Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метан паровая

    По этой схеме, в течение ряда лет используемой в промышленном масштабе, в генератор водяного газа во время парового дутья вместе с водяным паром подается дополнительно метан. [c.79]

    Паровую каталитическую конверсию природного газа при средней температуре и среднем или высоком давлении применяют в очень крупном промышленном масштабе. Основными направлениями усовершенствования режимов использования катализаторов в этих условиях является снижение удельного расхода пара на конверсию углеводородного сырья (см. табл. 14). На промышленных установках первичной конверсии метана мольное соотношение пар метан доходит до четырех. Как следует из табл. 14, это соотношение может быть уменьшено более чем в два раза, что существенно сократит затраты на производство аммиака и метанола. [c.36]


    ВЫХОДЯЩИЙ сверху абсорбера, пропускается через систему очистки от компрессорного масла и направляется потребителям. Абсорбент в основном поглощает углеводороды начиная от пропана и выше и небольшую часть метана и этана. Насыщенный абсорбент выходит снизу абсорбера и поступает в выветриватель, где за счет снижения давления выделяются метан и этан. После выветривателя насыщенный абсорбент проходит теплообменник, паровой подогреватель и направляется и десорбер, где выделяются поглощенные углеводороды. [c.166]

    Отходящие из абсорбционной колонны газы, содержащие 0,1—0,15% оксидов азота, поступают в узел каталитической очистки, где они нагреваются, а затем восстанавливаются до элементарного азота метаном. Выхлопные газы, содержащие продукты расщепления оксидов азота [0,002—0,008%) (об.)], направляются в газовую турбину, приводя в движение турбокомпрессор. Таким образом, данный агрегат полностью автономен по энергии [75, 76]. Энергия рекуперируется в результате установки на одной оси с турбокомпрессором газовой турбины. Это выгодно отличает схему от зарубежных схем, в которых к низкотемпературной газовой турбине дополнительно устанавливается паровая. [c.213]

    Основной примесью в техническом водороде является метан. В водороде, полученном в процессе каталитического риформинга, присутствуют также этан и пропан, а в водороде, полученном методом паровой каталитической конверсии и паро-кислородной газификации углеводородов, — окислы углерода и азот. К метану, поступившему с техническим водородом, прибавляется и метан, образовавшийся при гидрогенизации. [c.20]

    В качестве сырья паровой конверсии используют нефтезаводские газы, являющиеся побочными продуктами различных процессов нефтепереработки состав этих газов непостоянен. Поэтому целесообразно на стадии подготовки сырья обеспечить получение стабильного по составу газа, используя метод низкотемпературной конверсии гомологов метана в метан по реакции  [c.60]

    Полная конверсия нефтезаводских газов и бензинов в трубчатых реакторах с внешним обогревом фактически протекает в две стадии первая — частичная конверсия — паровая конверсия гомологов метана преимущественно в метан на нача-льном участке реакционной зоны и вторая — конверсия метана с получением водорода и окислов углерода. Первую стадию можно осуществить в отдельном реакторе при 350—500 °С в режиме, близком к адиабатическому. Это позволит более эффективно использовать дорогие печи конверсии с трубчатыми реакторами для проведения основной реакции полной конверсии метана и сократить расход пара, не опасаясь отложения углерода на катализаторе. [c.66]


    Термодинамические расчеты паровой конверсии алифатических углеводородов, начиная с 300 °С, можно вести, используя уравнения паровой конверсии метана (2) и окиси углерода (3), а также уравнение паровой конверсии гомологов метана в метан (1). С учетом последнего уравнения стехиометрнческие соотношения компонентов и их парциальные давления в паровой конверсии алифатических углеводородов принимают значения, приведенные в табл. 19. [c.69]

