Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рибонуклеиновые кислоты структура цепи

    С признанием по крайней мере некоторых биологических функций рибонуклеиновых кислот возникло представление о том, что порядок расположения различных нуклеотидных звеньев имеет особое значение, как и в случае белков и полипептидов. Экспериментальное определение этой последовательности представляет собой главную проблему сегодняшнего дня пока же наибольший фрагмент из природной рибонуклеиновой кислоты, структура которого установлена с определенностью, имеет длину меньше десяти нуклеотидов . Вследствие относительно небольшого числа разновидностей мономеров, участвующих в образовании молекулы нуклеиновой кислоты, методы, включающие частичную деградацию рибонуклеиновых кислот до малых полинуклеотидов с последующим разделением, анализом последовательности и реконструкцией исходной цепи посредством специфического наложения, подвержены довольно строгим ограничениям. Присутствие в нуклеиновой кислоте небольших количеств минорных нуклеотидов и щелочеустойчивых межнуклеотидных связей должно до некоторой степени содействовать этому при таком подходе. Ступенчатая деградация самой рибонуклеиновой кислоты, может быть, и осуществима, если говорить о нуклеиновой кислоте, содержащей 50—100 нуклеотидов но анализ последовательности немногих известных гомогенных препаратов [c.386]


    Во всех живых клетках белки синтезируются рибосомами. Рибосома представляет собой крупную макромолекулу со сложной асимметричной четвертичной структурой, построенной из рибонуклеиновых кислот (рибосомных РНК) и белков. Для того чтобы синтезировать белок, рибосома должна быть снабжена а) программой, задающей порядок чередования аминокислотных остатков в полипептидной цепи белка б) аминокислотным материалом, из которого надлежит строить белок в) энергией. Сама рибосома обладает каталитической (энзиматической) функцией, ответственной за образование пептидных связей и, соответственно, полимеризацию аминокислотных остатков в полипептидную цепь белка. [c.7]

    Основная цепь нуклеиновой кислоты состоит из чередующихся звеньев фосфорной кислоты и сахара — рибозы в рибонуклеиновой кислоте (РНК) и дезоксирибозы в дезоксирибонуклеиновой кислоте (ДНК). В этом смысле основные цепи РНК и ДНК лишены первичной структуры, они являются монотонным орнаментом, но не текстом. Однако к сахарам присоединены так называемые азотистые основания, которые уже не [c.82]

    Рибонуклеиновые кислоты — полимерные молекулы, которые по своей структуре подобны ДНК. Отличительной особенностью РНК является то, что углеводной компонентой в них является О-рибофураноза, а место тимина занимает урацил. Последовательность оснований в скелете природных РНК еще не известна причем в противоположность ДНК, РНК состоят из простых поли-нуклеотидных цепей, в структуре которых последовательность пуриновых и пиримидиновых оснований варьируется в значительно меньшей степени, чем в нуклеотидном составе ДНК. В зависимости от характера выполняемых функций РНК делятся на три группы. Это прежде всего рибосомальные РНК, являющиеся основным компонентом клетки. Полагают, что рибосомальные РНК участвуют в создании клеточных образований — рибосом, однако их функция окончательно не выяснена. Информационные РНК являются как бы шаблонами в синтезе белка и составляют активную часть полирибосом. Так, характер синтезируемого белка зависит от последовательности оснований (А, Ц, У и Г) в полинуклеотидной цепи информационной РНК. Наконец, третья форма — растворимые РНК, являются как бы адаптором аминокислот, направляющим аминокислоты к специальным участкам (шаблонам) информационной РНК, осуществляющей синтез белка. Более детально биологическая роль ДНК и РНК обсуждается в специальных обзорах [21, 24]. [c.335]

