Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические кислоты константы диссоциации

    Для определения аминогруппы применяются нейтрализация (прямое ацидиметрическое титрование), образование амидов, бромирование, реакция с азотистой кислотой и другие реакции, причем наиболее широко используется прямое титрование. Почти все амины можно титровать в водной среде или в определенных органических растворителях. Большинство алифатических аминов является достаточно сильными основаниями, и их можно титровать в водном растворе кислотами. Константы диссоциации алифатических аминов находятся в пределах от 10 до 10 . Ароматические и другие слабоосновные амины не удается оттитровать в воде, но они хорошо титруются в растворителях, обсуждаемых ниже. Константы диссоциации этих аминов колеблются в пределах от 10 до 10 . [c.405]


    При рассмотрении влияния замещающих групп на константы диссоциации разнообразных органических кислот выяснилось, что в ряду ненасыщенных кислот алифатического ряда и особенно в ряду ароматических кислот имеется более сложная зависимость, чем для кислот предельного ряда, и взаимодействие групп не ограничивается только индуктивным влиянием и эффектом поля. Это следует из сопоставления констант диссоциации замещенных бензойных кислот и особенно сопоставления влияния на величину этих констант одних и тех же заместителей, находящихся в мета- и пара-положениях  [c.143]

    Из величин окислительно-восстановительных потенциалов были вычислены константы равновесия и применено к ним уравнение Гаммета. Таким образом, сравнивается влияние заместителей на константы диссоциации замещенных бензойных кислот с влиянием тех же заместителей на окисление железа в производных ферроцена. Если брать значения а , то линейной зависимости пе получается, еслп же использовать значения Ор, то наблюдается линейная зависимость, но не вполне удовлетворительная (коэффициент корреляции 0,942), что указывает на заметное различие в суммарном полярном влиянии заместителей в ферроценовом и бензольном рядах. Применение идеи Тафта о раздельном изучении взаимодействия по связям реакционный центр—ароматическое кольцо и заместитель—ароматическое кольцо дало возможность выяснить это различие. [c.21]

    Выход сложных эфиров зависит также от характера карбоновых кислот, например, увеличение константы диссоциации кислоты облегчает присоединение ее по С = С-связи. Легче всего идут реакции с муравьиной и уксусной кислотами. Двухосновные карбоновые кислоты менее активны в реакциях образования нормальных эфиров, чем одноосновные, причем активность их снижается с удлинением углеродной цепи. Ароматические кислоты активнее, чем алифатические. Скорость реакции взаимодействия карбоновых кислот с различными олефинами зависит помимо строения кислоты от времени, скорости размешивания, взаимной растворимости, растворителя, материала аппаратуры и т. д. [c.664]

    Белый мелкокристаллический порошок, не растворимый в воде. В щелочах растворяется раствор имеет синюю окраску. Применяют 0,1%-ный раствор в 90%-ном этиловом спирте. Интервал изменения окраски от pH 9 до pH 10,5. Окраска изменяется от бесцветной до синей. Изменение окраски объясняется, как и у фенолфталеина, хиноидной перегруппировкой ароматического ядра в одном из остатков тимола. Показатель титрования рТ 10. Тимолфталеин — кислота. Константа диссоциации /(=10 1", рК 10,0. [c.377]


    Описанная выше модель применима к реакциям с участием нескольких типов СН-кислот, особенно ж реакциям отщепления протона от нитросоединений и кетонов и к реакциям присоединения протона к ароматическим соединениям. Имеются несомненные доказательства того, что у всех этих соединений при протекании реакции происходит резкое перераспределение электронной плотности. Интересно выяснить, почему другие типы СН-кислот, в особенности циансодержащие соединения и дисульфоны, обладают совсем иными свойствами. Некоторые из них являются достаточно сильными кислотами, константы диссоциации которых можно измерить в водных растворах. Исследование кинетики взаимодействия этих кислот с основаниями с помощью методов галогенирования, изотопного обмена или по уширению линии протонного магнитного резонанса позволяет определить константы скорости как [c.251]

    Отсюда достаточно ясна связь константы скорости с константой диссоциации. Можно отметить, что приведенные выше закономерности в экспериментальных исследованиях изомеризации ненасыщенных жирных кислот и олефинов с ароматическими заместителями проявляются достаточно четко [6, с. 207]. Для низших олефи- [c.94]