    Водород соответствующей концентрации может быть получен варьированием давления, температуры и отношения пар метан. Связь между этими параметрами иллюстрируется рис. 22 и 23. Как видно из рисунков, режим процесса можно менять в широком диапазоне, однако технические возможности оборудования, а также режимы других стадий производства и выпадение углерода при определенных граничных условиях значительно сужают этот диапазон. Результаты расчетов минимального расхода пара, ниже которого выпадает углерод, показаны на рис. 24. Расход пара на конверсию метана должен быть не ниже 2 1, чтобы предотвратить выпадение углерода, но такое соотношение не применяется, поскольку в этом случае пар приходится добавлять на стадии паровой конверсии окиси углерода. В реакторе паровой конверсии на подачу избыточного пара расходуется дополнительное тепло, но оно возвращается в котле-утилизаторе. Подача избыточного пара улучшает теплопередачу. Поэтому обычно на 1 м метана при низком давлении расходуется не менее 3 м пара, а при давлении 2 МПа его требуется 4—5 м . [c.72]

    Паровая конверсия метана без катализатора протекает с приемлемой скоростью и глубиной превращения на шамотной насадке только-при температурах 1250—1350 °С [19]. Опыты, выполненные в пустотелом кварцевом реакторе [20], показали, что при объемной скорости 200 ч , отношении пар газ, равном 2 1, и атмосферном давлении даже при 1000 °С степень конверсии метана не превышает 8—9%, а при 900 °С она равна всего 1,1%. При температурах 760—800 °С паровая конверсия метана вообще не протекает [21]. В случае нагревания гомологов метана в смеси с водяным паром без катализатора выше 500—600 °С протекают с большой скоростью процессы пиролиза с образованием непредельных углеводородов (этилена, пропилена и др.). В процессе пиролиза образуются также метан, этан, пропан п в относительно небольших количествах — водород. [c.79]

    Наиболее радикальным решением проблемы конверсии гомологов метана следует признать двухступенчатый процесс паровой конверсии. На I ступени процесс ведется в- адиабатическом реакторе при 450—520 °С с получением газа, содержащего преимущественно метан. На II ступени проводят полную конверсию метана в реакционных трубах с внешним обогревом с использованием известных, хорошо зарекомендовавших себя катализаторов. В последние годы для частичной конверсии углеводородов разработаны высокоэффективные стойкие катализаторы. [c.82]

    В качестве исходного сырья, используемого для получения синтез-газа посредством парового риформинга, могут применяться природный газ (в основном метан с несколькими процентами высококипящих углеводородов), легкий бензин (в основном бутан с некоторым количеством бутена и высококипящих углеводородов) и, наконец, легкие нефтяные дистиллаты. которые содержат различные углеводороды, кипящие при 40—170 С (например, 65 объемн. % парафинов, 25% нафтенов, 10% ароматических углеводородов и 1% олефинов). В последнем случае средний молекулярный вес близок к 100, а плотность составляет 0,68—0,72 г см , — величины, сходные с молекулярным весом и плотностью гептана С,Нхв. [c.63]

    Существует два возможных ограничения. Либо весь углерод превращается в окислы углерода и водород, либо риформинг осуществляется до такого предела, при котором водород не содержится в полученном газе. В случае, когда сырьем риформинга является метан, последнее может произойти только при отсутствии его превращения. Но это становится возможным при риформинге углеводородов, являющихся гомологами метана, когда в метан превращается максимальное количество углерода. Эти два ограничения соответствуют либо равновесию, достигаемому при очень высоких температурах, низком давлении и высоких отношениях пар газ, либо равновесию, достигаемому при очень низких температурах, высоких давлениях и низких отношениях пар газ. Изменение этих параметров является основным приемом, который позволяет применять паровой риформинг для получения газов различного состава. [c.84]

    Однако для систем, не являющихся идеальными при повышенных температуре и давлении, а также для систем, состоящих из компонентов, существенно различающихся по своим физико-химическим свойствам, нанример углеводороды одного и того же гомологического ряда, но сильно различающиеся по температурам кипения (метан и гептан) или компоненты, относящиеся к различным классам соединений, например углеводороды и селективный растворитель (фенол, фурфурол и др.), константа фазового равновесия, вычисленная таким методом, не характеризует действительного распределения компонентов между жидкой и паровой фазами. [c.61]


