Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пористые тела получение

    Электронная микроскопия по сравнению с другими методами, применяемыми для исследования структуры высокодисперсных и пористых тел, отличается тем, что позволяет видеть изучаемый объект. Если данные других методов необходимо так или иначе интерпретировать для получения упрощенных схематизированных представлений о структуре тел, то электронная микроскопия в известной области размеров свободна от этого ограничения [78—97]. [c.308]


    Получение пористых тел и их некоторые характеристики были рассмотрены в разд. HI. Б, посвященном адсорбции газов и паров на пористых телах. Напомним только, что пористые тела можно представить как обращенные суспензии или порощки, а порошки и концентрированные суспензии в свою очередь, напрпмер, па фильтре, можно представить как пористые тела. В этом разделе обсуждается движение жидкостей и газов в порах и капиллярах пористых тел. Большинство закономерностей такого движения характерно и для порошков, шламов, осадков и других дисперсных систем. [c.231]

    Одним из распространенных видов адсорбентов являются силикагели, получаемые обработкой ортокремниевой кислоты минеральными кислотами. При сушке образующегося гидрогеля получают ксерогель — твердое пористое тело глобулярной структуры. Для получения силикагеля с заданной структурой пор до сушки гидрогель обрабатывают растворами солей, дегидратирующими или поверхностно-активными веществами. Кроме того, для заданного изменения структуры пор силикагеля применяют одновременную обработку водяным паром и температурой. Характер изменения структуры пор в этом случае зависит не только от исходного состояния геля, но и от температуры и давления водяного пара. [c.110]

    Ряд важных закономерностей и новых результатов в области электрокинетических явлений был получен нами на капиллярных системах геометрически правильной структуры. Использование капиллярных систем с определенными геометрическими характеристиками составляющих капилляров, такими как форма и длина при известном сечении я числе, дает возможность проверить и уточнить многие теоретические положения и выводы, чего в полной мере достичь не удается при нспользовании обычных, реальных капиллярно-пористых тел, имеющих неправильную и трудно описываемую структуру. Для характеристики структуры реальных пористых тел приходится вводить часто весьма произвольные предположения, пользоваться различными упрощениями, что неизбежно приводит к ограничениям и неопределенности при оценке получающихся результатов. Этот вопрос нмеет широкое значение для коллоидной химии, поэтому мы вкратце остановимся на современном его состоянии. [c.118]

    Из твердых растворов могут быть получены капиллярно-пористые тела путем удаления из них отдельных компонентов, например, продуктов обугливания посредством химической обработки при высокой температуре (активные угли), или растворимых окислов посредством выщелачивания (пористые стекла). Другой путь получения капиллярно-пористых тел (например, катализаторов и адсорбентов) заключается в конденсационном химическом зарождении свободнодисперсных частиц с последующим структурированием. Так получают силикагели, алюмогели и многие другие, важные для технологии связнодисперсные системы. Возможен и прямой путь получения их посредством высокотемпературного размягчения в сочетании с прессованием (получения металлокерамики, си-таллов и др.) из свободнодисперсных порошков, или путем характерного для природных процессов постепенного уплотнения и срастания частиц (песчаники, осадочные породы). О способах получения пен, эмульсий и аэрозолей см. гл. XV. [c.21]


    В определенных условиях опыта наблюдается другое явление — электроосмос в пористом теле, поры которого заполнены раствором электролита, на границе твердого тела и раствора создается двойной электрический слой. В качестве пористого тела в данном случае могут служить различные диафрагмы, полученные из суспензий путем центрифугирования, или мембраны — эластичные пленки с порами коллоидных или молекулярных размеров. [c.13]

    Синтез пористых тел требует знания их текстуры и во многом определяется морфологией. В корпускулярных телах большая уд. пов-еть обеспечивается получением возможно меньших первичных частиц, что достигается оптимальным соотношением скоростей зародышеобразования и роста частиц (см. Зарождение новой фазы, Кристаллизация). Объем пор определяется плотностью упаковки частиц. Напр., в гелях плотность упаковки зависит от соотношения прочности скелета гидрогеля и разрушающих его поверхностных сил при образовании в процессе сушки менисков межмицеллярной жидкости. Сушка прочных состарившихся гелей сохраняет их рыхлую структуру и дает системы с большим объемом пор при сушке свежеобразованных гелей рыхлая структура разрушается и происходит переупаковка частиц под влиянием мощных капиллярных сил, в результате образуются тела с малым объемом пор. Размер пор регулируется размером частиц и плотностью их упаковки. В губчатых и кек-рых корпускулярных структурах образование пор достигается удалением одного или нескольких компонентов твердого тела при растворении (пористые стекла, скелетные катализаторы), дегидратацией гидроксидов или терморазложением солей (пористые оксиды разл. природы), частичным окислением (активные угли) и др. процессами. Текстура продукта определяется концентрацией и дисперсностью компонентов в исходном материа- [c.70]

