поглощения для компонентов ДНК и РНК близки), для аминокислот, поглощающих в Сидней УФ-области спектра, и некоторых упоминавшихся в тексте низкомолекулярных соединений. Приведенные значения молярных экстинкций для аминокислот и нуклеотидов дают представление о порядке величин молярных экстинкций биополимеров, поскольку эти значения варьируют в составе биополимеров в не очень широких пределах. При применении спектрофотом ического метода Дйи детекции биополимеров по ходу фракционирования следует иметь в виду, что в используемых водных растворах практически всегда присутствуют различные низкомолекулярные соединения, в первую очередь вспомогательные электролиты, вводимые для создания н жных значений pH и ионной силы. Эти соединения должны быть прозрачны в области поглощения, используемой для деггасции выделяемых биополимеров, тем более что концентрация вспомогательных веществ нередко на несколько порядков превышает концентрацию биополимеров. [c.248]

    Относительную чувствительность аминокислотных остатков в инсулине к "[-излучению исследовали Дрейк и его сотрудники [69]. Как указывалось ранее, интенсивное исследование инсулина особенно желательно, поскольку он является единственным белком, строение которого полностью известно. На основании результатов определений концевых групп, изучения спектров поглощения и хроматографии аминокислот на бумаге в образцах, подвергнутых облучению дозами до 40 мегафэр, были сделаны выводы 1) что цистин, тирозин, фенилаланин, пролин и гистидин обладают высокой радиочувствительностью 2) что лейцин, изолейцин, валин, лизин и аргинин заметно разрушаются при наиболее высоких дозах и 3) глицин и фенилаланин, Н-концевые аминокислоты (т. е. имеющие свободные а-аминогруппы) дезаминируются. [c.227]

    Комплексы с аминокислотами. Спектры кристаллических аминокислот исследованы недавно рядом авторов [ИЗ, 121], а спектры комбинационного рассеяния аминокислот в нейтральных и подкисленных растворах измерены Эдсоллом [58] вместе со спектрами некоторых простых карбоновых кислот, использованными для сравнения. Детальное обсуждение спектров аминокислот и карбоновых кислот вообще можно найти в обзоре Беллами [7 ]. При этом были установлены некоторые общие факты, на которых основывается интерпретация спектров комплексов аминокислот и других лигандов, содержащих карбоксильные группы. Мономерные карбоновые кислоты обладают сильным поглощением карбонильной [c.358]

    Имеется целый ряд довольно интенсивных полос, которые проявляются в спектрах всех аминокислот (табл. 3). В табл. 4 приводятся сводные данные по характеристическим полосам всех исследованных аминокислот и их соединений. Следует отметить, что в спектрах всех этих аминокислот отсутствуют полосы поглощения, соответствующие колебаниям связи группы СООН и NH2. Это дает возможность предположить, что твердые аминокислоты существуют только в форме цвиттерионов. Наличие общих полос для всех аминокислот вблизи 1585 м- еще раз подтверждает эта [c.143]

    Данные приведены для твердых образцов, так как большей частью инфракрасные спектры сахаров измеряются в вазелиновом масле, КВг или в виде пленок. В области 3800—3200 см" - имеется широкая полоса с плечами, которая обусловлена поглощением гидроксильных групп, в различной степени связанных водородными связями (при ацетилировании всех гидроксильных групп эта полоса исчезает). В интервале 1200—1030 см" -находятся сложные полосы, отнесенные к валентным колебаниям эфирной и гидроксильной групп V С —О полосы в области V С = О, естественно, отсутствуют. В ряду "моносахаридолигосахарид-> полисахарид инфракрасные спектры поглощения становятся проще, так как многие полосы перекрываются аналогичные изменения наблюдаются в ряду аминокислоты -> олигопептидыпротеины. Результаты, приведенные в табл. 5д, получены Баркером с сотрудниками [52] для 1>-глюкопираноз в области отпечатков пальцев . Таким образом, с помощью полос типа 2а и 26 можно различать а и Р серии. Однако полоса в области 890 см - не обязательно означает присутствие Р-сахара, так как некоторые полосы типа 1 для а-ряда появляются в области полос типа 26. Закономерности, наблюдающиеся в данных табл. 5д, справедливы и для других гекса- и пентапираноз, таких, как галактоза, манноза, арабиноза и соответствующие их ацетаты. Полосы типа 2й и 26 у ди-, олиго- и полисахаридов также появляются в областях, указанных в табл. 5д, и, следовательно, могут быть использованы для идентификации а- и Р-рядов. Кроме того, с помощью полос типа 1 и типа 3 а-сахаров можно идентифицировать глюкозидную связь (табл. 5е). Идентичность инфракрасных спектров энантиомерных сахаров позволяет применить метод определения а- и р-сахаров и для ряда Ь-глюкопираноз. [c.41]