    К очищенному сырью добавляется водяной пар, смесь нагревается в печи 3 до 450-460°С и поступает в реактор газификации 4, где осуществляется паровая конверсия. углеводородного сырья. Газ с температурой 480-530°С охлаждается в котле-утилизаторе 5, вырабатывающим пар для процесса газификации, до 280-300°С и поступает в реактор метанирования первой ступени. В кем водород взаимодействует с СО и СО2, образуя дополнительное количество метана. Далее газ охлаждают в следующем котле-утилизаторе о и теплообменнике В, чтобы сконденсировать и удалить часть водяного пара. Затем смесь снова нагревают в печи 9 приблизительно до 315°С и направляют в реактор метанирования второй ступени 10, где происходит дальнейшее превращение 2, СО и СО2 в метан. Выходящий из реактора газ представляет собой смесь в основном двух компонентов - СН и СО2 ( 4 - Н2 - I  [c.275]

    Паровая конверсия сырья происходит в реакторе 5, верхняя часть его является реактором конверсии водяным паром, а нижняя - реактором гидрогазификации. Для обогащения метаном газ проходит одну сту- [c.277]

    На рис.3,14 показана усовершенствованная установка стабилизации, обеспечивающая нормальный гидродинамический режим работы колонн при уменьшении объема и облегчении сырья за счет подачи в куб АОК предварительно нагретого газа сепарации из выходного сепаратора 1. Этот газ в основном состоит из метана и этана и действует как отдувочный газ. Положительный эффект обеспечивается комбинированным воздействием нескольких факторов. Наличие метан-этановой фракций в нижней части колонны понижает парциальное давление компонентов Сз+, вследствие чего снижаются необходимое паровое число и, соответственно, требуемая тепловая нагрузка на печь. Кроме того, нагрузка снижается за счет воздействия отдувочного газа как теплоносителя. [c.53]

    Аналогичные газовые смеси можно получать из насыщенных углеводородов двумя основными способами — обработкой паром при высокой температуре в присутствии катализаторов (метано-паровой процесс) и частичным окислением кислородом (метано-кислородный процесс). В названиях этих способов метан введен потому, что его используют чаще всего. Однако углеводородным сырьем для процессов могут служить и гомологи метана. Вследствие доступности метана и изменений в относит льной стоимости каменного угля и нефти эти процессы приобрели довольно большое значение для производства многотоннажных неорганических и органических продуктов из насыщенных углеводородов. [c.46]

    В верхней части факельного ствола был смонтирован предохранитель обратного пламени ( молекулярный затвор ). Данное устройство было предназначено для предотвращения проникновения пла.мени и воздуха в факельный ствол. Чтобы предотвратить проникновение воздуха в факельный ствол, в нижнюю часть молекулярного затвора предусматривалась подача в качестве подпорного газа метан-водородной фракции, которая выходила из него в факельную горелку и сгорала в.месте со сбросным газом. Количество подаваемой метан-водородной фракции в молекулярный затвор должно было составлять 20 м /ч. Однако замер количества подаваемого запорного газа не был предусмотрен. Чтобы предотвратить замерзание скапливающейся влаги, был предусмотрен паровой змеевик в нижней части молекулярного затвора. Для слива влаги и конденсата имелась дренажная линия. [c.204]

    Метан можно хлорировать фотохимичесх и или термически в паровой фазе и фотохимически в жидкой фазе. Пр1. проведении хлорирования метана при 360° в длинном канале между графитовыми поверхностями, отстоящими одна от другой на 0,8 мм, горение и пиролиз устраняются. В другом методе фотохимическое хлорирование в паровой фазе ведется при 60° между гладкими некаталитическими поверхностями, отстоящими друг от друга на 5 мм. Получающаяся смесь поступает в облучаемый сосуд с четыроххлористым углеродом, где хлорирование завершается. Для получения частично хлорированных метанов первую стадию можно опустить и реагенты сразу вводят в освещенный жидкий четырех-хлористый углерод [4]. [c.57]

    Сжиженный газ, Паровую конверсию водород-легкий бензин, ного сырья проводят при тем-выкипающий пературе 400—410° С, давле-при—30—120° С, НИН 15—30 ат, весовом соот-углерод или неф- ношении вода углеводород, тяной дистиллят равном 1,5—200 1, в при-с конечной тем- сутствии Ы1-А1/А120э катали-пературой кипе- затора. С целью повышения ния, менее или содержания метана и сниже-равной 270° С ння количества водорода, полученный газ направляют во второй реактор, где реакцию проводят при температуре менее 370° С в присутствии того же катализатора. Для получения газа с характеристикой городского, полученный метан подвергают ри рмингу при температуре 660—680° С на катализаторе. При этом содержание метана в газе и его калорийность снижается до необходимых пределов [c.133]

