Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомные состояния, представление

    Как видно из материала предыдущих глав, термодинамика описывает равновесие. Однако поскольку термодинамика не построена на атомно-молекулярных представлениях о строении вещества, она не может быть полной. Это проявляется в том, что в термодинамике используется большое число эмпирических соотношений и постоянных (например, уравнения состояния, данные о теплоемкостях и др.), при этом не вскрывая их молекулярного смысла и не рассматривая их в связи с характеристиками молекул. Термодинамика не описывает случайных отклонений от равновесия (флуктуации) и в ее рамках вообще не рассматриваются скорости химических реакций. Все эти явления и связанные с ними задачи находят решение в статистической механике на основе молекулярных представлений. [c.140]


    Число возможных значений / определяет мультиплетность атомного состояния. В обоих примерах, представленных выше, мультиплетность равна трем (в первом примере / = О, 1 и 2, а во втором / — 1, 2 и 3). [c.617]

    Обозначим молекулярные орбитали молекулы символами у и 72,. ... В таком случае, если молекула имеет только заполненные оболочки, ее конфигурацию можно записать в виде у,, у . .. уп Дублетному спиновому состоянию молекулы соответствует конфигурация 7 Каким должно быть представление Г / По аналогии с атомными состояниями, которые обозначаются буквами 5, р и т. д., казалось, что можно было бы дать отнесение и молекулярных состояний по неприводимым представлениям. Так и обстоит дело в действительности. Возможность отнесения молекулярных состояний по неприводимым представлениям следует из того, что гамильтониан молекулы коммутирует со всеми операциями группы симметрии люлекулы. Поэтому в соответствии с общей теоремой для коммутирующих операторов обозначение симметрии молекулы является хорошим квантовым числом. [c.251]

    Таким образом, проведенный на основе расчетов по закону действующих масс анализ подтвердил экспериментально найденные закономерности строения диаграмм состояния и диаграмм состав — свойство и дал вероятные объяснения с позиций атомно-молекулярных представлений. [c.118]

    Если даже теорема Купманса строго и не выполняется, то все-таки полезно знать, какие пики в фотоэлектронном спектре могут быть связаны с различными молекулярными орбиталями в исходной молекуле. Например, в гл. 3 рассматривались симметрия и строение молекулярных орбиталей NHj. Было установлено, что семь атомных орбита-лей в симметрии Сз . образуют представление, которое сводится к трем неприводимым представлениям и двум неприводимым представлениям е. Восемь валентных электронов NH3 заполняют две из а - и одну из е-молекулярных орбиталей, образуя конфигурацию основного состояния [c.339]

    Для простоты мы и в вопросах, относящихся к методу МО, ограничиваемся описанием электронных связей только между двумя рассматриваемыми атомами, т. е. на основе двухцентровых орбит, как это было раньше общепринято в химии и как это принято в методе ВС — валентных схем (локализованных электронных пар). Однако для многоатомных молекул это отнюдь не является единственно возможным. В частных случаях могут рассматриваться орбиты, охватывающие три или большее число атомов. В других же случаях метод МО, по крайней мере в некоторых формах его применения, описывая состояние данного электрона в поле действия всех атомных ядер и электронов, содержащихся в молекуле, использует представления о делокализации электрона, как это принято в аналогичных теориях атома. [c.68]


    Таким образом, с позиции современных представлений о твердом состоянии процесс парафиноотложения на поверхности подложки представляет собой контактное взаимодействие молекулярного твердого соединения (частицы дисперсной фазы) с атомным твердым соединением (поверхность подложки). Как видно из экспериментальных данных, такое взаимодействие может протекать по различным механизмам в зависимости от кристаллической структуры материала подложки. [c.110]

    Удовлетворительных теоретических представлений о теплопроводности полимеров не существует. Даже для моделей со сферической структурой и для неполярных жидкостей построены лишь очень приблизительные аппроксимации, а для полимеров в твердом состоянии их нет вообще. Физики знают, что в металлах теплопередача осуществляется за счет электронной проводимости, а в диэлектриках — за счет атомных и молекулярных движений. Это же справедливо и для неэлектропроводных жидкостей. [c.119]

