Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метан паровая конверсия

    В качестве сырья паровой конверсии используют нефтезаводские газы, являющиеся побочными продуктами различных процессов нефтепереработки состав этих газов непостоянен. Поэтому целесообразно на стадии подготовки сырья обеспечить получение стабильного по составу газа, используя метод низкотемпературной конверсии гомологов метана в метан по реакции  [c.60]


    Полная конверсия нефтезаводских газов и бензинов в трубчатых реакторах с внешним обогревом фактически протекает в две стадии первая — частичная конверсия — паровая конверсия гомологов метана преимущественно в метан на нача-льном участке реакционной зоны и вторая — конверсия метана с получением водорода и окислов углерода. Первую стадию можно осуществить в отдельном реакторе при 350—500 °С в режиме, близком к адиабатическому. Это позволит более эффективно использовать дорогие печи конверсии с трубчатыми реакторами для проведения основной реакции полной конверсии метана и сократить расход пара, не опасаясь отложения углерода на катализаторе. [c.66]

    Термодинамические расчеты паровой конверсии алифатических углеводородов, начиная с 300 °С, можно вести, используя уравнения паровой конверсии метана (2) и окиси углерода (3), а также уравнение паровой конверсии гомологов метана в метан (1). С учетом последнего уравнения стехиометрнческие соотношения компонентов и их парциальные давления в паровой конверсии алифатических углеводородов принимают значения, приведенные в табл. 19. [c.69]

    Водород соответствующей концентрации может быть получен варьированием давления, температуры и отношения пар метан. Связь между этими параметрами иллюстрируется рис. 22 и 23. Как видно из рисунков, режим процесса можно менять в широком диапазоне, однако технические возможности оборудования, а также режимы других стадий производства и выпадение углерода при определенных граничных условиях значительно сужают этот диапазон. Результаты расчетов минимального расхода пара, ниже которого выпадает углерод, показаны на рис. 24. Расход пара на конверсию метана должен быть не ниже 2 1, чтобы предотвратить выпадение углерода, но такое соотношение не применяется, поскольку в этом случае пар приходится добавлять на стадии паровой конверсии окиси углерода. В реакторе паровой конверсии на подачу избыточного пара расходуется дополнительное тепло, но оно возвращается в котле-утилизаторе. Подача избыточного пара улучшает теплопередачу. Поэтому обычно на 1 м метана при низком давлении расходуется не менее 3 м пара, а при давлении 2 МПа его требуется 4—5 м . [c.72]

    Паровая конверсия метана без катализатора протекает с приемлемой скоростью и глубиной превращения на шамотной насадке только-при температурах 1250—1350 °С [19]. Опыты, выполненные в пустотелом кварцевом реакторе [20], показали, что при объемной скорости 200 ч , отношении пар газ, равном 2 1, и атмосферном давлении даже при 1000 °С степень конверсии метана не превышает 8—9%, а при 900 °С она равна всего 1,1%. При температурах 760—800 °С паровая конверсия метана вообще не протекает [21]. В случае нагревания гомологов метана в смеси с водяным паром без катализатора выше 500—600 °С протекают с большой скоростью процессы пиролиза с образованием непредельных углеводородов (этилена, пропилена и др.). В процессе пиролиза образуются также метан, этан, пропан п в относительно небольших количествах — водород. [c.79]


    Наиболее радикальным решением проблемы конверсии гомологов метана следует признать двухступенчатый процесс паровой конверсии. На I ступени процесс ведется в- адиабатическом реакторе при 450—520 °С с получением газа, содержащего преимущественно метан. На II ступени проводят полную конверсию метана в реакционных трубах с внешним обогревом с использованием известных, хорошо зарекомендовавших себя катализаторов. В последние годы для частичной конверсии углеводородов разработаны высокоэффективные стойкие катализаторы. [c.82]

    К очищенному сырью добавляется водяной пар, смесь нагревается в печи 3 до 450-460°С и поступает в реактор газификации 4, где осуществляется паровая конверсия. углеводородного сырья. Газ с температурой 480-530°С охлаждается в котле-утилизаторе 5, вырабатывающим пар для процесса газификации, до 280-300°С и поступает в реактор метанирования первой ступени. В кем водород взаимодействует с СО и СО2, образуя дополнительное количество метана. Далее газ охлаждают в следующем котле-утилизаторе о и теплообменнике В, чтобы сконденсировать и удалить часть водяного пара. Затем смесь снова нагревают в печи 9 приблизительно до 315°С и направляют в реактор метанирования второй ступени 10, где происходит дальнейшее превращение 2, СО и СО2 в метан. Выходящий из реактора газ представляет собой смесь в основном двух компонентов - СН и СО2 ( 4 - Н2 - I  [c.275]