    Хлорирование проводится в темноте либо в жидкой, либо в паровой фазе, и может ускоряться нагреванием, светом и такими катализаторами, как йод, металлы, галоиды металлов или другие агенты, способные превращать молекулу хлора в атомы хлора [664, 665]. Замещение происходит в различных позициях, и контроль возможен только в ограниченных размерах [430, 668, 669]. Так, метан хлорируется с получением некоторого количества всех четырех возможных хлорпроиззодных в реакции с пропаном получается либо первичный, либо вторичный хлориды. Жидкофазное хлорирование дает более высокий выход первичных продуктов замещения. [c.144]

    В то время как в жидкой фазе азотная кислота очень медленно воздействует на парафиновые углеводороды, в паровой фазе нитрование проходит быстро. Обнаружено, что плавно реагируя, газообразные углеводороды вместе с нормальным и изопентаном дают смесь мононитрированных продуктов динитросоединения не образуются [705], даже если азотной кислотой обрабатывать нитроалканы [706]. Нитрование выполняется под атмосферным давлением при помощи или азотной кислоты, или двуокиси азота при температурах порядка от 250 до 600° С при температурах 400—500° С получают оптимальные результаты. Легкость нитрования увеличивается в следующем порядке метан, этан, пропан, бутан и пентаны последние очень отзывчивы и разница между скоростями их нитрования незначительна. [c.147]

    Для паровой конверсии метана СН44-Н20— -СО+ЗНг-состав равновесной смеси определяется не только температурой и давлением, но и соотношением метан водяной пар. При-отсутствии в исходной смеси СО и Нг связь константы равно- [c.319]

    Для образования гидрата обязательно наличие свободной воды. Например, метан образует гидрат, имеюш,ий формулу СН4-6Н20. Для связывания 1 кг метана в гидрат, соответствующий этой формуле, требуется 6,5 кг воды. Естественно, что такое количество воды нельзя получить из паровой фазы газовой системы. [c.217]

    Навстречу паровому потоку стекает тощий абсорбент, подаваемый на самую верхнюю тарелку абсорбционной секции тем же насосом, что и абсорбер 3. Этот абсорбент поглощает тяжелые углеводороды, в то время ка к метан и этан отводят сверху по шлемовой трубе в сепаратор и оттуда через регулятор давления в распределительный пуикт. Этот несконденсировавшийся остаточный газ используют в основгном для топливных нужд завода. [c.143]

    Вместо прямой метанизации водородом подаваемых в установку избыточных окислов углерода газы, вытекающие из установок ГРГ или ГПЖС, можно подвергать низкотемпературной конверсии. В результате из этановой компоненты газа будут образовываться метан и небольшие количества окислов углерода, а остаточные компоненты либо останутся непрореагировавшими, либо в условиях низкотемпературной паровой конверсии подвергнутся незначительному воздействию. Газ, покидающий реактор низкотемпературной конверсии, будет содержать окислы углерода, количество которых достаточно для их восстановления остаточным водородом при наличии соответствующего катализатора. Технология производства ЗПГ по многоступенчатому способу в общих чертах хорошо описана в работе [10]. [c.125]

    Для достижения требуемой концентрации водорода при увеличении давления повышают температуру процесса и увеличивают расход пара (особенио, если стремятся получить 98%-ный Hj). Однако повышение и давления, и температуры приводит к необходимости применения реакционных труб из высоколегированной стали. В связи с этим производство водорода в настоящее время ведут при давленпи не выше 2,5 МПа. Границы ведения процесса, обусловленные качеством стали реакционных труб, даны на рис. 25 (труба из стали НК-40 эксплуатировалась 10 лет, температура стенки трубы па 100 °С была выше температуры процесса паровой конверсии). На современных установках процесс ведут при 2,0—2,6 МПа,830— 880 С и отношении пара к метану, равном (4 -н 5) 1. [c.74]