    В своей принципиальной основе метод молекулярных орбиталей достаточно прост. Он распространяет квантовомеханические закономерности, установленные для атома, на более сложную систему — молекулу. В основе метода молекулярных орбиталей лежит представление об орбитальном строении молекулы, т. е. предположение о том, что все электроны данной молекулы (как и в атоме) распределяются по соответствующим орбиталям. Каждая орбиталь характеризуется своим набором квантовых чисел, отражающих свойства электрона в данном энергетическом состоянии. Специфика молекулярного состояния заключается в том, что в молекуле несколько атомных ядер, т. е. в отличие от одноцентровых атомных орбиталей молекулярные орбитали несколько центровые (общие для двух и большего числа атомных ядер). По аналогии с атомными 5-, р-, к-, /-. .. орбиталями молекулярные орбитали обозначаются греческими буквами а-, я-, 6-, ф. .. [c.84]

    И атомы, есть только электроны и ядра, причем последние начинают уже распадаться на протоны и нейтроны. Все это является одним из проявлений второго закона термодинамики, в смысле увеличения числа микросостояний и снижения упорядоченности системы при распаде каждой структурной единицы материи на атомные и элементарные частицы. Таким образом, становится понятным различие между энтропией испаре-ния, рассчитанной по уравнению (236) и равной 88 Дж-моль - К , и энтропией объемного расширения, возникаюшей при увеличении объема жидкости при ее испарении [рассчитанной па уравнению (237) и равной 59,0 Дж-моль -К ]. Разность этих величин составляет 29 Дж-моль - К . Испарение жидкости соответствует переходу от квазикристаллической структуры жидкости к полностью разупорядоченному состоянию газа. Эти представления согласуются и с тем, что энтропия плавления составляет лишь примерно 21 Дж-моль -К , что соответствует переходу кристаллического вещества в жидкое состояние. То, что энтропия плавления меньше, чем указанное выше значение 29 Дж-моль -является доказательством того, что жидкость по своей структуре ближе к твердому телу, чем к газу. [c.241]

    Каковы современные представления о строении бензола В каком валентном состоянии находятся атомы углерода в молекуле бензола Приведите атомно-орбитальную схему молекулы бензола (схемы а- и л-связей на отдельных рисунках). Отметьте значения валентных углов. Как расположены в пространстве оси р-орбиталей Какую пространственную конфигурацию имеет молекула бензола  [c.142]

    Группа методов рентгено- и фотоэлектронной спектроскопии, включая оже-спектроскопию, позволяет получать данные об энергиях отрыва электро нов от атомов и молекул как с внешних — валентных оболочек, так и с внутренних оболочек атомного остова. Это эффективные методы структурных исследований и высокочувствительные неразрушающие аналитические методы изучения молекул в газовой фазе, поверхности твердых тел, биологических объектов и полимеров. Особенно широко и продуктивно они применяются в катализе, адсорбции, электронике, а также как методы прямого измерения энергетических характеристик электронных состояний атомов и молекул. Эти характеристики являются уникальными в отношении возможности сопоставления их с теоретическими представлениями и модельными расчетами. [c.133]

    Не все проблемы химии решаются термодинамическим путем. Предсказывая возможность и глубину реакции по заданному начальному состоянию, термодинамика не дает представления ни о времени, необходимом для достижения конечного, равновесного состояния, ни об атомно-молекулярной структуре вещества, ни о механизме химического превращения. Уравнения термодинамики применимы лишь к макросистемам, а не к отдельным молекулам, частицам. [c.66]

    Таким образом, после прочтения настоящей главы мы убедились, что к концу 60-х годов прошлого века было неоспоримо доказано существование атомов и молекул, была разработана стройная теория атомно-молекулярного учения, на которой базировалась вся физика и химия того времени. Мы познакомились пока лишь с основными понятиями и некоторыми из основных законов химии. Подчеркнем еще раз, что атоМно-молекулярное учение базировалось на представлениях о том, что атом неделим. Вследствие этого атомно-молекулярная теория оказалась не в состоянии объяснить ряд экспериментальных фактов конца XIX и начала [c.28]


