Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость олова

Рис. 31. Реологические кривые и кривые пластической вязкости олова на воздухе (i, 3) и в поверхностно-активной среде (2, 4) Рис. 31. <a href="/info/8983">Реологические кривые</a> и кривые <a href="/info/15422">пластической вязкости</a> олова на воздухе (i, 3) и в <a href="/info/3063">поверхностно-активной</a> среде (2, 4)

    Мягкие (оловянисто-свинцовые) припои применяются в криогенном машиностроении для пайки различных деталей. Прочность таких припоев при понижении температуры возрастает, однако одновременно значительно уменьш ется их пластичность. Оловянисто-свинцовые припои с высоким содержанием олова (более 30%) уже при температурах ниже —30 X становятся хрупкими. Причина потери пластичности заключается в фазовом превращении олова при температуре около —30 °С. Присутствие же в сплаве свинца в известной степени компенсирует это изменение и сохраняет достаточно высокую прочность припоя, а также некоторую небольшую пластичность и вязкость. [c.144]

    Вязкость нафтеновых кислот увеличивается с возрастанием молекулярного веса, поверхностное натяжение на границе с водой и воздухом уменьшается. Нафтеновые кислоты корродируют такие металлы, как свинец, цинк, медь, олово, железо, образуя соот- [c.73]

    Сурьма придает сплаву хрупкость, олово — вязкость. При переплавке шрифта происходит постепенное выгорание олова и уменьшение его содержания в сплаве. В связи с этим ухудшаются механические свойства шрифта, и для получения металла нужного качества необходимо при переплавке добавлять некоторое количество металлического олова. Поэтому для оценки пригодности типографского сплава наибольшее значение имеет определение олова и сурьмы. Обычно определяют также процентное содержание свинца. Другие составные части имеют меньшее значение и их определяют не всегда. Приводим методику определения олова, сурьмы и свинца в типографском сплаве согласно ГОСТ 5255—50. [c.456]

    Выше указывалось, что обычная коагуляция в системах с твердой дисперсионной средой невозможна из-за огромной вязкости среды, препятствующей столкновению частиц между собой. Однако все же некоторое укрупнение частиц в таких системах возможно за счет изотермической перегонки вещества дисперсной фазы. Такое укрупнение частиц наблюдается, например, при длительном нагревании рубинового стекла прй температуре, когда давление пара металла уже достаточно высоко. При очень высоких температурах, когда происходит плавление дисперсионной среды, в подобных системах может наблюдаться и истинная коагуляция. При этом, если среда прозрачна, меняется и цвет системы. Например, при высокой температуре красный цвет рубинового стекла переходит в фиолетовый, а затем в синий вследствие агрегации частиц. Интересно, что двуокись олова, присутствующая в стекле, оказывает защитное действие и препятствует образованию агрегатов. [c.397]


    Свежеприготовленные растворы этих окисей и гидроокисей во многом сходны с растворами высокомолекулярных соединений. Эти вещества осаждаются из растворов при введении электролита, но осадок легко вновь переходит в коллоидный раствор, если коагулятор удалить. Такое осаждение и диспергирование, например двуокиси олова, может быть произведено сколь угодно большое число раз. Действие электролитов на растворы таких веществ и влияние валентности иона, вызывающего понижение -потенциала частиц, далеко не столь значительны, как для типичных коллоидных систем, например металлических золей и золей сульфидов металлов. Относительная вязкость растворов подобных веществ значительно выше, чем обычных золей. Наконец, растворы их обладают способностью давать студни, очень сходные по свойствам со студнями высокомолекулярных веществ. [c.422]

    Рассматриваемые переходные металлы находят самое широкое применение в виде сплавов. Такие сплавы часто обладают значительно большей прочностью, твердостью и вязкостью, чем составляющие их чистые металлы. Сплавы меди и цинка называют латунью, сплавы меди и олова называют бронзой, а меди и алюминия — алюминиевой бронзой. Многие из этих сплавов обладают ценными свойствами. Медь входит также в состав ряда других, имеющих широкое применение сплавов, таких, как бериллиевая бронза, монетное серебро и монетное золото. [c.559]