    В связи с разработкой термически стойких палладиевых мембран предложена, но пока реализована на небольших установках конверсия метана с выводом водорода из зоны реакции через мембрану. Это сдвигает равновесие реакции паровой конверсии метана. Расчеты термодинамического равновесия реакции паровой конверсии метана при давлении 1,925 МПа, отношении пар метан, равном 3 1, и парциальном давлении в остаточном газе 0,16 МПа показали [18], что при выводе водорода уже при 500 °С степень конверсии метана достигает 1, в то время как без вывода Но степень конверсии лштана 0,9 можно достичь только нри 880 °С. [c.78]

    Еще меньше ясности имеется в отношении механизма паровой конверсии высших углеводородов. Установлено лишь, что в процессе паровой конверсии гомологов метана происходит преобразование их в метан, т. е. протекает процесс частичной конверсии. Цредпола-гается [44], что углеводород на поверхности катализатора диссоциирует с образованием радикалов СН , которые реагируют с водяным паром и водородом. В результате взаимодействия радикалов с молекулами воды, адсорбированными на поверхности катализатора,, образуются окись углерода и водород, а с водородом — метан и углерод. Последний реагирует с водяным паром с образованием СО и На-Таким образом, рассмотренный механизм конверсии включает крекинг углеводородов, гидрирование продуктов крекинга й газификацию, а образование углерода является неизбежной промежуточной - тадией конверсии. [c.87]

    Газ, полученный в процессе паровой конверсии и паро-кислородной газификации, содержит наряду с водородом метан, окись и двуокись углерода. Концентрация окиси углерода в газе, полученном при конверсии различного углеводородного сырья, колеблется от 6—15%, а в газе, цолученном газификацией мазута, достигает 45%. [c.88]

    Схема двухстадийной паровой каталитической конверсии углеводородов. Замечено, что в начальном участке реактора паровой каталитической конверсии углеводородов протекает паровая конверсия гомологов метана в метан. В отличие от паровой конверсии метана конверсия его гомологов может быть осуществлена в авто-термичпых условиях, без подвода тепла извне. При использовании в качестве сырья бензина или нефтезаводских газов с углеродным эквивалентом выше 1, на некоторых установках для производства водорвда вводится дополнительно автотермичный реактор [1]. Содержание гомологов метана в газе после такого реактора незначительно. [c.134]

    Процесс газификации - не каталитический пламенный, протекает Б пустотелом реакторе цилиндрической формы при 1550-1750 К под давлением от 0,2 до 10 1Ша и выше. Получаемый в реакторе газ содержит 45- 7% СО и 45-47 8 Н2, остальное-С021 азот и метан. Удельный расход сырья составляет 4,6-4,8 т на 1 т 100%-ного водорода расход кислорода-0,75-0,8 нм на I кг сырья пара-0,4-0,6 кг/кг выход газа-около 3 нм /кг. В качестве сырья в процессе могут использоваться углеводороды от газообразных до тяжелых нефтяных остатков. Схема процесса позволяет получить синтез-газ с различным отношением Н2 С0, водород или одновременно синтез-газ и водород. Применительно к установке мощностью 20 тыс.т водорода в год стоимость водорода газификации по сравнению с паровой каталнтической конверсией на 15-20% выше в первую очередь за счет производства технического кислорода. Однако применение установок газификации под повышенным давлением позволяет снизить расход энергии на сжатие получаемого водорода в первую очередь для процесса гидрокрекинга. [c.7]

    Как и прн паровой конверсии, реаадия (1.13) с метаном обратима, остальные углеводороды конвертируются полностью [c.16]

    Высказано предположение /36/, что имеет место полное разложение углеводорода на углерод и водород, и затем следует окисление углерода до СО. Но образование углерода как промежуточного продукта при паровой конверсии мы считаем мало вероятным, так как скорость разложения углеводородов до углерода и водорода при отсутствии воды намного ниже, чем реакщя любого углеводорода (включая метан) с водой. [c.53]