    Метод МО представляет собой естественное распространение теории атомных орбиталей (АО) на поведение электронов в молекуле. Предполагается, что электроны в молекуле находятся на молекулярных орбиталях, охватывающих все ядра атомов в молекуле, и МО занимает весь объем молекулы. Таким образом, метод МО рассматривает молекулу и другие устойчивые многоатомные системы как многоатомный атом , в котором электроны располагаются на орбиталях, называемых молекулярными. Так как на электрон молекулярной орбитали воздействует поле многих ядер, то образование МО из АО приводит к уменьшению энергии системы. Представим, что атом А, имеющий свободный или спаренный электрон, приближается к атому В. Из двух изолированных атомов образуется система, состоящая из двух ядер а и й, в поле которых находятся электроны этих атомов. Если молекула состоит из п атомов с суммарным числом электронов М, то состояние молекулы можно представить системой из п силовых центров, в поле которых находится N электронов. Такое представление о молекуле как о взаимодействующем коллективе всех ядер и электронов лежит в основе теории метода МО. Основные положения  [c.48]

    В методе молекулярных орбиталей волновая функция молекулы строится, как и в методе валентных связей, из атомных орбиталей, но движение электрона рассматривается в поле всех ядер молекулы и остальных электронов. Волновые функции метода молекулярных орбиталей являются многоцентровыми. Каждому электрону соответствует многоцентровая орбиталь, характеризующаяся набором квантовых чисел и определенной энергией. Таким образом, общие представления о состоянии электрона в многоэлектронном атоме применяются и для описания состояния электрона в молекуле. Спиновое состояние электрона описывается спиновым квантовым числом, принимающим, как уже указывалось, лишь два значения ( + 1/2 и —1/2). Поэтому на каждой молекулярной орбитали может помещаться максимум два электрона. Молекулярная орбиталь (МО) является спин-орбиталью, так как волновая функция включает и пространственную (г) и спиновую (5) части ф(г, 5). Каждая пространственная функция сочетается с двумя спиновыми (а и Р). [c.107]

    Состояние электрона в атоме водорода. Простейшей атомной системой является водород. Согласно теории Бора, водород состоит нз ядра, несущего один положительный заряд, и одного электрона — отрицательно заряженной частицы, вращающейся вокруг ядра на определенном расстоянии (0,529 А) по круговой орбите. Это можно представить схемой / на рис. 5. По современным же представлениям, движение электрона в атоме водорода не ограничивается перемещением по кругу. Двигаясь с очень большой скоростью, электрон в каждый данный момент может находиться в любой точке шаровой области пространства вокруг ядра. Характеризуя вероятность нахождения электрона в различных местах этой области, говорят, что быстро движущийся электрон создает вокруг ядра определенное электронное облако. [c.29]

    Зонное состояние электрона в кристалле имеет черты, сходные с состоянием электрона в отдельном атоме, если представить себе, что исходные дискретные энергетические уровни как бы расширились каждый из них в результате взаимодействия атомов превратился в непрерывную зону дозволенных энергий. В то же время зонное состояние во многом сходно с состоянием свободного электрона — ведь в зоне электрон делокализован, с одинаковой вероятностью его можно найти у любого атома в этом смысле можно говорить о его свободном перемещении по кристаллу, и отсюда представление о газе свободных электронов . Такое электронное строение имеют все вещества с атомной кристаллической решеткой. Остается выяснить, в каком случае они оказываются металлами и когда неметаллами. [c.136]

    Однако эти представления, а также основная идея ММО о делокализованных орбиталях непривычны обычному химическому мышлению о локализации химической связи, т. е. об одной, двух или трех парах электронов, связывающих только два атома и не участвующих в связывании других атомов той же молекулы. Кроме того, ММО трактует молекулу в целом, тогда как для химии более важны характеристики ее отдельных атомных сочетаний валентных связей и фрагментов молекулы. В то же время ММО автоматически учитывает возбужденные состояния молекул, чего нельзя сказать относительно МВС. [c.126]