    Паровая конверсия сырья происходит в реакторе 5, верхняя часть его является реактором конверсии водяным паром, а нижняя - реактором гидрогазификации. Для обогащения метаном газ проходит одну сту- [c.277]

    В промышленных условиях конверсию метана проводят при двухкратном и более избытке водяного пара по сравнению с расходом метана. На потенциальной диаграмме для паровой конверсии метана, изображенной на рис. 3, нанесены следующие параметры Рен — относительное давление метана в исходном газе 0=1 — относительная поверхность катализатора, заполненная исходным метаном Рен, — равновесное давление метана Рн,о — относительное давление водяного пара в исходном газе Рн о — равновесное давление водяного пара Рнр — избыточное давление газа по сравнению со стехиометрическим н о — относительная поверхность катали- [c.78]

    Кинетика селективной паровой конверсии этана (в смеси с метаном) на никель-хромовом катализаторе. Для изучения этого процесса мы предложили методику обработки результатов исследования кинетики химического процесса на проточном градиентном реакторе нашей конструкции в неизотермических условиях [36]. Основной особенностью кинетики конверсии этана с водяным паром является то, что скорость данного процесса сначала возрастает, достигает максимума и лишь затем (при значительной степени превращения углеводорода) начинает уменьшаться. В целом процесс имеет выраженный автокаталитический характер. Полученные нами экспериментальные данные удовлетворительно описываются эмпирическим кинетическим уравнением [c.122]

    Термодинамические исследования показали, что, изменяя условия проведения этого процесса, из жидких углеводородов можно получить метан или газ с повышенным содержанием водорода. Экспериментальные исследования показали, что паровая конверсия н-гептапа на никель-хромовом катализаторе идет уже при температуре 240° С и, следовательно, является низкотемпературной. В начальный период испытания наблюдается заметное падение активности катализатора с последующей ее стабилизацией [59]. Для данного процесса перспективным является предложенный нами никелевый катализатор, нанесенный на активную окись алюминия. [c.124]

    Установлено, что в продуктах паровой конверсии углеводородного сырья при температурах более 600 °С отсутствуют гомологи метана. Это обусловливается тем, что метан является наиболее термостойким углеводородом по сравнению с его гомологами. Поэтому равновесный состав продуктов паровой конверсии углеводородов при температурах свыше 600 °С обычно рассчитывают по константе равновесия реакций [c.504]

    Схема процесса представлена на рис. 13.6. В качестве примера рассматривается очистка водорода, получаемого паровой конверсией углеводородов природного газа. Выходящая из реактора газовая смесь, содержащая главным образом водород, окись и двуокись углерода, охлаждается добавкой водяного пара и конденсата примерно до 370° С и пропускается через, конвертор СО первой ступени, заполненный катализатором. Здесь 90—95% присутствующей окиси углерода превращается в двуокись с образованием эквивалентного количества водорода. Первая ступень конверсии служит в основном для получения дополнительного водорода и поэтому не может рассматриваться как операция очистки газа в узком смысле этого термина. Горячий газ, выходящий из конвертора СО, охлаждается примерно до 38° С, после чего двуокись углерода удаляют обычными регенеративными жидкостными процессами (этаноламиновая или поташная очистка). Очищенный от двуокиси углерода газ снова подогревается в печи и после добавки водяного пара проходит через конвертор второй ступени, за которым следует вторичная очистка от двуокиси углерода. Для получения водорода весьма высокой чистоты может быть добавлена третья ступень конверсии и удаления двуокиси углерода. Газ, получаемый по схеме с трехступенчатой конверсией СО, имеет следующий типичный состав (в % объемн.) окись углерода 0,02, двуокись углерода 0,01, метан 0,27, водород 99,7. [c.332]