    Спектры поглощения некоторых аминокислот и пептидов в вакуумной ультрафиолетовой области получены Прейссом и Сетлоу [912]. [c.258]

    Полосы поглощения в УФ-области остатков триптофана, тирозина и фенилаланина сами по себе могут дать информацию относительно их непосредственного окружения. В зависимости от окружения может наблюдаться смещение максимума полос поглощения или изменение интенсивности. Ветлауфер и сотр. [256], а также Донован [257] и сотр. исследовали влияние заряда вследствие ионизации карбоксила, протонирования аминогруппы или других факторов на УФ-спектры ароматических аминокислот. Бигелов с сотр. [258, 259] изучали влияние растворителей и состава раствора. [c.375]

    При обработке гемоглобина разведенными минеральными кислотами или щелочами получается г е м а т и н, представляющий собой окисленную форму гема и содержащий Ре . При восстановлении гематина, например, сернистым аммонием в присутствии глобина получается гемохромоген — пигмент с очень характерным спектром поглощения, который представляет собой соединение денатурированного глобина с гемом. При судебномедицинских исследованиях кровяных пятен для доказательства на личия крови гемоглобин обычно переводят именно в форму гемохромогена так как последний может быть открыт спектроскопическим путем в самых минимальных концентрациях. В недавнее время было предложено терми ном гемохромогены называть самые различные соединения гема с азоти стыми веществами, в том числе с аминокислотами, пиридином, никотином гидразином и другими соединениями. С этой точки зрения гемоглобиь представляет собой лишь один из гемохромогенов. Соответствующие сое динения с гематином называются парагематинами. Соединение гематина с денатурированным глобином — прежний глобин-Парагематин — получило специальное название катгемоглобина. Соотношения между всеми упомянутыми дериватами гемоглобина могут быть представлены следующей схемой  [c.64]

    Количественное определение а-кетокислот можно производить путем декарбоксилирования сульфатом церия [568, 569] или перекисью водорода [570]. К числу других методов, полезных для идентификации кетокислот, относятся получение бисуль-фитных производных, исследование инфракрасных и ультрафиолетовых спектров поглощения, неферментативное переами-нирование с образованием соответствующих а-аминокислот. Некоторые а-кетокислоты, например а-кето- [-метилтиомасляная кислота, дают те же характерные цветные реакции, что и аналогичные им аминокислоты. Ряд методов определения а-кетокислот основан на реакциях карбонильной группы. [c.104]

    ИНФРАКРАСНЫЕ СПЕКТРЫ ПОГЛОЩЕНИЯ ВОДНЫХ РАСТВОРОВ НЕКОТОРЫХ ПОЛИУКСУСНЫХ АМИНОКИСЛОТ [c.264]

    ПОЛОСЫ поглощения. В той же области спектра поглощают гидрохлориды простых аминов бутиламина [37] и метиламина [38]. Томпсон и др. [19] обнаружили полосу поглощения 3100 см у гидрохлорида глицинового эфира, в то время как фенилглициновая соль натрия с незаряженной группой ЫНг дает обычную аминную полосу поглощения вблизи 3370 смГ . Гор и др. [24] подтвердили наличие полосы поглощения вблизи 3000 см у растворов глицина в тяжелой воде, содержащей ВС1. С другой стороны, при рассмотрении спектров гидрохлоридов аминокислот, опубликованных Рендаллом и др. [17], можно сделать заключение, что семь соединений, содержащих группу ЫНд, и три соединения, содержащих группу не поглощают в этой области, в то время как пять других соединений с группой ЫНд поглощают в пределах 3145—3049 слГ . Это свидетельствует о необходимости дальнейшей работы в этом направлении, так как если бы было подтверждено, что гидрохлориды аминокислот не поглощают в этой области, то было бы обоснованным сомнение в правильности отнесения этого поглощения к группе КНд. Однако поскольку все исследованные до настоящего времени нейтральные аминокислоты определенно поглощают в этой области, данная корреляция вполне может быть использована для их идентификации. Полосы валентных колебаний ЫН+ наблюдаются также у координационных соединений, таких как аммины кобальта. Эти соединения были изучены рядом исследователей [39—45]. Однако в этих случаях заряд, сосредоточенный на атоме азота, существенно меньше и частоты антисимметричных и симметричных колебании равны соответственно примерно 3300 и 3150 см -. [c.340]


Смотреть страницы где упоминается термин Спектр поглощения аминокислот: [c.450]    [c.229]    [c.468]    [c.515]    [c.72]    [c.66]    [c.326]    [c.96]    [c.251]    [c.69]    [c.56]    [c.243]    [c.344]   
Основы биологической химии (1970) -- [ c.55 , c.56 ]




ПОИСК







© 2025 chem21.info Реклама на сайте