    Основы физической и коллоидной химии позволяют заложить фундамент развития качественных и количественных представлений об окружающем мире. Эти знания необходимы для дальнейшего изучения таких специальных дисциплин, как агрохимия, почвоведение, агрономия, физиология растений и животных и др. Современное состояние науки характеризуется рассмотрением основных физико-химических процессов на атомно-молекулярном уровне. Здесь главенствующую роль играют термодинамические и кинетические аспекты сложных физико-химических взаимодействий, определяющих в конечном счете направление химических превращений. Выявление закономерностей протекания химических реакций в свою очередь подводит к возможности управления этими реакциями при решении как научных, так и технологических задач. Роль каталитических (ферментативных) и фотохимических процессов в развитии и жизни растений и организмов чрезвычайно велика. Большинство технологических процессов также осуществляется с применением катализа. Поэтому изучение основ катализа и фотохимии необходимо для последующего правильного подхода к процессам, происходящим в природе, и четкого определения движущих сил этих процессов и влияния на них внешних факторов. Перенос энергии часто осуществляется с возникновением, передачей и изменением значений заряда частиц. Для понимания этой стороны сложных превращений необходимо знание электрохимических процессов. Зарождение жизни на Земле и ее развитие невозможно без участия растворов, представляющих собой ту необходимую среду, где облегчается переход от простого к сложному и создаются благоприятные условия для осуществления реакций, особенно успешно протекающих на разделе двух фаз. [c.379]

    Состояние электрона в атоме описывается квантовой механикой, которая изучает движение и взаимодействие микрочастиц, т. е. элементарных частиц, атомов, молекул и атомных ядер. По представлениям квантовой механики — микрочастицы имеют волновую природу, [c.44]

    Очень часто электроны, участвующие в образовании ковалентной связи, находятся в различных состояниях, например один в 5-, другой в р-орбиталях. Казалось бы, и связи в молекуле по прочности должны быть неравноценными. Однако опыт показывает, что они равнозначны. Это явление объясняется представлением о гибридизации атомных орбиталей, введенным Л. Полингом. [c.69]

    Но при низких температурах у лития и натрия устойчивы более плотные упаковки. Некоторые свойства щелочных металлов приведены в табл. 11. Из этой таблицы следует, что плавление не сопровождается заметным изменением координационного числа г. Расхождения между величинами г в твердой и жидкой фазах не выходят за пределы ошибок опыта. Проводимость уменьшается на 30—40%. Постоянная Холла почти не меняется [17]. Следовательно, состояние почти свободных электронов при плавлении не претерпевает существенных изменений. Замечательны оптические свойства щелочных металлов. Обладая большим коэффициентом поглощения света в видимой области спектра, они прозрачны для ультрафиолетовых лучей. Показатель преломления Б ультрафиолетовом диапазоне меньше единицы. При увеличении атомного номера щелочного металла область длин волн, для которых металл прозрачен, расширяется в сторону видимого спектра. Эти свойства щелочных металлов полуколичественно объясняются теорией, основанной на представлении о почти свободных валентных электронах в металлах. [c.179]

    Как известно, в представлениях метода молекулярных орбиталей, при взаимодействии двух атомов происходит перекрывание атомных орбиталей с образованием связывающих и разрыхляющих молекулярных орбиталей, и каждое атомное энергетическое состояние расщепляется на два, в системе из четырех атомов — на четыре, в системе из восьми атомов — на восемь и т. д. молекулярных состояний. Чем больше атомов в системе, тем больше молекулярных состояний. Пусть из атомов образуется кристалл, тогда каждое атомное состояние сместится энергетически и расщепится на N состояний (рис. 95). Так как число атомов N очень велико (в 1 см металлического кристалла содержится —10 атомов ), то 7V состояний сближакугся, образуя энергетическую зону. Энергетическое различие состояний электронов в пределах зоны составляет всего лишь 10 эв, поэтому изменение энергии электрона в зоне можно представить как непрерывную полосу энергии. Орбитали энергетической зоны можно считать аналогами молекулярных орбиталей, простирающихся по всему кристаллу. [c.147]