    Имеющиеся экспериментальные данные свидетельствуют о том, что трехмерные структуры белков характеризуются плотнейшей упаковкой атомов. Коэффициенты упаковки белковых молекул в нативном состоянии имеют значения от 68 до 82%. Для сравнения напомним, что у правильных сферических тел этот коэффициент равен 74%, а у молекул воды и циклогексана - 58 и 44% соответственно. По плотности упаковки атомов белковые молекулы близки кристаллам малых органических молекул (70-78%). Нативные структуры белков имеют также незначительные коэффициенты сжимаемости, близкие, например, коэффициентам сжимаемости олова и каменной соли. Высокая компактность глобулярных белков подтверждается большой плотностью, малой вязкостью и малыми молекулярными объемами нативных белков в растворе. Так, наблюдаемые у них величины плотности (1,3-1,5 г/см ) выше, чем у сухих белков и близки величинам плотности кристаллов низкомолекулярных органических соединений. Это свойство пространственных структур белковых молекул безупречно с физической точки зрения и очень образно передает определение их как "апериодические кристаллы" - термин, использованный Э. Шре-дингером для характеристики состояния хромосом [52]. Таким образом, есть все основания заключить, что нативная конформация белка представляет собой плотно упакованную структуру с максимальным числом внутримолекулярных контактов между валентно-несвязанными атомами. [c.102]

    В качестве расплава употребляют некоторые металлы (свинец, висмут, кадмий, олово и др.) и их сплавы, соли — хлориды, карбонаты и др. — или многокомпонентные солевые расплавы, а также шлаковые (оксидные) расплавы [405]. Метал- лические расплавы обладают высокой теплопроводностью, ма- лой вязкостью, но они интенсивно окисляются и относительно. дороги. Солевые расплавы не имеют основного недостатка металлических— интенсивной окисляемости, но по сравнению с металлами обладают меньшей теплопроводностью, а некоторые— высокой летучестью и термической нестабильностью, что осложняет сепарацию и регенерацию расплавов. Относительно дешевые шлаковые расплавы характеризуются высокими тем пературами плавления, не слишком высокой вязкостью, повышенным агрессивным воздействием на конструкционные материалы, поэтому их применяют редко. [c.191]

    Кадмий — серебристо-белый, с синеватым отливом, металл, по. цвету ближе к стали, чем к олову, имеет несколько желтоватый оттенок. На воздухе кадмий быстро тускнеет из-за образования тонкой окисной пленки, но сохраняет металлический блеск излом его острый, лучистый. Тонкая кадмиевая фольга в проходящем свете имеет синевато-фиолетовую окраску. Пары кадмия оранжево-желтые подобно большинству других металлов, состоят преимущественно из отдельных атомов (их молекулярный вес 114,1 при атомном весе кадмия 112,4). Плотность паров кадмия по отношению к воздуху —4. В вакууме кадмий возгоняется уже при 164°, кипит при 450° С. Температура возгонки и кипения при различных давлениях представлена на рис. 2. Плотность металлического кадмия при 0° К равняется 9,65 г см в нормальных условиях для литого кадмия она составляет 8,604, у кованого — 8,690 г/см , плотность металла несколько ниже точки его плавления — 8,37 г см [456, стр. 9 354, стр. 477]. Плотность и вязкость жидкого кадмия при различных температурах представлены на рис. 3. [c.15]

    Алюминий является наиболее эффективным модификатором структуры стали, регулирует зерно аустенита с повышением пластичности и вязкости стали. При легировании стали алюминием уменьшается ее чувствительность к возникновению подкорковых пузырей, а уменьшение зерна способствует увеличению ударной вязкости продольных образцов. Роль алюминия как раскислителя и легирующего элемента стали чрезвычайно велика. Однако применение чистого (первичного) алюминия связано с высокой его стоимостью, а вторичный алюминий (например, марки АЧ-3) содержит до 13% цинка, олова, кремния, меди, мышьяка и других примесей, ухудшающих качество стали. До 70—90% алюминия окисляется кислородом воздуха и шлака, а остаточное содержание алюминия в стали весьма нестабильно. Поэтому гораздо целесообразнее для раскисления и легирования стали использовать ферроалюминий и другие сплавы (Ре — Мп—А1, Ре —А1 — 51, Ре — А1 — Мп — 51, Ре — Сг —А1 и др.). Это позволяет также получать алюминиевые ферросплавы электротермическим методом из дешевых видов алюминиевого сырья, исключив использование дорогих бокситов. Применение для раскисления стали ферроалюминия с 10—20% А1 увеличивает полезное использование алюминия до 50—60% и более кроме того, [c.225]