    Задачей дальнейших расчетов является изучение влияния электрических эффектов на течение жидкости в порах, вызванное градиентом температуры УУ при отсутствии разности давления (ДР = 0), так как именно эти условия имеют место при измерении скоростей термоосмотического течения в пористых телах. При наличии диффузного электрического слоя следует учесть, однако, не только влияние третьего члена в уравнении (Х.96), но также и изменения удельной энтальпии вследствие поляризации жидкости в поле диффузного слоя. Фактически в коэффициенты 12 = 21 должна теперь войти сумма изменений энтальпии (ДЯ Ч- ДЯ ). Так как влияние изменений удельной энтальпии в граничных слоях ДЯ уже было рассмотрено выше, приведенные ниже расчеты будут касаться только ДЯ . Полученное далее решение относится, таким образом, к пористому телу с заряженной поверхностью, но без граничных слоев растворителя с особой структурой. [c.334]

    Важнейшей характеристикой высушиваемого материала является сорбционное равновесие его с влажным воздухом. На рис. 3.1 приведены изотермы сорбции и десорбции паров воды на ПВХ-С-70, полученные статическим и динамическим (хроматографическим) методами [94]. На обоих графиках имеет место сорбционный гистерезис, типичный для капиллярно-пористых тел. Значительно более широкая петля гистерезиса, получающаяся по хроматографическим данным, объясняется присущей динамическому методу тенденцией к занижению равновесной влажности продукта при адсорбции и завышению при десорбции. Для расчетов процесса сушки необходимо иметь изотермы десорбции в достаточно широком интервале температур. В результате исследования сорбционных свойств большой группы полимерных материалов на основе винилхлорида и акрилатов предложено следующее уравнение для описания кривых десорбции в интервале относительной влажности воздуха ( от О до 1,0 [94]  [c.88]

    В газодиффузионном методе разделения к наиболее важным физическим характеристикам пористой перегородки (фильтра) относятся проницаемость и разделительная эффективность этими двумя величинами вместе определяется общая площадь фильтров и число разделительных ступеней, необходимых для получения продукта заданного обогащения. В этом разделе мы рассмотрим зависимость этих характеристик от физики течения газа с помощью основных моделей, предложенных для описания структуры пористых тел. [c.53]

    Свойства потока при переходе от молекулярного потока к вязкому будут расс.матриваться потому, что они оказываются полезными для понимания зависимости разделительной эффективности и проницаемости фильтра от различных моделей структуры пористого тела. Недавние результаты, полученные с применением уравнения Больцмана к этой области, будут использованы для подтверждения гипотез или результатов. [c.62]

    В связи с этим рассмотрены [303] возможности применения статистических методов для установления гидродинамических закономерностей при течении жидкости сквозь пористое тело, оценки качества фильтрования с закупориванием пор, описания распределения частиц по размерам и получения геометрических параметров слоев беспорядочно уложенных твердых частиц. [c.25]


    Длительное время не было надежных методов измерения удельной поверхности пористых тел. Некоторые исследователи [293—294] предлагали оценивать величину адсорбирующей поверхности сорбентов по теплоте смачивания органическими жидкостями, по предельной адсорбции различных красителей и спиртов из водных растворов [295— 297], основываясь на представлении об образовании моно-молекулярного слоя на поверхности адсорбента. Однако Киселев и его сотрудники [298] показали, что само представление о мономолекулярном строении адсорбционного слоя в случае адсорбции из растворов является неверным. Надо полагать, что полученные указанными методами значения не дают правильной оценки величин удельной поверхности пористых тел. [c.140]

    Известно, что большинство адсорбционных характеристик пористых тел можно получить из данных капиллярно-конденсационной части изотермы (5, г, 1/ . Произведенные таким образом расчеты, основанные на теории капиллярной конденсации, содержат ряд упрощающих допущений. Важно было выяснить, насколько последние оправдываются для оценки пористой структуры. Для этого исследованы [128] адсорбционно-десорбционные изотермы паров многих веществ, резко отличающихся по своим химическим свойствам и молекулярным константам (разные молярные объемы, величины поверхностного натяжения и др.), на наиболее крупнопористом образце эталонного ряда — силикагеле Е. Надежность адсорбционно-структурного метода проверяли сопоставлением с результатами, полученными другими независимыми методами. [c.151]