    Следует иметь в виду, что представление о металлах и неметаллах условно. Некоторые химические элементы (германий, сурьма и др.) проявляют свойства, по которым их моуКно отнести как к металлам, так и к неметаллам. Кроме того, современная техника позволяет создавать такие экстремальные условия, при которых вещества, в том числе и простые, могут резко изменять свои свойства. Например, типичный неметалл водород при сверхвысоких давлениях может перейти в металлоподобное состояние и проявлять такое характерное свойство металлов, как электропроводность. Типичный металл— натрий можно перевести в парообразное состояние, в котором он существует в атомном состоянии или в виде молекул Каг, что характерно для неметаллов. [c.166]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    На рис. 16-5 дано графическое представление молярных энтропий чистых элементов в различных физических состояниях. Все металлические твердые вещества обладают энтропией, не превышающей величины 80 энтр.ед. моль между 130 и 180 энтр.ед. моль атомных газов имеют еще более высокие значения. Хотя абсолютные энтропии вычисляются при ПОМОПЩ третьего закона термодинамики лишь на основе измерения тепловых свойств веществ, они позволяют получить [c.64]

    МОЖНО установить неприводимые представления разных орбиталей в различных точечных группах. Результаты, полученные для одного электрона, находящегося на различных орбиталях, применимы также к термам многоэлектронных систем. Например, термы Р, G, Du S -конфи-гуращш можно рассмотреть как /-, p-, g-, d- и 5-орбитали. Нижние индексы g и и, приведенные в табл. 10.3, при этом не используются, но они зависят от природы дай взятых атомных орбиталей. Таким образом, табл. 10.3 применима как к термам, так и к орбиталям. Например, терм D пятикратно вырожден подобно пяти -орбиталям он описывается волновой функцией для каждого из пяти значений М . Эти волновые функции имеют Ф-составляющую, выражаемую как. Из табл. 10.3 и 10.4 можно видеть, что состояние D свободного иона расщепляется на состояния Е + Tj в октаэдрическом поле и на состояния A g + + д + В д в тетрагональном поле D4,,. Аналогичным образом терм приводит к /129+ 19+ 29 октаэдрическом поле и к Bi+ А2 + 2Е + В2 в поле С4 . [c.79]

Рис. 3. Графическое представление волновой функции атомной 8-ор6итали а — плоское сечение 6 — граничная поверхность орбитали а — распределение плотности заряда в состоянии 1 (сэлек-тронное облакоэ) Рис. 3. <a href="/info/796492">Графическое представление</a> <a href="/info/742606">волновой функции атомной</a> 8-ор6итали а — <a href="/info/1158677">плоское сечение</a> 6 — <a href="/info/69369">граничная поверхность</a> орбитали а — <a href="/info/441696">распределение плотности заряда</a> в состоянии 1 (сэлек-тронное облакоэ)
    При формировании качественных представлений об электронном строении атомов важная роль принадлежит приближению центральносимметричного потенциала, на основе которого атомную орбиталь записывают в виде произведений радиальной и сферической функций. Принцип Паули и приближение центрально-симметричного поля позволяют понять оболочечное строение атома и установить конфигурацию основного состояния. В тех случаях, когда можно ожидать несколько конкурирующих конфигураций, вопрос их выбора рещается либо экспериментально, либо численными расчетами в приближении Хартри — Фока. Лишь в исключительных случаях для установления терма основного состояния (см. гл. 3, 7) требуется построение более сложной, по сравнению с методом Хартри — Фока, волновой функции в форме наложения конфигураций. Эту логику рассуждений переносят и на теорию злектрон-ного строения молекул, однако здесь возникают новые вопросы. [c.187]