    Другим важным фактором является термический цикл, которому подвергается материал при изготовлении. У 1 % Сг, Мо стали наблюдается резкое увеличение когда осуществляется отпуск при температурах 350—450° С, которое сопровождается относительно небольшим уменьшением предела текучести (рис. 9.10). Таким образом, следует использовать сталь в таком состоянии, при котором достигается высокое значение Кю-В заключение рассмотрим влияние чистоты стали и сплавов на вязкость разрушения. Исследования [6] титановых сплавов показали,., что вязкость значительно увеличивается у материала более высокой чистоты, хотя и наблюдается некоторое уменьшение прочности. Исследования [5] 2% N1, Сг и Мо стали показали, что когда сталь подвергалась термообработке на предел текучести, равный примерно 125 кгс/мм , К, с для чистой стали составлял более 320 кгс/мм / , в то время как для стали, содержащей 0,014% 5 и 0,010% Аз в качестве примесей, К1с уменьшался до 135 кгс/мм /2. Результат показывает, что "наблюдается по крайней мере шестикратное уменьшение допустимого размера дефекта, вызываемое введением примесей серы и мышьяка. Таким образом, нельзя пренебречь влиянием чистоты стали на вязкость разрушения. Особенно это касается таких элементов, как сера, фосфор, мышьяк, олово и, возможно, сурьма, в то время как в большинстве спецификаций на сталь задается только максимальное содержание серы и фосфора и оно может быть достаточно высоким по сравнению со значениями, которые требуются для получения оптимальной вязкости разрушения. Вероятно, для создания сосудов давления, рассчитанных с учетом вязкости разрушения, потребуется пересмотреть спецификации на высокопрочные материалы. [c.392]

    Изучение зависимости приведенной вязкости спиртового раствора поливинилпиридина от концентрации иода в растворе показало, что "п/с увеличивается с ростом концентрации иода Это поведение, типичное для полиэлектролитов, объясняется диссоциацией комплекса [PyJ]+J = i=[PyJ]+- -J , приводящей к электростатическому отталкиванию зарядов, расположенных вдоль полимерной цепи. Аналогичную зависимость приведенной вязкости поливинилпиридина в нитробензоле от концентрации таких добавок, как хлористый алюминий, хлористое олово и фтористый бор, объяснено авторами образованием комплексов поливинилпиридина с указанными солями и их диссоциацией, по аналогии с зависимостью 1]/с полиакриловой кислоты от степени нейтрализации. [c.743]

    Токонепроводящая частица, прилипая к катоду, изолирует соответствующую точку его, прекращая доступ тока и вызывая образование кратеров, пор в осадке. Так же влияет и прилипание к катоду газовых пузырьков. Последние могут образовываться или за счет выделения водорода, или за счет снижения растворимости воздуха в электролите, например при повышении температуры ванны. Прочность прилипания пузырьков к катоду зависит от ряда причин — от кислотности раствора, вязкости, поверхностного натяжения, которое, в свою очередь, зависит от катодного потенциала и от материала катода. На железе, никеле и кобальте пузырьки удерживаются прочнее, чем на меди, на цинке прочнее, чем на олове. Иногда, например, 34 531 [c.531]