    Ароматические кислоты — кристаллические вещества, обычно мало растворимые в воде и хорошо растворимые в полярных органических растворителях (спирте, хлороформе, бензоле). Константы их диссоциации несколько выше, чем у жирных кислот. [c.228]

    Как известно, алканы, алкены, сопряженные диены и ароматические углеводороды не являются кислотами, так как их способность к протонизации связи СЩ HJ -f Н ничтожно мала. Константа диссоциации метана [c.137]

    Ферроцен представляет собой своеобразную ароматическую систему, в которой влияние заместителей из одного циклопентадиенильного кольца передается во второе почти так, как влияние из мета-положения в бензоле, если судить по константам диссоциации замещенных ферроценкарбоновых кислот [202 Аналогичное влияние заместителя через всю ферроценовую систему можно проследить также по частоте инфракрасного спектра карбонила в другом циклопентадиенильном кольце[203. Синтез этих веществ описан в работах [204, 205]. Влияние заместителей в циклопентадиениле на потенциал окисления ферроцена изучено подробно [206], подвергнуто а, р-анализу и обнаруживает применимость констант оо Тафта в уравнении Гаммета [241]. Таким образом, устанавливается индуктивный характер [c.477]

    Константа диссоциации о-замещенных ароматических фосфорных кислот. [c.378]

    Б этих уравнениях Ки и Ка —константы диссоциации сопряженных кислот ароматического основания и его производных. Но в соответствии с уравнением Гаммета [c.165]

    В ТО время как в жирном ряду фторзамещенная кислота имеет большую константу диссоциации, чем хлор- или бромзамещенная, в ароматическом ряду наблюдается обратное явление. [c.143]

    Различие во взаимном влиянии двух таких групп, находящихся в разных положениях в бензольном ядре, можно проследить, сопоставляя константы диссоциации ароматических кислот (стр. 143). [c.166]

    Самым характерным свойством фенолов является их слабая кислотность, которая обусловлена тем, что гидроксил связан с ненасыщенным атомом углерода ароматического ядра, т. е. наличием еноль-ной группировки —СН = С(ОН)—. Сам фенол —слабая кислота, (р/Ск=10,0). Он образует соли (феноляты) с едким натром, но не с карбонатом натрия. Такое поведение типично для фенолов, и этим они отличаются от карбоновых кислот, которые реагируют даже с бикарбонатами. Таким образом, если исследуемое ароматическое соединение эастворяется в едком натре лучше, чем в воде, но его растворимость а воде не повышается в присутствии карбоната натрия, то возможно, что оно принадлежит к ряду фенолов. Константы диссоциации замещенных фенолов не подчиняются какой-либо закономерности. ИсклЮ чение представляет ряд нитрофенолов все три мононитрофенола — более сильные кислоты (р/(к = 7,2—8), чем фенол еще зыше кислотность 2,4-динитрофенола (р/(1, = 4,0) и пикриновой кислоты, кислотность которой почти равна кислотности минеральной кислоты. Увеличение кислотности фенолов при введении нитрогрупп обусловлено стабилизацией анионной формы. Стабилизация анионной формы нитрогрупп аналогична подавлению основной диссоциации аминов и точно так же может быть объяснена индукционным и резонансным эффектами. [c.278]

    Влияние полярных групп на константы диссоциации кислот ароматического и жирноароматического ряда [c.220]

    В заключение интересно остановиться на влиянии галогенов в ароматическом ядре. В жирном ряду возрастание константы диссоциации галогензамещенных кислот идет в порядке возрастания электроотрицательности галогена Л, Вг, С1, Р и константы-галогензамещенных уксусных кислот во много раз (в 75—160 раз) больше, чем уксусной кислоты. [c.222]


    Для ароматических кислот (табл. 33) также отмечается возрастание константы диссоциации при замещении водорода бензольного [c.222]

    Взаимодействие гуминовых кислот с сильными основаниями прнво-дит к ионизации карбоксильных, а затем фенольных групп. Для большинства торфов и бурБГх углей значения констант диссоциации карбоксильных групп равны 10" - 10 , для фенольных групп 10 - 10" , что типично для алифатических и ароматических кислот и фенолов. На практике содержание функциональных групп определяют физико-химическими методами, например, карбоксильных - кальций-ацетатным методом, фенольных - баритовым, используя следующие реакции  [c.25]