    Не следует забывать, что химия исследует вещество только в одном из аспектов. Изучая состав, химические свойства, способы получения твердых веществ, мы не можем обходиться без представления об их электронной конфигурации, кристаллической структуре, без знания закономерностей, которым подчиняются изменения физических свойств с изменением энергетического состояния вещества, словом без физической теории и без физических экспериментов. Химия, физика твердого тела и молекулярная биология — по определению физика-теоретика айскопфа — являются непосредственным следствием квантовой теории движения электронов в кулоновском поле атомного ядра. Все многообразие химических соединений, минералов, изобилие видов в мире организмов обусловливается возможностью расположения в достаточно стабильном положении сравнительно небольшого количества первичных структурных единиц — атомов — огромным количеством способов, диктуемых пространственной конфигурацией электронных волновых функций. Длина связи, т. е. межатомное расстояние,— это диаметр электронного облака, определяемый амплитудой колебания электрона в основном состоянии. Поскольку масса ядра во много раз больше массы электрона, соответствующая амплитуда колебания ядра во много раз (корень квадратный из отношения масс) меньше. Поэтому, как отмечает Вайскопф, ядра способны образовывать в молекулах и кристаллах довольно хорошо локализованный остов, устойчивость которого измеряется энергией порядка нескольких электронвольт, т. е. долями постоянной Ридберга. Местоположения ядер атомов, образующих остов кристалла, с большой точностью определяются методом рентгеноструктурного анализа. Таким образом, бутлеровская теория строения, структурные формулы в наше время получили ясное физическое обоснование. [c.4]

    Наиболее полное представление об энергетическом состоянии атома дает атомная спектроскопия — прежде всего вслед-стние возможности с высокой точностью определять длину волны излучения. [c.42]

    При взаимодействии атомных групп, содержащих несколько ядер, спектр ЯМР, естественно, усложняется. Спектр ПМР этильного радикала, например в подкисленном спиртовом растворе (и аналогично в молекулах H3 H2R, где R — невзаимодействующий атом), при достаточном разрешении имеет вид, представленный на рис. 1.8. В такой системе, относящейся к типу А3Х2, спиновые состояния группы Xq описываются, как было показано для двухспиновой системы в табл. 1.4. Эти состояния протонов группы СНг влияют на резонансный сигнал протонов метильной группы СНз, который и представляет поэтому триплет в соответствии с числом возможных значений суммарного спина системы Х2. Соотношение интенсивностей компонент в триплете 1 2 1, что соответствует соотношению вероятностей (кратности вырождения), влияющих состояний группы СНг с данным суммарным спином (см. табл. 1.4). [c.25]

    Откладывая на некоторе время количественное рассмотрение вопроса, укажем, что дуалистичность энтропии можно понять, если пользоваться представлениями об атомно-молекулярной структуре материи и рассматривать состояние системы с точки зрения упорядоченности — неупорядоченности движения или состояния составляющих ее частиц. [c.175]

    Сравнение методов ВС и МО. Эти методы, на первый взгляд, совершенно различны, но более подробное сопоставление вскрывает много общих черт. В методе ВС предполагается, что атомы полностью сохраняют свою индивидуальность, и единственным изменением, происходящим при образовании молекулы, является обмен электронами между орбиталями соседних атомов. Метод МО, по существу, является распространением теории многоэлектронных атомов на молекулы. Если состояние атома описывается как совокупность атомных орбиталей, то аналогично можно рассматривать молекулу как совокупность молекулярных орбиталей, которые возникают из комбинации орбита-лей атомов, входящих в состав молекулы. Оба эти метбда скорее дополняют, чем противостоят друг другу. Аргументированный выбор между ними целиком зависит от тех задач, которые необходимо решить. В настоящее время в большинстве работ по теории химической связи применяется метод МО. Это объясняется тем, что в применении к многоатомным молекулам как сам метод МО, так и программирование расчетов на ЭВМ осуществляется проще, чем для метода ВС. С другой стороны, метод ВС дает более наглядное представление о химической связи и строении молекул. [c.198]

    Строго говоря, для многоэлектронньгх атомов построение таких линейных комбинаций неправомочно, поскольку энергия электронов является функцией, не только главного, но и азимутального квантового числа. Однако если энергии гибридизуемых состояний отличаются не сильно, то представление о таких орбиталях является вполне допустимым удобным приближением. Практически можно строить гибридные атомные орбитали иэ з- и р-орбиталей, относящихся к одному электронному слою, и из -орбиталей, относящихся к тому же или предыдущему электронному слою. [c.50]