    Однако в ряде опытов на некоторых образцах не было обнаружено плато на кривой зависимости, 9 от 8 [10], в других же опытах плато обнаруживается [11]. Кроме того, в работе [12] показано, что некоторые порошки при прессовании разрушаются. Поэтому в работе [13] было предложено проводить измерения удельной поверхности без прессования при пористости, которая получается при интенсивном встряхивании д(ь достижения постоянного объемного веса. Следует признать, что структура порошкообразного тела, полученного таким способом (без применения прессования), более близка модели дисперсного тела, рассмотренного Дерягиным [5] при теоретическом выводе уравнения (1). [c.118]

    Движущая сила процесса спекания — поверхностная энергия. В исходном состоянии пористое тело, полученное прессованием порошков и имеющее развитую внутреннюю межфазовую поверхность, представляет собой систему, далекую от термодинамического равновесия. Это обусловлено повышенным запасом свободной поверхностной энергии, т. е. энергии нескомпенсированных атомных связей на поверхности дисперсных частиц и пор (неравновес-ность реальных дисперсных тел обусловлена также и тем, что реальные порошки имеют искаженную кристаллическую структуру с различными неравновесными дефектами). Как известно, любая система обладает тенденцией к сокращению межфазовой поверхности, что равносильно уменьшению поверхностной и, следовательно, общей энергии системы. При спекании эта тенденция и реализуется за счет заполнения веществом пор между зернами и внутри зерен, что приводит к сокращению внутренней поверхности тела. [c.333]

    Отражено современное состояние исследований свойств воды в дисперсных материалах и пористых телах (природные дисперсные системы, продукты химической технологии, биологические объекты). Изучение структуры и свойств воды в тонких слоях, пленках и порах имеет важное прикладное значение (при получении адсорбентов, катализаторов, наполнителей для композиционных материалов, создании стабилизаторов буровых растворов для управления флотацией и капиллярной пропиткой, а также прочностью горных пород и процессами структурообра-зования в пористых телах). [c.2]

    Полученные для пористых стекол значения коэффициентов термоосмоса при комнатной температуре составляют х = — ч-10 см /с. Они близки к значениям полученным для мембран и глин. Хотя всем этим пористым телам в контакте с водой присущ поверхностный заряд, его влияние не проявляется заметным образом в силу того, что для воды в тонких порах (/ <10 нм) х/"<С1. Как известно, в этом случае электрокинети-ческие эффекты заметно не проявляются. [c.22]

    Наиболее теоретически ра работаннон является модель ССЕ с ядром из поры, различные состояния которой приведены на рис. 10. Формирование адсорбционно-сольватного слоя происходит самопроизвольно за счет поверхностных сил ядра с выделением при этом обычно тепла. Поверхностные силы при физической адсорбции имеют ту же природу, что и силы межмолекулярного взаимодействия. В настоящее время, наиболее признанной, позволяющей аналитически описать -образную форму изотермы адсорбции является теория БЭТ (Брунауэр— Зммет — Теллер). По своей сути адсорбция по Ленгмюру соответствует модели ССЕ, когда / /л- О, а по Поляни — когда /г/г оо (рис. 11). Адсорбция при наличии высокодисперсных пор в адсорбенте сопровождается фазовым переходом — капиллярной конденсацией. Воздействуя различными способами на пористость твердых тел в процессе их получения и существенно изменяя условия нх применения путем варьирования давления, температуры и введения различных добавок, удается регулировать высоту межфазного слоя И на поверхности пористого тела (рис. 12). [c.77]

    Высокодпсиерсные неорганические пористые тела (адсорбенты и катализаторы) получают в основном двумя методами. Один из них заключается в синтезе гидрозоля (например, метод поликонденсации кремневой кислоты), который затем подвергают коагуляции для получения геля. Гель высушивают, частицы (корпускулы) в результате этих операций срастаются с образованием твердого каркаса. Так как частицы золя высокодисперсны, то пористый материал получается с большой удельной поверхностью. Для удобства использования комки адсорбента дробят, гранулируют [c.129]

    Второй метод получения высокоднсперсных пористых адсорбентов и катализаторов заключается в обработке крупнопористых материалов агрессивными газами или жидкостями. При такой обработке получаются пористые тела губчатой структуры. Этим методом получают активные угли (пористые углеродные адсорбенты) из различного сырья — каменного угля, торфа, дерева, животных костей, ореховых косточек и др. Из этих материалов сначала удаляют летучие вещества при нагревании без доступа воздуха, в результате чего образуется крупнопористая структура угля, затем активируют уголь путем окисления газом (О2, СО2), водяным паром или обработкой химическими реагентами. [c.130]