    Исследования Б. А. Порай-Кошица и И. В. Грачева показали, что диазосоединения строения Аг—ОН являются кислотами с константой диссоциации 10- —10-"- в зависимости от влияния групп в ароматическом ядре [14]. [c.227]

    Начиная С 1930 г. стали появляться работы, указывавшие, что влияние заместителей в ароматическом ряду может быть легко сопоставлено с их влиянием на константы диссоциации ароматических кислот. Хаммет обратил внимание на то, что различие во влиянии заместителей, находящихся в мета- или пара-положении ароматического ядра, на изменение констант скоростей процессов, протекающих у а-углеродного атома в боковой цепи, является достаточно постоянным и обусловлено лишь чувствительностью данного процесса к влиянию заместителей. Использовав эти наблюдения, Хаммет установил важное соотношение.  [c.287]

    При введении различных заместителей в разные положения ароматического ядра бензойной и фенилуксусной кислот, константы диссоциации этих кислот изменяются в зависимости от взаимополо-жения заместителя и карбоксильной группы и от того взаимовлияния, которое они проявляют. [c.202]

    Кислотные свойства карбоновых кислот. Наиболее сильной из карбоновых кислот является муравьиная кислота. Константа ее диссоциации равна 2,14-10 . Кислотные свойства карбоновых кислот, содержащих в соединении с карбоксильной группой углеводородные радикалы, ослаблены они зависят и от характера радикала. Карбоновые кислоты ароматического ряда несколько сильнее, чем кислоты предельного ряда. Так, например, константа диссоциации бензойной кислоты при 25° равна 0,67 10-, а уксусной кислоты 0,176- 10 <. При замещении же в метильном радикале ж сусной кислоты атомов водорода хлором кислотные свойства возрастают для монохлоруксусной кислоты константа диссоциации при 25° равна 14-10 а для [c.337]

    Из этого следует, что в фенолах, благодаря влиянию ароматического ядра, водород гидроксила подвижнее, чем в спиртах, и они обладают большими, чем спирты, кислотными свойствами (поэтому простейший фенол и был назван карболовой кислотой Рунге, 1834). Константа диссоциации фенола Кс,н.он = 1,7-т. е. она больше, чем константа диссоциации воды (KhjO= 1,8-10 ). Спирты же менее диссоциированы, чем вода (стр. 108). [c.362]

    В 1937 г. Л.Гаммет на основании большого экспериментального материала предложил известное рст-уравнение, связывающее константу скорости реакции ароматического соединения с константой диссоциации соответствующей бензойной кислоты. Годом позднее М.Иванс и М.Поляни вывели эмпирическое соотнощение а = а АН для реакции атомов натрия с алкилгалогенидами. В 1954 г. Н.Н.Семенов рассмотрел и показал применимость такого соотношения к большому числу реакций радикального отрыва. В эти же годы (1952-1953) Р.Тафт выдвинул постулат об аддитивном влиянии структурных факторов. В 50-70-х годах был накоплен обширный экспериментальный материал по разнообразным реакциям ароматических и алифатических соединений и применению к ним уравнений Гаммета, Тафта и Поляни-Семеиова. [c.228]

    Реакция дикетена и анилина с образованием анилида ацетоуксусной кислоты была открыта Уилсмором и Чиком [260, 261]. На этой реакции основан промышленный способ получения различных анилидов ацетоуксусной кислоты, применяемых в качестве промежуточных продуктов в синтезе красителей. Во МН0ГИХ случаях, даже с ароматическими аминами, конденсация протекает достаточно быстро в водной среде, в которой растворен или суспендирован амин. Подробно эта конденсация описана в работе Бёзе [26]. При изучении кинетики реакции была установлена в общих чертах зависимость скорости реакции от константы диссоциации амина [174]. В случае очень слабых оснований, например дифениламина, л<-нитроанилина или карбазола, в качестве катализаторов применяются третичные амины. При реакции с аминами с константой диссоциации, меньше 9-10" Лейси и Конноли [168] предложили использовать такой катализатор, как триметиламин в качестве инертного растворителя они рекомендовали толуол. Перекалив и сотр. [195, 198] в качестве катализатора реакций этого типа применяли пиридин они получили N-ацильные производные индола [ср. 121] и фталимидина. [c.239]