    Каучук GR-S подвергается циклизации при нагревании в растворе фенола, крезола или нейтрального каменноугольного масла, выкипающего до 160—180°, с хлороловянной кислотой, хлорным оловом или трехфтористым бором (в виде комплекса с эфиром). Приблизительно через 10 мин. температура начинает подниматься, а вязкость раствора возрастать, пока не образуется гель. Затем температура падает h вязкость раствора снижается до тех пор, пока (приблизительно через 30 мин.) реакционная смесь пе превратится в раствор светло-коричневого цвета. Циклизован-ный каучук GR-S может быть выделен из последнего путем перегонки с водяным паром или экстракцией. Этот продукт слабо пропускает водяные пары, поэтому используется в качестве влагоустойчивых покрытий для бумаги. [c.215]

    Плотность нафтеновых кислот меньше единицы. Они плохо раство]Н1мы в воде, но хорошо растворяются в углеводородах н многих органических растворителях. Вязкость нафтеновых кислот повышается с увеличением молекулярного веса. По химическим свойствам эти кислоты аналогичны карбоновым кислотам. Оии легко образуют сложные эфиры, хлорангидриды и амиды, легко вступают во взаимодействие со свинцом, цинком, медью н оловом на алюминий, так же как и другие органические кислоты, оии почти не действуют. [c.289]

    Низкомолекулярные кислоты, выделенные из легких нефтяных фракций, представляют собой маловязкие жидкости с резким запахом высокомолекулярные кислоты, выделенное из масляных фракций, представляют собой густые, а иногда полутвердые пе-кообразные вещества. Нефтяные кислоты практически не растворимы в воде, хорошо растворимы в углеводородах. Кислотное число их уменьшается по мере увеличения молекулярной массы и колеблется в пределах 350—25 мг КОН/г. Нефтяные кислоты представляют собой насыщенные соединения, йодное число их невелико. Вязкость нефтяных кислот увеличивается с возрастанием молекулярной массы, поверхностное натяжение на границе с водой и воздухом уменьшается. Нефтяные кислоты способны кор-розионно воздействовать на металлы (свинец, цинк, медь, олово, железо), образуя соответствующие соли алюминий по отношению к ним устойчив. Соли нефтяных кислот за исключением щелочных не растворимы в воде. [c.35]

    Олово — металл светло-серого цвета с атомной массой 118,7, валентностью 2 и 4, плотностью 7,3 г/сы удельное электросопротивление олова ОД 15 Ом-ым, температура плавления 232 °С. Для олова характерны высокие пластичность и вязкость, твердость оловянных покрытий колеблется от 120 до 200 МПа. Олово устойчиво в воде, не корродирует во влажном воздухе, даже содержащем сернистые соединения В минеральных кислотах скорость коррозии олова в значительной степени зависит от наличия Б растиорах кислорода, который резко увеличивает ее. Примеси с низким перенагряжекием водорода также усиливают коррозию олова. Стандартный электродный потенциал олова —0.14 В по отношению к его двухвалентным нонам и -1-0.01 В н четырехвалентиым. Относительно железа олово электроположительно, поэтому оно не защищает железо от атмосферной коррозии. Электрохимическую защиту от коррозии оловянные покрытия обеспечивают изделиям из медн. Оловянные покрытия — эффективный барьер для серы н азота [22, 31. 37, 44]. [c.83]

    Интересную зависимость величины вязкости от молекулярной концентрации в единице объема (или, что то же, от молекулярного объема) приводят Гугель [25] и Цорн [26] для ряда алкилов свинца й олова и для углеводородов метанового ряда нормального и изо-строения. По их данным зависимость натурального логарифма вязкости от молекулярной концентрации прп 100° для метановых углеводородов от С24 до выражается плавной кривой независимо от строения углеводорода. [c.10]

    Диметилсилоксаны пе вызывают коррозии большинства металлов и сами не изменяются под их воздействием. Из испытанных 10 металлов при температуре 200° в течение 168 час. только два — теллур и свинец — вызвали зад1етное увеличение вязкости ди-метилсиликона дюралюминий, кадмий, серебро, олово, цинк и сталь не оказали никакого действия, а медь и селен к концу испытания вызвали даже некоторое уменьшение вязкости [13]. [c.214]

    В работах [207, 208] предложено использовать для элек-троосаждения никеля растворы его солей в эти-аенгликоле. Электролиз ведется при температуре выше температуры кипения ВОДЫ 120—155°С, поэтому для приготовления электролита могут быть использованы кристаллогидраты. Устойчивыми при 120 °С являются хлорид, бромид и сульфат никеля, сульфаматы разлагаются. Осаждение ведут из рас- твора, содержащего 300—320 г/л хлорида никеля в виде кристаллогидрата. Уменьшение концентрации соли ведет к снижению электропроводности, а повышение ее — к повышению вязкости этиленгликолевых растворов. При температуре выш е 120°С осаждаются мелкокристаллические матовые осадки. При более низкой температуре осадки хрупкие и обладают высокими внутренними напряжениями. Выход по току и физико-механические свойства осадков — ковкость, относительное удлинение, предел прочности и внутреннее напряжение сильно зависят от плотности тока. До плотности тока 10 А/дм2 внутреннее напряжение возрастает, а предел прочности и относительное удлинение — снижаются. Добавки борной кислоты до 30 г/л снижают твердость осадков, органические добавки почти не влияют на качество осадков, а борная кислота, хлориды кадмия и олова снижают склонность к дендритообразованию. Достоинством этиленгликоле-вого электролита является равномерное растворение анодов без образования шлама. [c.68]

    LI2 2, с Кремнием — силицид LieSi2. При растворении Л. в жидком аммиаке образуется амид Л. (раствор имеет синий цвет). С фосфором Л. непосредственно не реагирует. Со многими металлами Л. образует сплавы, сообщая им вязкость или твердость. С алюминием, цинком, магнием, кадмием, ртутью, таллием, свинцом, висмутом, оловом Л. образует интерметаллиды. См. также приложение. [c.23]

    Диаграмма системы хлорное олово — уксусноэтиловый эфир приведена на ряс. 7- Как мы это недавно уже отметили [17], и здесь нахождение значительного и весьма узкого максимума на изотермах вязкости, как и в случае тиомочевины, связано не только с образованием крупных йолекул (8п.С14. 23), но и с тем, что они значительно ассоциированы, как это вытех ает из ироизве- [c.79]

    У нс. 27. Кривые вязкости (г,), электропроводности, исправленной на вязкость ( т,), и температурного коэфивд1ента электропроводности (а) смесей хлорного олова с уксусной кислотой. [c.254]

    Собственно лужению должны предшествовать подготовительные операции — очистка от ржавчига, окалины, грязи и смазки, обезжиривание и повторяющееся несколько раз протравливание в кислых ваннах, содержащих ингибиторы травления. Должным образом подготовленные предметы (чаще всего, это листы или лента стальной жести) окунают через слой флюса в расплавленное олово. В качестве флюса применяют хлорид цинка с незначительной примесью хлорида аммония. Флюс следует держать при температуре кипения, окунаемая жесть должна быть смочена водяным душем. Жесть перемещается в расплавленном олове при помощи системы роликов и направляющих, а перед выходом из ванны она проходитчерез слой пальмового масла. На рис. УП1-1 представлена схема установки для лужения. Температура в месте вхождения жести в ванну должна быть около 300 °С, на выходе она не должна превышать 240 °С. Применяемое масло должно в точности отвечать определенным требованиям по вязкости и кислотности. Масло предохраняет горячее оловянное покрытие от окисления в ходе его остывания и придает ему приятный внешний вид. Толщину получаемого оловянного покрытия можно регулировать, изменяя температуру и регулируя расстояние между роликами. [c.196]

    S. D. Stookey [267],.32, 1949, 246—249 на фиг. 30fr можно видеть значительныеизменения растворимости золота в зависимости от температуры и вязкости в области размягчения двух различных стекол. Олово приближается по типу к кривой А. [c.265]