    Для описания свойств электрона используют волновую функцию, которую обозначают Квадрат ее абсолютной величины ф , вычисленный для определенного момента времени и определенной точки пространства, пропорционален вероятности обнаружить частицу в этой точке в указанное время. Величину называют плотностью вероятности. Наглядное представление о распределении электронной плотности атома дает функция радиального распределения. Такая функция служит мерой вероятности нахождения электрона в сферическом слое между расстояниями г и (г + йг) от ядра. Объем, лежащий между двумя сферами, имеющими радиусы г и (г + г), равен пгЧг, а вероятность нахождения электрона в этом элементарном объеме может быть представлена графически в виде зависимостей функции радиального распределения. На рис. 3 представлена функция вероятности для основрюго энергетического состояния электрона в атоме водорода. Плотность вероятности достигает максимального значения на некотором конечном расстоянии от ядра. При этом наиболее вероятное значение г для электрона атома водорода равно <2о — радиусу орбиты, соответствующей основному состоянию электрона в модели Бора. Различная плотность вероятности дает представление об электроне, как бы размазанном вокруг ядра в виде так называемого электронного облака (рис. 4). Чем больше величина г з тем больше вероятность нахождения электрона в данной области атомного пространства. [c.14]

Рис. 4. Электронное облако для атома водорода в 15-состоянни (а), графическое представление угловой функции атомной 1.5-орбитали (6) и граничная поверхность электронного облака в 1 -состоянии (в) Рис. 4. <a href="/info/2875">Электронное облако</a> для <a href="/info/1117693">атома водорода</a> в 15-состоянни (а), <a href="/info/796492">графическое представление</a> <a href="/info/18061">угловой функции</a> атомной 1.5-орбитали (6) и <a href="/info/677998">граничная поверхность электронного облака</a> в 1 -состоянии (в)
    Ясность в представления о внутренней динамике молекул была внесена лишь в первой половине XX в. в результате появления многочисленных методов физического исследования веществ. Посредством инфракрасной и Раман-спектроокопии был установлен механизм линейных и вращательных внутримолекулярных колебаний атомов и атомных групп. Электронные спектры позволили выяснить характер возбужденного состояния молекул. Нейтронографические и рентгенографические методы дали возможность делать заключения о распределении электронной плотности в молекулах. Определенную информацию о динамических аспектах молекул дали масс-спектрометрические и радиоспектроскопические методы. Все это, естественно, способствовало разъяснению бутлеровских предвидений о структуре молекул как некой энергетической, или динамической, упорядоченности, присущей системе взаимосвязанных атомов. [c.94]

    С точки зрения приведенного выше представления о молекулярных орбиталях в молекуле этилена каждый атом углерода должен использовать sp -opбитaли для образования связей с тремя атомами. Эти р -орбитали возникают в результате гибридизации 2з-, 2рх - и 2ру -электронов после перехода одного -электрона на р-орбиту, как было показано в разд. 1.3. Можно полагать, что любой атом углерода, связанный с тремя разными атомами, использует для этих связей sp -opбитaли. Таким образом, каждый атом углерода этилена участвует в образовании трех 0-связей по одной с каждым из двух атомов водорода и одной с другим атомом углерода. Поэтому каждый атом углерода имеет еще один электрон иа орбитали 2рг, которая в соответствии с принципом максимального отталкивания перпендикулярна плоскости р -орбиталей. Две параллельные 2 рг-ор-битали могут перекрываться, образуя две новые орбитали, связывающую и разрыхляющую (рис. 1.5). В основном состоянии оба электрона находятся на связывающей орбитали, а разрыхляющая орбиталь остается вакантной. Молекулярные орбитали, образованные при перекрывании атомных орбиталей, оси которых параллельны, называют л-орбиталями, если они являются связывающими орбиталями, и. п -орбиталями, если они являются разрыхляющими орбиталями. [c.22]