    Хотя режим элюирования кислот зависит от их кислотности, удерживаемый объем некоторых кислот значительно отличается от величин, ожидаемых на основании их констант диссоциации. Это явление особенно заметно для ароматических кислот, для которых характерно взаимодействие между ароматическим ядром и ароматическим скелетом анионообменных смол (например, для смол на основе сополимеров стирол—дивинилбензол). Чисто физическая адсорбция слабых органических кислот, которая наблюдается на катионообменных смолах, увеличивается с увеличением молекулярной массы кислоты. Монокар-боновые кислоты адсорбируются сильнее, чем дикарбоновые килоты щавелевая кислота и минеральные кислоты практически не сорбируются [5]. Адсорбция увеличивается с увеличением размера частиц ионообменной смолы и с увеличением концентрации сорбируемой кислоты. Десорбция может стать количественной при элюировании колонки водой. Было найдено, что сродство к молекулярной сорбции кислот на катионообменных смолах увеличивается с уменьшением степени поперечной сшивки ионообменной смолы [6]. Аминокислоты сорбируются особенно сильно вследствие взаимодействия между аминогруппой кислоты и сульфогруппой смолы [7]. Сорбция алифатических кислот на ионообменных смолах на основе полистирола выше, чем на таких же катионообменных смолах, при этом одновременно происходит ионообмен и молекулярная сорбция, причем последняя в удерживании может даже преобладать [8]. Молекулярная сорбция на катионообменных смолах в Н+-форме сильнее, чем на катионообменных смолах в других формах вследствие подавления диссоциации обусловленного более [c.153]

    Если радикал К содержит электроотрицательные груииы, иапр. атомы галогена (у галогенкарбоновых к-т) или карбоксильную группу (у дикарбоновых к-т), то отрыв протона облегчается и кислотные свойства карбоксильной групны усиливаются. Константа диссоциации второй карбокси.лыюй группы дикарбоновой к-ты всегда меньше, чем первой (табл. 2), т. к. образующаяся на первой стадии ионизованная карбоксильная группа является электронодонорным заместителем, а, Р-Неиасыщенные (напр., акриловая) и ароматические (напр., бензойная) К. обладают повышенной кислот- [c.509]

    Несколько позже Дено и Шризгейм [11] и Окамото и Браун [12] показали, что уравнение Гаммета с величинами о, определенными из констант диссоциации бензойных кислот, не соблюдается в случае пара-заместителей еще для ряда других реакционных серий. Последние характеризуются резким повышением электроноакцепторных свойств реакционного центра в ходе активации (например, образование карбоний-ионов) . То же самое относится и к реакциям замещения в ароматическом ряду [14—16]. [c.23]

    В значительно большей степени способны к электролитической диссоциации гидроксилсодержащие соединения, в которых ОН-груп-па примыкает к ароматическому ядру, т. е. фенолы это является следствием —/-эффекта фенильной группы и наличия сопряжения между кислородом гидроксила и бензольным ядром константа диссоциации фенола 1,3-10- °, р/С=9,90. При наличии заместителей, в зависимости от их электрохимического характера и от положения в ядре, константы диссоциации соответствующих соединений по сравнению с фенолом изменяются заместители, оттягивающие электроны, увеличивают константу, заместители, подающие электроны,—уменьшают [16]. Так как фенолы являются очень слабыми кислотами, точное определение константы иногда затруднительно. В связи с тем, что существует прямая связь между изменением положений частот, характеристических для О—Н-связи в инфракрасной области, и изменением рК кислотной диссоциации фенолов в воде, значение последних можно приближенно вычислить по результатам точного определения частот валентных колебаний ОН-группы в четыреххлористом углероде [15]  [c.227]


Смотреть страницы где упоминается термин Ароматические кислоты константы диссоциации: [c.378]    [c.297]    [c.231]    [c.331]    [c.12]    [c.442]    [c.442]    [c.26]    [c.318]    [c.163]    [c.470]   
Лекционные опыты и демонстрационные материалы по органической химии (1956) -- [ c.403 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические кислоты

Диссоциация кислот

Кислота константа диссоциации

Константа диссоциации

Константа кислоты



© 2024 chem21.info Реклама на сайте