    Проблема строения медных рубиновых стекол в-1945 г. была разрешена Дитцелем он изучал влияние концентрации ионов кислорода на созревание стекол таких типов. Можно непосредственно измерить электрохимический потенциал окисления стекла и ячеек восстановления (см. А. П, 184) и рассчитать концентрацию ионов кислорода по наблюдаемым электродвижущим силам. Этот точный метод показал, что типичный рубиновый цвет не может быть вызван реакцией разложения типа Каннидзаро. Восстанавливающий агент, как, например, окись олова или железа или трехокись мышьяка или сурьмы, должен всегда присутствовать в стекле. Нельзя пренебрегать влиянием вязкости стекла, так как слишком) большая текучесть расплава мешает созреванию суспензий коллоидов и они быстро укрупняются и флоккулируют. Особенно медистые ионы при закалке быстро переохлаждаются и застывают в стекле медные. иойы во время созревания рубинового стекла не образуются. В золотом рубиновом стекле обнаружено также влияние химического состава самого стекла свинец или барий образуют в стекле стойкие супероисиды, которые имеют существенное значение для эволюции рубинового цвета.. [c.268]

    В табл. 16 приведены результаты определения ММР полиуретанов, полученных с применением ТДИ при отношении N O ОН = 2. При отсутствии катализатора — дибутилдилаурината олова (ДБДЛО) 7 и отношение MJM олигомеров и соответствующих преполимеров равны следовательно, в данном случае практически подавляется процесс поликонденсации и идет лишь присоединение ТДИ к ОН группам олигомера, что связано с различием реакционной способности N O-rpynn диизоцианата и преполимера. Отсутствие поли-конденсации подтверждается также тем, что РТФ полиуретана полностью воспроизводит РТФ олигомера ПДИ-1К (табл. 17). Применение при синтезе преполимера катализатора приводит при одинаковых Мп и / к увеличению вязкости т]50 и среднемассовой молекулярной массы Мщ, а также к расширению ММР аналогичные явления наблюдаются при проведении синтеза при высокой температуре (85-100 °С). [c.42]

    Термическая стойкость и стойкость метилсиликоновых жидкостей к окислению изучалась очень подробно [135]. Установлено, что на воздухе до 175° заметных изменений не происходит при 200° начинается окисление, которое проявляется в изменении вязкости и выделении формальдегида и муравьиной кислоты. Повышение вязкости при окислении приписывается конденсации силоксановых молекул, от которых под действием кислорода отш епляются метильные радикалы. При температуре выше 200° стойкость к окислению у метилсиликоновых масел сильно уменьшается, что ограничивает их применение в окислительной а мосфере. Медь, свинец и селен ингибируют окисление при 200°, о чем можно судить по меньшему выделению образующихся при этом формальде-.гида и муравьиной кислоты мед1> и селен препятствуют также изменению вязкости. Теллур, наоборот, ускоряет при этих температурах окислительный процесс. Остальные исследованные металлы и сплавы (дюралюминий, кадмий, серебро, сталь, олово, цинк) заметно не влияют на стойкость к оккслению. Весовые потери в присутствии теллура, меди, свинца и селена при 225° очень высоки среди продуктов реакции были идентифицированы циклические молекулы Dg и D4. Эти металлы, по-видимому, катализируют термическую деполимеризацию высокие потери из-за испарения в присутствии свинца объясняют взаимодействием окиси свинца с силоксанами. При испытании термостойкости метилсиликоновых масел в инертной атмосфере установлено, что заметная температурная деполимеризация наступает уже при 250°. [c.332]

    Такие соединения, как, например, диоктоат дибутилолова, дилаурат дибутилолова, олеат и октоат олова, во много раз более эффективны как катализаторы реакции изоцианатов с гидроксильными группами, чем третичные амины, но, по-видимому, они не являются сильными катализаторами реакции изоцианатов с водой в пене. Таким образом, соединения олова можно использовать для ускорения реакции между изоцианатом и простым полиэфиром, чтобы вязкость массы быстро увеличивалась и газ мог остаться в пене. [c.289]


Смотреть страницы где упоминается термин Вязкость олова: [c.214]    [c.96]    [c.91]    [c.167]    [c.114]    [c.157]    [c.228]    [c.447]    [c.467]    [c.113]    [c.114]    [c.527]    [c.1169]    [c.452]    [c.265]    [c.27]   
Неорганические хлориды (1980) -- [ c.217 ]




ПОИСК







© 2025 chem21.info Реклама на сайте