    Для создания реактора одностадийной газификации необходимо одновременно катализировать реакции паровой конверсии оксида углерода и метанирования. Это потребует бифункционального катализатора. Так как реакции паровой конверсии оксида углерода и метанирования обычно катализируются никелем или железом, то комбинации никеля и других переходных металлов с оксидами или карбонатами щелочных металлов могут использоваться как катализаторы одностадийной газификации [129—131]. Результаты обнадеживают, но для обеспечения приемлемой- производительности обычно необходимы большие количества катализатора. Патент в этой области [131] описывает смежный процесс, в котором используются преимущества катализаторов со щелочными металлами для газификации. Однако вместо проведения стадии метанирования в газогенераторе используются повышенные парциальные давления водорода. Это приводит к существенному увеличению в гидрогазификации (см. ниже), и, в принципе, метан получают в термонейтральном процессе. [c.93]

    В табл. 1 приведены характеристики исследованных носителей и катализаторов. Поверхность носителей и катализаторов (Sh, S ) определяли по методу БЭТ с использованием азота в качестве адсорбата металлическая поверхность (Sni) — по хемосорбции окиси углерода прн 20° С. Пористость определяли на ртутной порометрической установке. Количество никеля в контакте было установлено аналитическим методом. Степень заполнения поверхности активным компонентом (а) найдена из отношения никелевой поверхности к общей поверхности контакта. Размеры кристаллитов никеля оценивали исходя из предположения, что они имеют кубическую форму с размером граней /"ni [Ю]. Активность всех изученных катализаторов в реакции паровой конверсии метана была оценена проточно-циркуляционным методом. Условия испытания образцов поддерживались постоянными объемная скорость по метану 1000 циркуляция 3-10 соотношение пар/газ 2 1, размер частичек 1—2 мм, температурный интервал 400—800° С. [c.34]

    Разжижение угля упрощает систему подачи сырья, позволяет осуществлять процесс с высокими скоростями благодаря значительной реакционной способности идущего на гидрогазификацию угля. После гидрогазификации получают метан, часть которого, как это видно из блок-схемы, поступает на паровую конверсию для получения водорода. Конвертор обогревают гелиевым теплоносителем. Высокотемпературный ядерный реактор служит источником тепла для обогрева гелиевого теплоносителя, получения пара и электроэнергии, необходимых в процессе. [c.436]

    Процесс паровой конверсии метана основывается на образовании водорода и двуокиси углерода при взаимодействии водяного пара с природным газом (метаном). [c.51]

    При сжигании природного газа с недостатком воздуха в условиях кипящего слоя руды и относительно низкой температуры (до 1000° С) избыточный газ частично окислялся воздухом с образованием восстановительных газов (СО и Нз), а частично попадал в слой в виде остаточного метана, так как углекислотная и паровая конверсия при таких температурах без катализатора и при весьма малом времени (1,5 — 2 сек) идет медленно. При снижении коэффициента расхода воздуха темп роста концентрации восстановительных газов снижается, а избыточный метан в больших количествах покидает слой неразложенным (рис. 4). Это является следствием того, что вероятность окисления СО и На с ростом их концентрации повышается, особенно если учесть их большую по [c.387]

    Сущность процесса паровой конверсии газа состоит в том, что метан, содержащийся в газе, реагируя при высокой температуре с водяным паром в присутствии никелевого катализатора, конвертируется до водорода и окиси углерода  [c.320]

    Па основании комплекса исследований, проведенных в ГИАПе, разработан и применяется в крупных агрегатах производства аммиака ряд новых катализаторов катализатор для тонкой (не выше 0,3 мг/м ) сероочистки природного газа катализатор паровой конверсии метана в трубчатых печах, новый низкотемпературный медьсодержащий катализатор конверсии окиси углерода высокоэффективный никелевый катализатор на прочной термостойкой основе для установок очистки азото-водородной смеси и водорода от окислов углерода и кислорода гидрированием их в метан и воду. [c.34]

    Перед поступлением в криогенный блок синтез-газ, получаемый паровой конверсией природного газа или нафты, очищается от СОг и Н2О. После охлаждения в теплообменниках 1,2 и 6 смеси, состоящей из Нг, СО и СН4, до 90 К и отделения образовавшегося конденсата в сепараторе 7 она направляется в промывную колонну 5, где промывается жидким метаном. Отмытый метаном газ, состоящий в основном из водорода (99 молярных долей, %), подогревается в теплообменнике 2, и часть его направляется на расширение в турбодетандер 3. Жидкость, выводимая из куба колонны 5, в основном состоит из СО и СН4. Для удаления из этой жидкости растворившегося в ней Н она дросселируется в сепаратор (на рис. 72 не показан), в котором отделяется испарившийся водород. Извлечение СО из смеси СО - СН4 после подогрева в теплообменнике 8 производится в ректификационной колонне 10. Окись углерода, отводимая с верха колонны, последовательно подогревается в теплообменниках 9 и 13 и сжимается в компрессоре 14. Часть этого потока используется в испарителе 4 и для циркуляции, где после охлаждения и конденсации в аппаратах 13, 11 и 9 в качестве флегмы подается на верхнюю тарелку ректификационной колонны 10, обеспечивая проведение процесса ректификации. При использовании этого метода можно получить окись углерода с молярной долей примесей менее 0,1 % СН4 и 0,1 % Нг. [c.202]