    Рибосомная РНК — высокополимерное соединение, молекула ее содержит 4000—6000 нуклеотидов. Она в соединении с белком образует внутри клетки особые субмикроскопические гранулы— рибосомы. Рибосома является фабрикой белкового синтеза , куда в качестве сырья доставляются аминокислоты. Установлено, что роль матрицы принадлежит особому типу рибонуклеиновых кислот — информационной РНК. Размер ее молекул широко варьирует, имея в среднем от 500 до 1500 нуклеотидов. и-РНК синтезируется на молекулах ДНК в ядре клетки. Из ядра они проникают в протоплазму к рибосомам и, взаимодействуя с ними, участвуют в синтезе белка. Если молекулы й-РНК служат матрицей для синтеза белков, то они должны содержать информацию о данном белке, зашифрованную определенным кодом. Но все различие между видами информационной РНК заключается в разной последовательности чередования четырех азотистых оснований (У, Ц, А и Г). Однако и белки, несмотря на их огромное многообразие, отличаются друг от. друга в своей первичной структуре только порядком расположения аминокислот. Это привело к заключению, что последовательность расположения четырех видов азотистых оснований на молекуле РНК определяет последовательность расположения 20 видов аминокислот в полипептидной цепи синтезируемого белка, или, другими словами, что каждая из 20 аминокислот может занять на данной матрице только определенное место кодированное сочетанием нескольких азотистых оснований. [c.123]


    Нуклеиновые кислоты делятся на две группы дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). Молекулы этих кислот имеют гигантские размеры, молекулярная масса их составляет 6 - 12 миллионов. По своей структуре это длинные, нитевидные молекулы, и в их макромолекуляр-ной цепи имеется, как следует из названия, остаток рибозы (см. выше в разд. Углеводы ). Нуклеиновые кислоты обычно соединены с белками, и в этом случае говорят о нуклеопротеинах. [c.85]

Рис. 20-11. Структура цепи рибонуклеиновой кислоты со следующей последовательностью оснований аденин, урацил, гуанин, цитозин. Рис. 20-11. Структура цепи рибонуклеиновой кислоты со следующей <a href="/info/1386911">последовательностью оснований</a> аденин, урацил, гуанин, цитозин.
    Как видно из схемы, в дезоксирибонуклеиновой кислоте все мономерные звенья, за исключением концевых, не содержат свободных гидроксильных групп в рибонуклеиновых кислотах, напротив, мономерные звенья полинуклеотидной цепи имеют свободную гидроксильную группу при С-2, соседнюю с фосфодиэфирной группировкой. Это различие в структуре определяет глубокое различие в физико-химических свойствах РНК и ДНК. [c.27]

    Свойства рибонуклеиновых кислот будут рассмотрены на примере двух классов этих соединений, для которых в настоящее время в ряде случаев известна первичная структура, а именно транспортных РНК и 5S рибосомальных РНК. Свойства более высокомолекулярных рибонуклеиновых кислот во многом аналогичны, однако их вторичная структура в настоящее время не может обсуждаться на уровне конкретных моделей, поскольку неизвестна последовательность оснований в их полинуклеотидной цепи (обзор — см. ).  [c.285]

    Гидродинамически в 0,1 Л1 буферном растворе фосфата натрия с pH 6,8 вирусная рибонуклеиновая кислота ведет себя как однородная беспорядочно свернутая цепь [321] с молекулярным весом около 2-10 и радиусом враш,ения (определенным измерением светорассеяния и вязкости) около 400 А. При комнатной температуре происходит медленная перестройка РНК в более компактную структуру (возрастание коэффициента седиментации и понижение вязкости), при повышенных температурах этот процесс идет быстрее. Нагревание РНК также приводит к потере инфекционности, по-видимому, вследствие гидролиза фосфодиэфирных связей [322[. Против этого объяснения был выдвинут ряд возражений [321, 323], однако те физические методы, которые ири этом использовались, конечно, не были настолько чувствительными, чтобы с их помощью можно было обнаружить отделение концевого нуклеотида или другого относительно небольшого остатка. При температуре вплоть до 50° никаких изменений в вязкости инфекционной РНК в 0,1 тИ буферном растворе не происходило, но между 50 и 60° вязкость заметно возрастала. Это увеличение вязкости особенно заметно в 6 растворе мочевины, которая, кроме того, понижает температуру структурного перехода до 40° (и сужает область перехода). Увеличение вязкости сопровождается уменьшением константы седиментации, что указывает на раскручивание клубкообразной структуры и резкое увеличение асимметрии молекул при высоких температурах [324]. [c.610]

    Молекулы ДНК в хромосомах представляют собой линейные полимеры, построенные из четырех типов нуклеотидов. Порядок расположения нуклеотидов в цепи ДНК определяет генетическую информацию, которую несет эта цепь. Наследственность у растения зависит, таким образом, по существу от расположения нуклеотидов в молекулах ДНК, находящихся в хромосомах ядра и в некоторых других клеточных органеллах, а именно в хлоропластах и митохондриях. Одну из самых увлекательных глав современной биохимии составляет история открытия механизма, посредством которого информация, заключенная в молекулах ДНК, транскрибируется с образованием родственного ДНК соединения —РНК рибонуклеиновой кислоты), а затем информация РНК в свою очередь транслируется и таким путем определяет природу вновь синтезируемых белков. Поскольку этот процесс имеет решающее значение для клеточной структуры и функции, мы здесь опишем его довольно подробно, хотя многое в этой области стало уже общеизвестным даже среди неспециалистов. [c.36]

    На самом деле структура ДНК является еще более сложной, так как две составляющие ее полимерные спирали закручены в противоположном направлении иными словами, они антипараллельны. Если двигаться вдоль обеих спиралей в одном и том же направлении, то в одной из них связь между сахарными и фосфатными остатками будет -5, 3 - 5, 3 -5, 3 -, а в другой — -3, 5 -3, 5 -3, 5 -. Во время синтеза белка одна из цепей двойной спирали ДНК служит активным источником информации для клетки, являясь матрицей для образования так называемой информационной или матричной рибонуклеиновой кислоты (мРНК). При делении клетки обе нити двойной спирали выступают в роли матриц для синтеза комплементарных молекул ДНК. Таким образом, каждое дочернее ядро после деления содержит по паре нитей ДНК или по нескольку пар этих нитей, которые идентичны родительской ДНК. Этот процесс представлен схематически на рис. 27-6 и более подробно — на рис. 27-7. [c.485]


    Рибонуклеиновые кислоты. РНК, как пра вило, построены из одной полинуклеотид ной цепи, характерный элемент вторич ной структуры к-рой- шпильки , переме жающиеся однотяжевыми участками (рис. 3) [c.298]

    Нуклеиновые кислоты — молекулы, состоящие из отдельных мононуклеотидов. Функцией нуклеиновых кислот является запись и запоминание (хранение) биологической информации. Особенно важны два типа нуклеиновых кислот дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). ДНК находится в ядре клетки и является главной информирующей молекулой клетки. Таким образом, функцией ДНК является снабжение клетки информацией для точного воспроизводства каждого вида клетки, включая синтез необходимых ферментов, а также дополнительного количества молекул ДНК. Иными словами ДНК участвуют в процессах деления клетки и передаче наследственных признаков. Следует отметить, что по своей структуре ДНК каждого из организмов отличаются друг от друга. Молекулы ДНК представляют собой длинные цепи, находящиеся в виде спаренных или двухнитяных спиралей. Длина двух таких молекул составляет примерно 20 А. Молекулярный вес ДНК колеблется в пределах 100 000 000—4 000 000 000. Каждое из звеньев цепи ДНК составляют четыре различных повторяющихся мононуклеотида. Такая последовательность называется кодом. Строение нитей ДНК представлено на схеме 16. Следует отметить, что в скелете [c.333]

    Нуклеиновые кислоты представляют собой линейные полимерные молекулы, состоящие из чередующихся углеводных и фосфоди-эфирных остатков. Фрагменты углеводов существуют в молжулах нуклеиновых кислот в- фураиозиой форме и связаны по атому С-1 с остатками пиримидиновых или пуриновых оснований (общее рассмотрение структуры нуклеиновых кислот см. [45]). Дезоксирибонуклеиновая кислота (ДНК) присутствует во всех живых клетках и служит носителем генетической информации. В качестве углеводного остатка в молекуле ДНК присутствует о-дезоксирибоза, а в качестве оснований — тимин. цитозин (пиримидиновые основания) и аденин, гуанин (пуриновые основания) (рис. 7.14, а). Определенная последовательность расположения пиримидиновых и пуриновых оснований в цепи ДНК связана с конкретной генетической информацией. Рибонуклеиновые кислоты (РНК) также представляют собой неразветвлеиные полимерные молекулы, отличающиеся от молекул ДНК тем, что содержат вместо дезоксирибозы о-рибозу (с группой ОН при атоме С-2) и урацил вместо тимина. РНК выполняют роль матриц для синтеза белка. [c.317]

    Строение нуклеиновых кислот. Участие их в синтезе клеточных белков. Синтез белков лежит в основе построения новых клеточных структур. Организмы синтезируют свои собственные гбелки, отличающиеся от белков других видов характером чередования аминокислот. Первичная структура белков определяет многие их биохимические особенности. Изменение чередования аминокислот в молекулах ферментов в некоторых случаях приводит к потере свойств катализатора. Чем же определяется последовательность расположения аминокислот при синтезе белков Для ответа на этот вопрос была выдвинута теория матриц. Согласно этой теории, в клетках имеется нечто подобное типографским матрицам или штампам, каждый из которых штампует белок определенного вида или точнее белок со строго определенным порядком расположения аминокислот в его полипептидной цепи. Роль матриц выполняют нуклеиновые кислоты. Нуклеиновые кислоты имеются во всех без исключения клетках. Различают две группы нуклеиновых кислот—дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК содержится главным образом в клеточном ядре, РНК — Э ядре и цитоплазме. [c.122]

    Рибонуклеаза, еще один глобулярный белок небольшого размера, представляет собой фермент, секретируемый клетками, поджелудочной железы в тонкий кишечник, где он катализирует гидролиз некоторых связей в молекулах рибонуклеиновых кислот, содержащихся в перевариваемых пищевых продуктах. Третичная структура рибонуклеазы, установленная методом рентгеноструктурного анализа (рис. 8-7), характеризуется тем, что в ее полипептидной цепи имеется очень мало а-спиральньк участков, но зато в ней есть достаточно большое число сегментов, находящихся в р-конформации. В этом отношении рибонуклеаза отличается от миоглобина, цитохрома с и ли- [c.194]

    Структура РНК. Рибонуклеиновые кислоты отличаются от ДНК как мономерами, из которых они построены, так и вторичной структурой. Центральная ось полинуклеотидной цепи состоит из рибозы и фосфорной кислоты. Из оснований представлены те же аденин, гуанин и цитозин, но вместо тимина имеется урацил. Кроме того, РНК содержит несколько редких оснований (например, псевдоурацил). РНК в клетках присутствует в одноцепочечной форме только в отдельных участках цепи основания могут быть спарены. [c.44]

    Нуклеиновые кислоты имеют первостепенное значение в биосинтезе белка. На основании имеющихся данных строение дезоксирибонуклеиновой кислоты, повидимому, определяет специфичность синтеза рибонуклеиновой кислоты на поверхности последней при участии ряда энзимов и кофакторов в соответствии с ее структурой располагаются в определенной последовательности активированные аминокислоты, которые затем соединяются друг с другом кислотноамидными (пептидными) связями в полипептидную цепь. Такое формирование полипептидной цепи на частице рибонуклеиновой кислоты, имеющей определенную структуру, приводит к образованию специфической белковой молекулы, как бы отлитой на рибонуклеиновой модели. [c.328]

    После того как было установлено, что рибонуклеиновые кислоты состоят в основном из четырех мононуклеотидных единиц, в течение многих лет отсутствовали точные сведения относительно характера межнуклеотидных связей и поэтому было высказано множе- ство предположений. Многие предполагаемые структуры включали пирофосфатные, полифосфорные, эфирные и фосфоамидные связи, но относительно простая тетрануклеотидная структура, предложенная Левиным [65, 66] и содержавшая фосфодиэфирные связи между углеводными компонентами нуклеозидов, лучше всего, как позже было выяснено, соответствовала действительности. Хотя в настоящее время тетрануклеотидная теория строения нуклеиновых кислот полностью оставлена, уместно, быть может, упомянуть, что эта теория была в свое время значительно точнее тринуклеотидной теории [67, 68], с которой она находилась в оппозиции, и что, как писал сам Левин, с другой стороны, нужно иметь в виду, что истинный молекулярный вес нуклеиновых кислот до сих пор еще неизвестен. Тетрануклеотидная теория (заметьте) — это минимальный молекулярный вес, а нуклеиновая кислота может представлять кратное его умножение [69]. Кроме того, возможно, что материал, названный тогда нуклеиновой кислотой, был очень низкого молекулярного веса и средняя длина его цепи составляла пять или [c.371]

    Значительную ценность представляют собой рибонуклеазы высокой специфичности, так как они не только расщепляют нуклеиновую кислоту на олигонуклеотиды, которые во многих случаях можно разделить и определить их структуру, но и указывают также в общем распределение нуклеотидов. Так, обнаружено, что пропорция пиримидиновых нуклеозид-З -фосфатов (по отношению к общему содержанию пиримидинов в нуклеиновой кислоте), выде ляющихся под действием панкреатической рибонуклеазы, в значительной степени варьирует. Нри известной специфичности фермента высокий процент выделения свободных пиримидиновых нуклеотидов по отношению к общему содержанию пиримидинов указывает на наличие участков цепи, в которых два или более пиримидинов следуют подряд друг за другом, в то время как выделение мононуклеотидов в относительно малом количестве указывает на то, что пиримидиновые нуклеотиды в основном соединены (через 5 -гидро-ксильную группу) с З -фосфатами пуриновых нуклеотидных звеньев. В этой связи представляет интерес факт, что из растворимых в солевом растворе дрожжевых нуклеиновых кислот выделяется около 50% цитидиловой, уридиловой и псевдоуридиловой кислот в расчете на общее содержание каждой из них и только 10—20% тиминовых нуклеотидов [161]. Из рибонуклеиновой кислоты вируса табачной мозаики штамма М после исчерпывающего переваривания панкреатической рибонуклеазой выделено значительно большее количество пиримидиновых нуклеотидов, чем в случае штаммов ТМУ, НК и УА следовательно, распределение пиримидиновых нуклеотидов в РНК из штамма М отличается от распределения нуклеотидов в РНК штаммов ТМУ, НР или УА [162] (ср. с приведенными ниже данными). [c.392]

    Реакция гидразина с пиримидиновыми нуклеотидами была описана в связи с исследованиями структуры выделяющихся при этой реакции рибозофосфатов. При гидразинолизе дрожжевой рибонуклеиновой кислоты образуется продукт, рибоапиримидиновая кислота, который содержит остатки рибозы, обладающие восстанавливающей способностью, и который почти свободен от пиримидиновых оснований [211, 212]. Такая рибоапиримидиновая кислота имеет, по-видимому, небольшую длину цепи и не гидролизуется панкреатической рибонуклеазой 1А [213]. [c.402]

    Окончательное установление первичной структуры дезоксинуклеиновых кислот связано с рядом проблем, еще труднее разрешимых, чем в случае рибонуклеиновых кислот, и достижений в этой области пока еще мало. Тем не менее достигнут некоторый успех в определении последовательности оснований в одиночной цепи олигодезоксинуклеотидов. Такие продукты распада легко получаются в результате обработки дезоксирибонуклеиновых кислот дезоксирибонуклеазами. Панкреатическая дезоксирибонуклеаза [350] (дезоксирибонуклеаза I) активна в нейтральном растворе, требует присутствия магния или некоторых других двухвалентных катионов и имеет минимальный молекулярный вес 61566 [351]. Этот фермент катализирует гидролиз ДНК до сложной смеси, из которой с помощью хроматографии на бумаге, электрофореза [352] и ионообменных методов [353] были выделены дезоксинуклеозид-5 -фосфаты ( 1 %), ряд динуклеотидов (- 16%), тринуклеотиды и более высокомолекулярные олигодезоксинуклеотиды с 5 -фосфатной группой на конце. Хотя специфичность действия дезоксирибонуклеазы I не установлена полностью, ясно, что расщепление происходит по связи —3 - О — Р. Изучение динуклеотидов, содержащих как пуриновые, так и пиримидиновые основания, указало на то, что такие соединения являются почти исключительно 5 ф—Пир—З ф—5 Пур, изомерная же последовательность 5 ф—Пур—З ф—5 Пир фактически отсутствует. Предположение, что ферментом атакуются преиму- [c.421]

    За последние годы твердо установлено, что нуклеиновые кислоты выполняют в вирусе, клетке и в макроорганизме кибернетические функции. В дезоксирибонуклеиновой кислоте (ДНК) клеточных ядер и рибонуклеиновой кислоте (РНК) вирусов растений зафиксирована вся генетическая информация, т. е. необходимые данные для синтеза белков. Прямые опыты по трансформации бактерий растворами чистой ДНК, но заражению бактерий с помощью ДНК, выделенной из фагов, по заражению растений с помощью РНК, выделенной из вирусов, показывают, что именно макромолекулы ДНК и РНК являются носителяйи генетической информации. Если искать сравнение из области электронных счетно-решающих машин, то можно, как это делал Нейман, рассматривать по аналогии с клеткой машину, содержащую все необходимое, чтобы воспроизвести самое себя. В такой машине должны быть рабочие орудия (в клетке—это ферменты, организованные в пространственные структуры) и должен быть элемент памяти (например, магнитная лента), в котором зафиксированы с помощью кода все детали ее конструкции. Цепочка нуклеиновой кислоты играет в клетке ту же роль, что магнитная лента в электронной машине. Чем длиннее цепь нуклеиновой КИС.ЛОТЫ, тем больше информации в ней может быть запасено. [c.6]

    В группе нуклеиновых кислот, известных как рибонуклеиновые кислоты (РНК), углеводом является о-ри-боза, дезоксирибонуклеиновые кислоты (ДНК) построены из о-2-дезоксирибозы. Основаниями в ДНК являются аденин и гуанин, которые содержат пуриновую циклическую систему, и цитозин, тимин и 5-метилцитозин, содержащие пиримидиновое кольцо. РНК содержит аденин, гуанин, цитозин и урацил. Свойства этих оснований и их последовательность в полинуклеотидной цепи различны для разных нуклеиновых кислот. Это их первичная структура, а спиральная или неупорядоченная конформация образуют вторичную структуру (разд. 5.1), Пиримидин-рибозид 51 н пурии-2-дезоксирибозид 52 являются представителями этого валяного класса природных соединений. [c.88]

    Теперь уже выяснены первичные структуры и другие детали строения еще более сложных белков, относящихся к ферментам. Так, начало 60-х годов ознаменовалось полным выяснением структуры открытого еще в 1920 г. фермента рибонуклеазы, осуществляющего гидролиз рибонуклеиновых кислот (РНК, см.). Рибонукле-аза—белок, молекулярная масса 13 500, имеет одну полипептид-ную цепь, образованную 124 аминокислотными звеньями. Установлены последовательность этих звеньев и наличие четырех внутри-цепных дисульфидных связей, замыкающих определенные участки цепи в циклы. Выяснен аминокислотный состав и структура некоторых ферментов, содержащих около двух с половиной сотен аминокислотных звеньев (молекулярная масса 27 000—34 000), т. е. являющихся весьма сложными белками. [c.334]

    Исследование нуклеиновых кислот стало в последнее десятилетие одной из наиболее заманчивых областей в молекулярной биологии. С химической точки зрения как дезоксирибонуклеиновая кислота (ДНК), так и рибонуклеиновая кислота (РНК) являются полинуклеотидами, основное звено которых состоит из фосфатной группы, сахара (рибозы или дезоксирибозы) и основания (пуринового или пиримидинового) основная цепь полимера представляет собой фосфоэфир, причем на одно повторяющееся звено приходится шесть атомов цепи в соответствии с моделью двойной спирали, предложенной Уотсоном и Криком [106]. В ДНК две антипараллельные цепи полинуклеотидов завернуты в спираль и соединены друг с другом водородными связями, образующимися между гетероциклами оснований. Макромолекула РНК представляет собой однотяжную спираль, вторичная структура которой определяется внутримолекулярными взаимодействиями. Полагают, что наиболее устойчивой из нескольких возможных структур является двутяжная спираль, образуемая участками одной и той же макромолекулы, подобная спирали ДНК, но участки с некомплементарными основаниями на периферии спирали образуют петли 1107, 108]. Для того чтобы лучше понять вторичную структуру нуклеиновых кислот, были приготовлены синтетические полинуклеотиды. Эти модельные соединения широко исследованы почти теми же средствами, что и синтетические полипептиды, моделирующие структуру белков. [c.118]

    Полинуклеотиды, т. е. рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК), представляют собой макромолекулярные цепи, в которых, в соответствии с анализом, на 1 моль гетероцикла приходится 1 моль сахара и 1 остаток фосфорной кислоты. По кривой титрования ясно, что при каждом атоме фосфора имеется 1 гидроксил, т. е. что полинуклеотиды представляют собой двузамещенные эфиры фосфорной кислоты, сохранившей одну кислотную функцию. Все это позволяет полностью установить тип первичной структуры РНК и ДНК. Однако конкретная первичная структура каждой индивидуальной РНК и ДНК определяется еще чередованием четырех гетероциклов — двух пуриновых (аденин и гуанин) и двух пиримидиновых (урацил и цитозин — для РНК тимин и цитозин — для ДНК). Методы установления этого чередования только разрабатываются. Метод, предложенный Корана, состоит в подборе специфических ферментов, один из которых (из змеиного яда) расщепляет цепь по связи фосфорной кислоты с первичным гидроксилом (С, ), а другой (из селезенки) — по связи фосфорной кислоты с вторичной гидроксильной группой (Сз>)  [c.717]

    Рибонуклеиновые кислоты характеризуются одноцепочной молекулярной структурой. Полинуклеотидная цепь этих кислот нередко рассматривается как их первичная структура. Молекулы РНК имеют вид гибких, беспорядочно свернутых одинарных цепей. В зависимости от рн, ионного состава среды РНК в растворе содержат в молекуле участки в виде двойной спирали, возникающей при сворачивании цепочки на себя. В этих участках появляются водородные связи между азотистыми основаниями, находящимися в разных местах одной и той же нуклеотидной цепи. Такую структуру молекулы РНК )ассматривают как вторичную. Она установлена для НК в растворе. Но вторичная структура РНК в растиоре может соответствовать и не соответствовать конформации функциональных молекул РНК в клетках. Во всяком случае, если рибосомная и растворимая РНК и могут иметь вторичную структуру молекулы, то для матричной эта возможность ставится под сомнение. [c.141]

    По-видимому, наиболее важным открытием из сделанных когда-либо в биологии было установление того факта, что рассмотренный выше или какой-либо другой процесс копирования уже существуюш их белковых цепей вообще не протекает в организме и что информация о последовательности аминокислот в молекулах ферментов хранится в хромосомах и используется (но терминологии, применяющейся в вычислительной технике) для программирования в белоксиитезирующих системах (рибосомах), обеспечивая правильное воспроизведение последовательности аминокислот. Эта программа хранится не в виде аминокислотной последовательности полипептидных цепей и не в какой-либо иной форме, имеющей прямое структурное или химическое сходство с рассматриваемой аминокислотой, а в виде кода, записанного на лентах нуклеиновой кислоты, при этом каждой аминокислоте соответствует определенное, состоящее из трех букв, кодовое слово (кодон), которое по своей химической структуре не имеет ничего общего с данной аминокислотой. Таким образом, последовательность аминокислот в полипептидной цепи фермента закодирована в виде последовательности нуклеотидов в полинуклеотидной цепи нуклеиновой кислоты. Буквы кодона не следует понимать как некие символы, записанные на бумаге, они представлены пуриновыми или пиримидиновыми основаниями. Записывая нуклеотидные последовательности, принято обозначать нуклеотиды первыми буквами их химического названия например, кодон для метионина представляет собой последовательность из трех нуклеотидов— аденина, урацила и гуанина — и записывается AUG. Информация о последовательности аминокислот в белках хранится в хромосомах, точнее, в молекуле дезоксирибонуклеиновой кислоты (ДНК). Последняя отличается от рибонуклеиновой кислоты (РНК) тем, что содержит восстановленный сахар (дезоксирибозу) и метилированные урациловые группы (иногда бывают метилированы и другие основания). [c.6]

    В интактных клетках бактерий дезоксирибонуклеиновая кислота (ДНК) включена в структуру нуклеоида. Эта структура стабилизируется рибонуклеиновой кислотой (РНК), и поэтому присутствие следов рибонуклеазы приводит к разворачиванию нуклеоида во время лизиса и образованию очень вязкого раствора высвободившейся ДНК. Трудности, связанные с высокой вязкостью, можно преодолеть несколькими путями. Цепи молекул ДНК можно разрезать короткой обработкой ультразвуком или гомогенизацией суспензии лизирован-ных клеток в ножевом микроизмельчителе. Можно также добавить в раствор дезоксирибонуклеазу, но для функционирования этого фермента необходим Mg + в концентрации не менее 0,1 мМ. Если сферопласты ли-зируются в присутствии ЭДТА, то требуется избыток M.g + по сравнению с содержанием ЭДТА. [c.147]

    Примером химического строения ферментов может служить рибонуклеаза. Первый ферментный белок, первичная структура которого была определена в 1960—1962 гг.,— рибонуклеаза — фермент, катализирующий расщепление рибонуклеиновой кислоты, В 1969 г. осуществлен его химический синтез. Молекулярная масса кристаллической рибонуклеазы равна 13 683. Поли-пептидиая цепь этого фермента состоит из 124 аминокислотных остатков и четырех дисульфидных мостиков, которые, по-видн-мому, связывают между собой отдельные участки. полипептидной цепи рибонуклеазы и поддерживают третичную структуру белка. Концевыми аминокислотами рибонуклеазы являются лизин и валин. Установлено, что каталитическая активность рибонуклеазы зависит главным образом от наличия В ней двух гистидиновых остатков, а молекула фермента свернута таким образом, что эти два аминокислотных остатка — один в начале, другой в конце полипептидной цепи — оказываются в непосредственной близости один от другого. Если блокировать свободную аминогруппу остатка лизина, то также происходит полная потеря каталитической активности фермента. Это свидетельствует о том, что ферментативные свойства рибонуклеазы, а также других ферментов зависят от структуры определенных участков полипептидной цепи и их взаимодействия, т. е. от структуры активного центра фермента. [c.76]


Смотреть страницы где упоминается термин Рибонуклеиновые кислоты структура цепи: [c.53]    [c.55]    [c.97]    [c.353]    [c.278]    [c.316]    [c.390]    [c.418]    [c.427]    [c.609]    [c.180]    [c.465]    [c.92]    [c.53]    [c.55]    [c.92]    [c.140]    [c.82]   
Органическая химия нуклеиновых кислот (1970) -- [ c.27 , c.41 , c.511 ]




ПОИСК





Смотрите так же термины и статьи:

Рибонуклеиновые кислоты



© 2025 chem21.info Реклама на сайте