    В алмиачном производстве широко применяется. двухступенчатая конверсия. Вначале проводится паровая конверсия в трубчатых, печах при которой метан конвертируется на 65-705 , и остаточное содержание его в конвертированном газе составляет 7-9/2. Оставшееся количество метана подвергается паровоздушой конверсии и образуется газ с отношением СО ) л 3 1, из которого затем получают азотно-водородную смесь заданного оостава для синтеза аммиака. Разработаны процессы двухступенчатой (паровой и парокислородной) конверсии для производств метанола и водорода, но промышленного развития они не получили. [c.138]

    В этой же работе описан одностадийный процесс паровой конверсии жидких углеводородов при 500—550 °С и 2—ЗМПа (СбНи+ -f2,5H20—)-4,75 СН4+1,25 СОг) с тепловым эффектом, практически равным нулю. Важно выдерживать температуру в пределах 500—550°С, так как ниже 500 °С происходит полимеризация углеводородных радикалов (закупорка пор катализатора), а выше 550 °С усиливается коксообразование. Катализатор должен быть чрезвычайно активным (70—75% Ni). Изучается также двухстадийный процесс газификации углеводородов, например гексана в метан. Каталитический риформинг можно использо1вать при подборе соответствующих сырья и режима для получения сжиженных газов (Сз—С4). [c.202]

    Насосом Н-1 за-ка.чивают в реактор-мешалку балансовое количество АЦЦ, включают паровой обо11)ев реактора и при температуре 60-70°С запускают ротор мешалки. Затем тем же насосом Н-1 закачивают поочередно легкую, тяжелую смолу, насосом Н-2 - серную кислоту в заданных количествах. Поднимают температуру реакционной смеси до 120-130°С и перемешивают в течение 2-3 ч. Образующиеся газы разложения отводятся в холодильник-конденсатор, конденсат сливается в емкость Е-5 и может быть возвращен в реактор насосом Н-2. Не-сконденсированные газы, содержащие СО2, метан в незначительном количестве, отводятся на сжигание (или на воздушку). [c.64]

    Процесс паровой качалигической конверсии углеводородов предназначен дли получения технического водорода с концентрацией 96— 97% об. Остальное — метан, оксиды углерода и азот. Полученный технический водород пригоден для таких крупномасштабных процессов, как гидроочистка и гидрокрекинг нефтепродуктов с получением топлив, масел, очищенного сырья для коксования. [c.365]

    В табл. 4 приведен систематический ход расчета посредством этих графиков. В этом примере заданными величинами являются давление 70,3 ата, температура 37,8° и число молей компонентов смеси, подвергаемой испарению метан 40, этан 10, пропан 20 и н-бутан 30. Величинами, подлежащими расчету, являются число молей каждого компонента в паровой и жидкой фазах при равновосип в отпх условиях. [c.41]

    Основными горючими компонентами нефтяных паров являются предельные углеводороды метан, этан, пропан, бутан (с изомером), пентан (с изомером), гексан (с изомерами). Углеродород- ный состав нефтяных паров сильно зависит от степени подготовки лефти. Так, в парах сырых нефтей, а также после сепарации/газа и обессоливания довольно велико содержание метана и этана, шричем относительное содержание компонентов в паровой фазе сильно изменяется после каждого захода нефти в дышащие резерв- -вуары на пути движения с промыслов. Однако после стабилизации нефти колебания состава паров становятся менее значитель- ными, в парах почти полностью исчезает метан, уменьшается содержание этана, возрастает содержание пентана и гексана, а юсновную массу паров многих стабилизированных нефтей составляют пропан и бутан. Такие особенности углеводородного состава [c.18]


Смотреть страницы где упоминается термин Метан паровая: [c.157]    [c.203]    [c.229]    [c.297]    [c.133]    [c.196]    [c.101]    [c.230]    [c.251]   
Справочник азотчика Издание 2 (1986) -- [ c.54 ]




ПОИСК





Смотрите так же термины и статьи:

Конверсия бескислородная паровая метана

Метан паровая конверсия

Механизм и кинетика паровой конверсии метана

Паровая каталитическая двухступенчатая конверсия метана и окиси углерода

Паровая конверсия углеводородов гомологов метана

Равновесный паровой конверсии метан



© 2025 chem21.info Реклама на сайте