    Однако число таких детально изученных систем до настоящего времени весьма невелико. Кроме того, для реальных пористых тел, использующихся как мембраны в практических целях (например, для электродиализа), эти примеры не имеют большого значения. Для получения мембран определенного знака заряда К. Мейер путем добавления к раствору ацетилцеллюлозы [СбН702(0С0СНз)з]ж различных веществ получил мембраны кислого, амфотерного и основного характера. Так, добавление к раствору ацетилцеллюлозы полиакриловой кислоты (СНг=СН СООН)ас приводило к тому, что полученные мембраны имели кислый характер, т. е. были отрицательно заряжены. Мембраны амфотерного характера получались путем добавления к раствору ацетилцеллюлозы продукта конденсации триэтанола- [c.153]

    Наиболее надежными следует считать данные, полученные методами 2—5. Эти методы дают в среднем п=0,33, что нами и принято. Такое же значение п получается при сравнении результатов опытов Теккера и Хоугена [60] по испарению воды из пористых насадочных тел с данными Шулмена и сотр. [611 по возгонке нафталина, а также по данным [62], полученным при испарении различных жидкостей в разные газы с поверхности пористых тел. [c.117]

    Перенос массы вещества рассматривается на основе соотношений молекулярно- кинетической теории для бинарной смеси применительно к влажному воздуху. При этом используются решения, полученные для случая пористого охлаждения пластины. Необходимо отметить, что последние (решения не применимы для процесса тепло- и массо-переноса при испарении жидкости со свободной поверхности и из капиллярно-пористых тел. К сожалению, для решения этой проблемы не используются методы термодинамики необратимых процессов, которые дают наиболее пол1ное и строгое описание комплексного процесса тепло-и массообмена. [c.5]

    По экспрессности и точности метод тепловой десорбции превосходит другие хроматографические методы. Это отчетливо видно из данных табл. 2-6, в которой результаты определений удельной поверхности различных пористых тел методами тепловой десорбции, фронтальной и проявительной хроматографии сравниваются с оценкой по данным пзотерм адсорбции, полученным на вакуумной адсорбционной установке [24]. [c.52]

    В связи с широким развитием процессов каталитического крекинга, каталитического реформинга, теплообмена в слое гранулированной насадки, осуш ествляемых в движущемся слое, Хапель [10] подробно исследовал перепад давления при прямоточном и противоточном пропуске воздуха через слой движущегося катализатора различной формы (табле-тированного, сферического и шарикового) размером 0,25—4,7 мм. Автор предложил новую функцию, хорошо согласующуюся с опытными данными и учитывающую изменение свободного объема в стационарном и движущемся слоях катализатора, между модифицированными коэффициентом сопротивления Рейнольдса Ве = Ве (1 — е). Для практического расчета перепада давления как в стационарном, так и в движущемся слое нами был исследован вид зависимостей / = ф (Ве) и = ф (Ве ) применительно к разным типам промышленных адсорбентов [И, 12]. Рассматривая поверхность пористого тела как поверхность с непроницаемой оболочкой в аэродинамическом понятии, мы считали, что это допущение в первом приближении справедливо, так как шероховатость поверхности у всех нромыш-лепных гранулированных адсорбентов близка и, следовательно, влияние фактора шероховатости должно входить в равной степени в общий коэффициент расчетных формул. Удовлетворительная сходимость, полученная при сравнении результатов ииытов С рассмотренными зависимостями, нидтверждает сираведли-вость этих допущений. [c.244]

    Частный случай процессов диффузии и экстракции — выщелачивание, с помощью которого обрабатывают капиллярно-пористые тела растительного или животного происхождения. В качестве растворителей применяют воду для диффузии сахара из свеклы спирт и водно-спиртовую смесь — для получения настоек и морсов в ликероводочном производстве бензин, трихлорэтилен, дихлорэтан — в масложироэкстракционном и эфиромасличном производствах воду и пар — для экстракции бульонов и желатина. [c.959]

    Структура пористого тела в значительной мере влияет на кинетику адсорбции, так как появляется стадия переноса вещества внутри пор. Часто эта стадия определяет время установления равновесия. К числу наиболее распространенных пористых адсорбентов относятся активные угли (их получают из каменного угля, торфа, дерева, животных костей, ореховых косточек и др., причем лучшими считаются угли, полученные из скорлупы кокосовых орехов или абрикосовых косточек), силикагели и алюмогели (гидратированные 8102 и А12О3), цеолиты. [c.55]

    Для а-пленок на поверхности кварца это значение расклиниваю- щего давления отвечает толщине пленки около 50 А при 20° С и около 100 А при 10° С (см. главу VII, рис. VII.1). Проведем оценку толщины незамерзающей прослойки используя полученные значения др и П для определения коэффициента а = —др/Пх = 6- 10" см -с/г и уравнение (Х.125). Принимая т) = 0,02 Пуаз и = = 0,5 см (радиус основания ледяного конуса), получим близкое к Лд значение толщины прослойки при —0,5° С, равное примерно 130 А. Это показывает, в частности, что определяющую роль в формировании толщины незамерзающих прослоек играют силы, исходящие со стороны кварцевой подложки. Отсюда понятно, какое большое влияние может оказывать гидрофильпость поверхности частиц пористых тел. Заметим, что снижение гидрофильности подложки ведет к уменьшению толщины как а-пленок [135] (см. также рис. VII.28), так и незамерзающих прослоек (см. рис. VII.6). [c.349]

    Была рещена задача диффузии бинарной газовой смеси в пористом теле с учетом изменения общего давления. Предложенное описание имеет статистическое обоснование и удовлетворительную физическую интерпретацию полученных предельных выражений. Последовательная количественная теория явления на примере пористой фторопластовой мембраны, разделяющей воздух и воду, изложена в [3.40]. [c.166]

    Тип структуры катализатора прежде всего обусловливает выбор способа его создания. Что касается наиболее распространенных глобулярных структур, то они, как уже указывалось, дискретны и образованы частицами, расположенными определенным образом [51, 65]. Создание определенной пористой структуры различных катализаторов осуществляется, как правило, на той стадии приготовления, когда исходные компоненты находятся в подвижном состоянии [41, 51]. Аморфные катализаторы со структурой ксерогелей образуются путем коллоидно-химического осаждения гелеобразных пористых тел, которое реализуется через следующие стадии образование золя, переход его в гидрогель или коагель и обезвоживание, приводящее к получению ксеро- [c.76]

    В связи с этим наметился новый путь изменения пористости, заключающийся в обработке геля различными активирующими реагентами. Отличительной чертой работ Окатова является попытка объяснения полученных результатов с точки зрения существовавших в то время представлений о коллоидном состоянии кремнекислоты. Однако несовершенство применяемых им методов определения структуры пористых тел не позволило автору согласовать адсорбционные данные с генезисом геля и таким образом сделать теоретические выводы на основании приведенного исследования. Тем не менее Окатов положил начало систематическому изучению влияния различных факторов на пористую структуру силикагеля. [c.12]

    Полученные результаты мы объяснили, пользуясь известными представлениями о корпускулярном строении коллоидной кремнекислоты и ее химических свойсгвах. При этом также учитывались свойства кремнегеля как ка-пиллярно-пористого тела, формирование которого в процессе сушки в значительной степени определяется прочностью скелета [431. Прочность каркаса геля, в свою очередь, связывали с влиянием электролитов на процесс агрегирования частиц геля. В соответствии с этим формирование мелкопористой структуры силикагеля из гидрогеля, промытого подкисленной водой, мы объясняли большей эластичностью его скелета, легко деформирующегося в процессе сушки эффект водопроводной воды относили за счет увеличения жесткости каркаса геля вследствие [c.28]

    В. М. Чертов (Институт физической химии им. Л. В. Писаржевского АН УССР, Киев). Новые интересные возможности получения различных адсорбентов корпускулярного строения с изменяющимися в широких пределах характеристиками пористой структуры открывает гидротермальный метод [1—3]. В гидротермальных условиях удалось регулировать текстуру пористых тел, относящихся к различным классам химических соединений (окисям, гидроокисям, солям). В таблице в качестве примера представлены данные, показывающие характер изменения и некоторые возможности регулирования пористой структуры адсорбентов в гидротермальных условиях. [c.62]


Смотреть страницы где упоминается термин Пористые тела получение: [c.76]    [c.8]    [c.34]    [c.302]    [c.129]    [c.134]    [c.342]    [c.55]    [c.173]    [c.173]    [c.255]    [c.8]    [c.69]   
Курс коллоидной химии Поверхностные явления и дисперсные системы (1989) -- [ c.154 ]




ПОИСК







© 2024 chem21.info Реклама на сайте