    Чем больше эти коэффициенты, тем сильнее отличаются молекулярные орбитали от соответствующих атомных. Ч. Коулсон предложил для характеристики прочности связи ввести понятие порядок связи и определить его как произведение коэффициентов общий порядок связи при N электронах на данной занятой орбитали есть рц1 = 1.МС1С . Эти методы характеристики электронных состояний очень наглядно показывают, как физики, испытавшие затруднения, когда им пришлось отказаться от удобных Шариков-электронов, вращающихся по определенным орбитам, и вместо них пользоваться туманными электронными облаками, справились с практическими задачами. Фактическую электронную плотность стали выражать в долях заряда электрона, а прочность связи — в той электронной нагрузке на данную связь, представление о которой дают произведения коэффициентов в линейном выражении молекулярных орбиталей через атомные. [c.123]

    Если исходить из представлений, что атомы активного центра проявляют определенную валентность, связанную с электронным состоянием атома, то активный центр следует рассматривать как совокупность атомов, проявляющих индивидуальную валентность на фоне коллективных свойств кристалла. С этой точки зрения активные центры можно рассматривать как атомные ансамбли, свойства которых зависят от коллективных свойств кристалла. От 11рироды носителя зависит вероятность образования атомов в нужном валентном состоянии и их число, что будет определять как активность, так и селективность катализаторов. [c.113]

    Согласно современным представлениям, периодичность из-Л4енения свойств элементов, расположенных в порядке возрастания атомного номера (равного. ..), обусловлена периодичностью изменения электронных состояний атомов. [c.16]

    Впервые понятие о валентности было введено в химию английским химиком Франклендом в 1853 г. Под валентностью, или атомностью, данного элемента он понимал число атомов другого соединяющегося с ним элемента. Если принять валентность водорода равной единице, валентности других элементов определяются как число атомов водорода, соединяющееся с одним атомом рассматриваемого элемента. Франклендом была обнаружена трехва-лентность азота, фосфора, мышьяка и четырехвалентность (вместе с А. Кольбе) углерода. В дальнейшем представления о валентности сыграли исключительно важную роль в теории химического строения Бутлерова и создании Периодической системы химических элементов Менделеева. Это свойство зависит от состояния атомов рассматриваемого элемента, природы партнера, с которым реагирует данный элемент, условий взаимодействия. Так, углерод с одним и тем же партнером — кислородом в зависимости от условии взаимодействия образует СО2 и СО, в которых состояния атомов углерода различны. На основе валентности элементов легко определить формульный состав химического соединения. Поэтому величину валентности часто называют стехиометрической валентностью. [c.74]

    Очень часто электроны, участвующие в образовании ковалентиой связи, находятся в различных состояниях, например, один в 5-, другой в р-орбиталях. Казалось бы, и связи в молекуле по прочности должны быть неравноценными. Однако опыт показывает, что они равнозначны. Это объясняет представление о гибридизации атомных орбиталей, введенное в химию Л. Полингом. Гибридизацию валентных орбиталей рассмотрим на примере образования молекул хлорида бериллия ВеСЬ, хлорида бора ВС1з и метана СН4. [c.82]

    После рассмотрения Системы нейтральных атомов в свете простейших пространственных и энергетических представлений с учетом квантовой характеристики поведения электронов и волновой их природы, а также понятий о дор- и бент-состояниях со статистическими наборами радиальных максимумов зарядовой плотности и радиальных нод следует обратить внимание на азимутальную (угловую) симметрию строения электронных облаков. При этом необходимо учесть взаимодействие между внутренними добавочными максимумами зарядовой плотности добавляемого к атому внешнего электрона с главными максимумами плотности глубже лежащих электронов атомного остова — особенно в случаях совпадения азимутальной их симметрии. При отсутствии такого совпадения возникает кайносимметрия, т. е. появление новой азимутальной симметрии при вхождении в атом добавочного внешнего электрона. [c.24]


Смотреть страницы где упоминается термин Атомные состояния, представление: [c.9]    [c.65]    [c.221]    [c.127]   
Теория молекулярных орбиталей в органической химии (1972) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте