Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрическая проницаемость и сольватация

    Это уравнение определяет изменение свободной энергии при переносе сферического иона из вакуума в растворитель с диэлектрической проницаемостью О (т. е. свободную энергию сольватации иона). Заметим, что эта величина всегда отрицательна, так что ионы более устойчивы в растворителях, чем в вакууме. Для одновалентных ионов с / = 2 Л эта величина составляет около 150 ккал/моль при О > 10. [c.456]


    Можно полагать также, что в растворителях с высокой диэлектрической проницаемостью очень большое значение имеет селективная сольватация ионов растворителем. (В смесях диоксан — Н2О, например, можно ожидать сильного изменения сольватации нри малом содержании Н2О.) Хотя по этому вопросу имеется мало сведений, кинетические данные показывают,что график зависимости 1п кп от I/D весьма значительно отклоняется от прямой линии при низких значениях D. [c.457]

    Для того чтобы выразить коэффициенты активности полярных молекул через три параметра — радиус, дипольный момент растворенного вещества и диэлектрическую проницаемость растворителя, —можно воспользоваться простой электростатической моделью. Для нахождения величины свободной энергии сольватации сферической молекулы радиусом г с точечным диполем в центре можно использовать обычную модель растворителя. Величина / в, полученная Кирквудом [62] из электростатической теории, равна [c.457]

    Вследствие малости молекул воды, группы с центрами из молекул воды и группы с центрами из полярных групп материала мембраны могут образовывать внутренние слои с большей и наружные слои с меньшей подвижностью. Эти внутренние и наружные слои (иногда называемые первичными и вторичными пограничными слоями соответственно) отличаются диэлектрической проницаемостью, а следовательно, и способностью к сольватации. [c.66]

    Велики трудности создания математически разработанной теории растворов электролитов. Было бы очень просто, если бы можно было рассматривать такую систему, как совокупность заряженных шариков-ионов в растворителе, представляющем собой непрерывную среду с диэлектрической проницаемостью е. Такая модель не может дать согласия с опытом. Ведь надо учесть совокупное действие ряда факторов изменение а растворителя в зависимости от природы ионов и их концентрации, влияние собственного объема ионов, влияние концентрации несвязанного растворителя, возможность формирования сложных (тройных и др.) частиц, изменение энергии сольватации ионов с концентрацией раствора, неполноту диссоциации электролита, изменение структуры раствора с его концентрацией. Обилие этих факторов и различный их вклад (в зависимости от природы компонентов раствора, его концентрации и температуры) делает невозможным их строгий количественный учет во всей совокупности. Современный уровень квантовомеханического и электростатического подходов совершенно недостаточен для этого. [c.173]


    Разделение ионов происходит не только в результате чисто электростатического влияния среды через диэлектрическую проницаемость, но и благодаря сольватации ионов молекулами рас- [c.163]

    В ДПЭ-растворителях, напротив, сольватация анионов выражена очень слабо. Причиной этого является отталкивание отрицательных основных центров аниона и молекул растворителя. В соответствии с теорией жестких и мягких кислот образование сольватной оболочки около больших поляризуемых анионов (1 , 5СН-, 5 ) возможно только под действием дисперсионных сил (разд. 33.4.3.4). Жесткие же анионы (Р , ОН , ЫН -) в таких средах совершенно обнажены и поэтому проявляют высокую активность в реакциях с нуклеофильными заместителями. Предпочтительная сольватация катионов, вследствие чего образуются сольватные комплексы большого размера, снижает электростатическое притяжение между сольватирован-ными катионами и анионами, у которых практически не имеется сольватной оболочки. Такое состояние ионов в растворе способствует увеличению реакционной способности анионов, которая увеличивается еще и за счет высокой диэлектрической проницаемости растворителя. [c.449]

    Влияние неводных растворителей на интервал перехода окраски индикатора. 3)лектролиты, растворенные в неводных растворителях, менее диссоциированы, чем в воде, что связано с более низким значением диэлектрической проницаемости неводных растворителей по сравнению с водой и более низкой энергией сольватации ионов. Таким образом, кислотный индикатор изменил бы свою окраску в спиртовом растворе при большем значении pH, чем в воде. [c.145]

    В первом случае, когда отклонение диэлектрической проницаемости обусловлено простым объемным эффектом, дисперсии этой величины не наблюдается. Во втором случае дисперсия происходит при такой частоте, когда диполи уже не могут следовать за изменением направления поля. В третьем случае дисперсия наблюдается при частоте, уже не вызывающей асимметрии двойного слоя, т. е. при частоте, отвечающей увеличению электропроводности. Что касается того, влияет ли на дисперсию сольватация частиц, то этот вопрос до сих пор неясен. Имеющиеся экспериментальные данные об увеличении диэлектрической проницаемости растворов желатина и агара с возрастанием частоты можно объяснить йе только изменением гидратации макромолекул, но и действием ряда других факторов — влиянием частоты на двойной слой, на поведение постоянных диполей и т. д. [c.222]

    Другим примером систем, в которых сольватация, по-видимо-му, оказывает существенное влияние на устойчивость, могут служить дисперсные системы с неполярной углеводородной средой, играющие важную роль при производстве и применении нефтепродуктов. Такие системы, например, растворы поверхностно-активных веществ и высокодисперсные взвеси в углеводородах подробно изучены Г. И. Фуксом и его сотр. Оказалось, что устойчивость этих систем зависит от структуры молекул углеводорода и ее соответствия структуре молекул частиц дисперсной фазы, а. также от диэлектрической проницаемости среды и от наличия следов веществ с полярными и дифильными молекулами. Впрочем, для этих систем, как показал Овербек, нельзя пренебрегать двойным электрическим слоем и электростатическими взаимодействиями.,  [c.282]

    Небольшие отличия в теплотах (—КН) сольватации зависят от различия вторичной энергии и обусловлены разными дипольными моментами и диэлектрическими проницаемостями растворителей. Различия в энергиях (—АС) сольватации связаны, кроме того, с отличиями в энтропиях сольватации и обусловлены преимущественно различием в структуре растворителей. [c.169]

    При переносе иона из вакуума в среду с диэлектрической проницаемостью е выделяется энергия сольватации t/ , равная разности энергии иона в вакууме и в данной среде  [c.171]

    Небольшие различия в энергии сольватации изоэлектронных ионов в различных растворителях являются результатом различий в энергии вторичной сольватации. Этот процесс представляет йон-дипольное взаимодействие, и его энергия зависит от заряда и размеров иона, дипольного момента молекул растворителя и его диэлектрической проницаемости. [c.179]

    Таким образом, неприложимость уравнения Робинсона — Стокса не может быть оправдана тем, что в неводных растворах эффект сольватации меньше, чем в воде. Отсутствие минимума в неводных растворах с низкой диэлектрической проницаемостью объясняется тем, что наряду с эффектом сольватации наблюдается и эффект ассоциации ионов. Следовательно, с одной стороны, связывание части растворителя в сольватную оболочку ионов и их частичная десольватация с ростом концентрации повышают коэффициенты активности, но, с другой стороны, ассоциация понижает их. Чтобы описать зависимость коэффициентов активности от концентрации, в этих случаях недостаточно учитывать только явление сольватации, необходимо учитывать также и изменение ассоциации ионов. [c.209]


    В этих случаях изменение диэлектрической проницаемости не является единственной причиной влияния на отношение силы кислот, даже тогда, когда исключено изменение основности растворителя. Очевидно, что кроме диэлектрической проницаемости и основности влияет еще и способность молекул растворителя к сольватации ионов, которая зависит от химической природы ионов. [c.279]

    Константа будет падать с уменьшением диэлектрической проницаемости, энергии сольватации, константы основности растворителя, с увеличением констапты превращения и с уменьшением уоц ш  [c.329]

    Эти величины, выраженные в логарифмических единицах и приведенные в последней графе таблицы, изменяются от 3,5 для уксусной кислоты до 0,8 для 2,6-динитрофенола. Это показывает, что различное влияние ацетона на силу кислот при переходе от смеси диоксана с водой (смешанный растворитель обладает химическими свойствами, близкими к воде, но диэлектрической проницаемостью ацетона) определяется прежде всего отличием в энергии сольватации (взаимодействия) анионов кислот с дипольными [c.338]

    В данном растворителе все кислоты имеют одинаковый катион — ион лиония различие в ассоциации ионов кислот зависит от различия в свойствах и прежде всего в радиусах их анионов. В средах с низкой диэлектрической проницаемостью это приводит к дифференциации силы кислот, особенно в растворителях с малой способностью к сольватации. [c.342]

    Из этих уравнений наглядно следует, что сила катионных кислот будет в меньшей степени зависеть от диэлектрической проницаемости, чем от энергии сольватации ионов и молекул, так как в это уравнение входит не сумма, а разность членов, зависящих от 1/е. [c.350]

    Из этого уравнения следует, что сила анионных кислот, как и всех остальных типов кислот, зависит от отношения констант кислотности диссоциирующей анионной кислоты и растворителя. Для анионных кислот аависимость от диэлектрической проницаемости выражена сильнее, чем у незаряженных кислот множитель при борновском члене для анионных кислот равен 4, а не 2 2 сол равна разности между суммой энергии сольватации двухвалентного аниона и иона лиония и энергией сольватации одновалентного иона. [c.357]

    Из уравнения (VII,73) следует, что различие между первой и второй константами будет уменьшаться с увеличением диэлектрической проницаемости и что отношение констант диссоциации будет определяться не величиной эффективной диэлектрической проницаемости, а диэлектрической проницаемостью, близкой к диэлектрической проницаемости растворителя, так как второй член зависит уже только от диэлектрической проницаемости растворителя. Этот вывод находится в соответствии с экспериментальными данными. Различие в константах зависит не только от диэлектрической проницаемости, но и от различия в энергии сольватации одно- и двухвалентных ионов. По мере увеличения радиуса и расстояния между зарядами в молекуле двухосновных кислот величина р будет становиться близкой к радиусу г и Ее 5= е и оба члена, зависящие от диэлектрической проницаемости, будут уменьшаться. Кроме того, по мере увеличения расстояния р энергия сольватации двухвалентного аниона молекулами растворителя [c.358]

    По данным об энергиях сольватации, радиусы ионов цезия в воде и В спиртах должны быть меньше радиусов ионов натрия, калия и лития в тех же растворителях. Поэтому в большинстве случаев при исследовании систем N3" —Сз и К+—в ряду безводных спиртов метиловом, этиловом, бутиловом (рис. 88) положение равновесия смещено в сторону преимущественной сорбции ионов цезия. Однако при снижении диэлектрической проницаемости растворителя lg К бм уменьшается. [c.367]

    Электродвижущая сила тем выше, чем выше диэлектрическая проницаемость среды и чем больше энергия сольватации ионов дипольными молекулами растворителя. [c.392]

    В отличие от солей Ig Yo ионов кислот дая е в ряду растворителей одной природы не является линейной функцией 1/е (см. рис. 104, 2а). Как мы видели, это является следствием особенностей сольватации протонов. Ие линейна зависимость от 1/е и э. д. с. цепей, содержащих водородный элемент (см. рис. 104, 2, б и б) не линейной должны быть зависимости от 1/е и растворимости сильных кислот. Только в тех случаях, если основность ряда растворителей с различной диэлектрической проницаемостью остается неизменной, как, например, в смесях неводных растворителей с водой при большом ее содержании, наблюдается линейная зависимость свойств от 1/е. [c.402]

    На относительную силу кислот и оснований в различных растворителях влияют диэлектрическая проницаемость, сольватация, кислотные или основные свойства растворителя и молекулярная структура последнего. В растворителях, константы автопротолиза которых ниже константы автопротолиза воды, сила кислот уменьшается (или совсем не проявляется), в то время как [c.97]

    Следует еще раз подчеркнуть, что выведенные выше уравнения полностью сохраняют силу только для идеальных систем, в которых предполагается отсутствие изменений природы органических и водных фаз, вызываемых изменением концентраций. Иначе говоря, две фазы, органический растворитель и водный раствор кислоты, постоянно рассматриваются как несмешиваю-щиеся жидкости и, следовательно, как фазы, которые сохраняют свои исходные индивидуальные свойства в ходе всех рассматриваемых выше изменений, и, следовательно, константы уравнений (2) — (4) являются постоянными. Конечно, в действительности реальные двухфазные системы не настолько идеальны, и следует принимать во внимание не только их взаимную растворимость, но, что более важно, изменение их взаимной растворимости, объема фаз, диэлектрической проницаемости, сольватации соединений и т. д., которое происходит при рассматриваемом изменении концентраций. К сожалению, это влияние растворителя трудно выразить в математической форме как непосредственное влияние изменения концентраций, обсужденное в этой статье, а поэтому указанное влияние будет рассмотрено качественно как поправка к поведению идеальных систем при обсуждении реальных систем в следуюших статьях. Если система органический растворитель — водный раствор кислоты выбрана правильно, эти поправки в действительности могут быть небольшими и уравнения, по-видимому, сохраняют силу. Е сли система относится к числу тех систем, для которых при изменении концентрации X", Z , Н+, А+ необходи уЮ вносить больщие поправки на растворитель, это влияние может значительно изменить предсказания, сделанные на основе выведенных здесь уравнений, но и подобные системы все же можно описать, хотя и качественно. [c.272]

    Таким образом, по теории Борна энергия сольватации иоиа определяется его зарядом и размерами, а также диэлектрической проницаемостью растворителя. Урапнеиия (2.7) и (2.9) можно применять к любым растворам, если только известны их диэлектрические проницаемости. [c.54]

    Так как электролиты диссоциируют за счет энергии сольватации, то, если признать представления Борна справедливыми, дис-социируюигая способность растворителя и его диэлектрическая проницаемость должны находиться между собой в прямой зависимости. Подобное соотношение было обнаружено П. И. Вальденом (1903) еще до появления теории со.1ьватации Борна. Для ряда тет-разамещенных аммония Вальденом было установлено следующее эмпирическое правило  [c.54]

    Суммарные энергии сольватации электролитов для ряда растворов приведены в табл. 2.7. Они получены Измайловым на основе измерений электродвижущих сил соответствующих электрохимических систем. Нз табл. 2.7 следует, что энер1 ия сол1)Ватации электролита изменяется несущественно при переходе от одного растворителя к другому. Так, папример, для хлорида водорода максимальное отклонение энергии сольватации от его среднего значения (1382 кДж-моль- ), наблюдаемое в т(зм случае, когда растворителем служит аммиак, составляет 67 кДж.моль , т. е. около 5% обычно же оно не превышает 1—2%. Поскольку диэлектрические проницаемости растворителей, собранных в табл. 2.10, сильно отличаются друг от друга, такой результат указывает на их второстепенную роль в энергетике сольватации и на несовершенство метода Борна и других методов, в которых используется его модель растворителя. [c.67]

    Растворители представляют собой однородные структурированные субстанции. При контакте между молекулами растворителя и растворенного вещества имеют место ион-дипольные взаимодействия. Степень сольватации указывает на количество таких взаимодействий. Взаимодействие тем больше, чем ближе контакт между растворимым веществом и растворителем. Дипольные, дисперсионные и индукционные взаимодействия, а также водородные связи действуют совместно с кулоновскими силами, и все вместе определяют стабильность и свойства ионных пар. Поэтому большое значение имеет природа" как растворенного вещества, так и растворителя. Сольватная оболочка уменьшает подвижность и коэффициенты диффузии как ионов, так и ионных пар. Способность апротонного растворителя к сольватированию не зависит от диэлектрической проницаемости, но в значительной степени определяется его элект-ронодонорными или электроноакцепторными свойствами. Рол  [c.17]

    Начальное направление электродного процесса до установления равновесного состояния, заряды металла и раствора зависят от энергии сольватации потенциалопределяющих ионов. Энергия сольватации определяется индивидуальными свойствами растворителя, в частности его диэлектрической проницаемостью, то электродный потенциал должен иметь неодинаковое значение в различных растворителях. При изучении электрохимических систем с неводными растворами встречаются существенные затруднения из-за выбора электрода сравнения, который должен иметь постоянный потенциал в растворах элек- [c.486]

    В растворах, содержащих заряженные частицы, энергия взаимодействия между ионами убывает пропорционально Юг, где О — диэлектрическая проницаемость среды. Энергия взаимодействия между однозарядными ионами в водной среде при л = 5- 10- м (расстояние, равное среднему расстоянию между ионами в 1 М растворе) и 300 К равна 3,46 кДж/моль. Напряженность электрического поля между ионами равна 7,5 10 В/см. Энергия межмолекулярного взаимодействия, обусловленного ван-дер-ваальсовыми силами, на этих расстояниях практически равна нулю. Заряженные частицы взаимодействуют с нейтральными молекулами растворителя. Энергия такого взаимодействия характеризуется энергией сольватации ионов (см. 161). Энергия сольватации ионов соответствует по по- [c.601]

    Однако представление о каком-то особом сродстве полимеров к растворителям не имеет достаточных оснований. Еще в 1932 г. Маринеско, определяя количество воды, энергетически связываемой крахмалом, путем сравнения значений диэлектрической проницаемости раствора со значениями диэлектрических проницаемостей его компонентов получил данные, указывающие, что это количество воды незначительно и приблизительно соответствует образованию мономолекулярного слоя. А. В. Думанский, а также С. М. Липатов в результате калориметрических исследований пришли к такому же выводу Наконец, к аналогичным выводам прищел и А. Г. Пасынский, определявший сольватацию по сжимаемой части растворителя. Этот метод основан на том, что в сольватной оболочке растворитель находится под большим внутренним давлением сжимаемость он определял по скорости распространения ультразвука в растворах. Ниже приведены обобщенные результаты исследований А. Г. Пасынского по гидратации различных полярных групп ряда органических соединений  [c.433]

    Из этих давпых следует, что величины располагаю тся в той же последовательности, что и основность растворителей. Низкие значения энер гип сольватации в уксусной кислоте объясняются ее низкой диэлектрической проницаемостью и малой осыониостью. [c.168]

    Первый член показывает взаимодействие между ионом и диполем воды, второй показывает изменение энергии иона в связи с переходом его из вакуума в среду с определенной диэлектрической проницаемостью. Третий член в уравнении Бернала и Фаулера определяется энергией дезориентации молекул воды в связи с появлением в растворе ионов, т. е. энергией перестройки структуры воды из решетки типа кварца в тетраэдрическую решетку. Эта величина обозначается i/ . Таким образом, величина энергии гидратации в первом приближении определяется тремя величинами энергией взаимодействия между молекулами воды и ионом, энергией переноса иона (эта величина всегда имеет положительный знак, так как 1/е меньше единицы) и энергией дезориентации молекул воды U . В результате выражение Бернала и Фаулера существенпо отличается от выражения Борна наличием членов,-учитывающих взаимодействие между диполем и ионом. Все дальнейшие исследователи считали эти величины главными в выражении для сольватации. [c.173]

    Как следует из теоретических и экспериментальных исследований автора по влиянию растворителей на силу кислот и из теоретических работ Соколова, вторая стадия процесса возможна только в достаточно полярной среде благодаря сольватации ионов и не возможна в вакууме, где более вероятной является диссоциация продукта присоединения не на ионы, а на молекулы. Систематические исследования взаимодействия кислот с основаниями в инертных растворителях выполнены Барроу с сотрудниками. На основании изучения инфракрасных спектров они показали, что уксусная кислота и ее галоидзамещенныс образуют с алифатическими аминами и пиридином два ряда продуктов присоединения неионизированные продукты присоединения, образованные за- счет водородной связи между кислотой и основанием, и ионизированные продукты присоединения, в которых водород уже передан основанию и образовал ионы. Последние вследствие низкой диэлектрической проницаемости растворителя не существуют самостоятельно, а включены в ионные нары. Мея ду катионом, полученным в результате передачи протона основанию, и анионом также,возникает водородная связь [c.293]

    Итак, константа будет возрастать с возрастанием диэлектрической проницаемости среды, с возрастанием энергии сольватации ионов, с возрастанием константы основности растворителя, с ростом Уонлм наконец, [c.329]

    Следовательно, 2 С сол зависит от различия в радиусах ионов в растворе и от расстояния наибольшего сближения их в ионите и, наконец, от различия в числах сольватации. С падением диэлектрической проницаемости С/сол будет возрастать. Если соотношбния в числах сольватации и в радиусах в среде и в ионите не изменяются, константа не будет зависеть от энергии ион-дипольного взаимодействия. Кроме того, АС/сол зависит от величины дипольного момента молекул растворителя. Чем дипольный момент молекул растворителя больше, а диэлектрическая проницаемость меньше, тем больше изменение константы. Следует ожидать большего влияния растворителей, дифференцирующих силу солей, на увеличениё селективности ионного обмена. Так как концентрация ионов в единице объема в ионите больше, чем в растворе, влияние растворителя на состояние ионов в ионите будет больше, чем в растворе. [c.366]


Смотреть страницы где упоминается термин Диэлектрическая проницаемость и сольватация: [c.34]    [c.343]    [c.343]    [c.55]    [c.317]    [c.327]    [c.334]    [c.370]    [c.448]    [c.220]    [c.225]   
Физико-химия полимеров 1963 (1963) -- [ c.325 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость

Сольватация



© 2025 chem21.info Реклама на сайте