    Помимо температуры и давления, на равновесие реакций (7.1) и (7.2) существенное влияние оказывает мольное отношение водяной пар (т. е. окислитель) углерод сырья Очевидно, что при увеличении отношения д сверх стехиометрического равновесия концентрация метана в газах конверсии будет снижаться. Установлено, что в продуктах паровой конверсии углеводородного сырья при температуре выше 600° С отсутствуют гомологи метана. Это обусловливается тем, что метан является наиболее термостойким углеводородом по сравнению с его гомологами. Поэтому равновесный состав продуктов паровой конверсии углеводородов при температуре свыше 600 °С обычно рассчитывают по константе равновесия реакций [c.720]

    Сжиженный газ, Паровую конверсию водород-легкий бензин, ного сырья проводят при тем-выкипающий пературе 400—410° С, давле-при—30—120° С, НИН 15—30 ат, весовом соот-углерод или неф- ношении вода углеводород, тяной дистиллят равном 1,5—200 1, в при-с конечной тем- сутствии Ы1-А1/А120э катали-пературой кипе- затора. С целью повышения ния, менее или содержания метана и сниже-равной 270° С ння количества водорода, полученный газ направляют во второй реактор, где реакцию проводят при температуре менее 370° С в присутствии того же катализатора. Для получения газа с характеристикой городского, полученный метан подвергают ри рмингу при температуре 660—680° С на катализаторе. При этом содержание метана в газе и его калорийность снижается до необходимых пределов [c.133]

    Для паровой конверсии метана СН44-Н20— -СО+ЗНг-состав равновесной смеси определяется не только температурой и давлением, но и соотношением метан водяной пар. При-отсутствии в исходной смеси СО и Нг связь константы равно- [c.319]

    Вместо прямой метанизации водородом подаваемых в установку избыточных окислов углерода газы, вытекающие из установок ГРГ или ГПЖС, можно подвергать низкотемпературной конверсии. В результате из этановой компоненты газа будут образовываться метан и небольшие количества окислов углерода, а остаточные компоненты либо останутся непрореагировавшими, либо в условиях низкотемпературной паровой конверсии подвергнутся незначительному воздействию. Газ, покидающий реактор низкотемпературной конверсии, будет содержать окислы углерода, количество которых достаточно для их восстановления остаточным водородом при наличии соответствующего катализатора. Технология производства ЗПГ по многоступенчатому способу в общих чертах хорошо описана в работе [10]. [c.125]

    Для достижения требуемой концентрации водорода при увеличении давления повышают температуру процесса и увеличивают расход пара (особенио, если стремятся получить 98%-ный Hj). Однако повышение и давления, и температуры приводит к необходимости применения реакционных труб из высоколегированной стали. В связи с этим производство водорода в настоящее время ведут при давленпи не выше 2,5 МПа. Границы ведения процесса, обусловленные качеством стали реакционных труб, даны на рис. 25 (труба из стали НК-40 эксплуатировалась 10 лет, температура стенки трубы па 100 °С была выше температуры процесса паровой конверсии). На современных установках процесс ведут при 2,0—2,6 МПа,830— 880 С и отношении пара к метану, равном (4 -н 5) 1. [c.74]

    В связи с разработкой термически стойких палладиевых мембран предложена, но пока реализована на небольших установках конверсия метана с выводом водорода из зоны реакции через мембрану. Это сдвигает равновесие реакции паровой конверсии метана. Расчеты термодинамического равновесия реакции паровой конверсии метана при давлении 1,925 МПа, отношении пар метан, равном 3 1, и парциальном давлении в остаточном газе 0,16 МПа показали [18], что при выводе водорода уже при 500 °С степень конверсии метана достигает 1, в то время как без вывода Но степень конверсии лштана 0,9 можно достичь только нри 880 °С. [c.78]

    Еще меньше ясности имеется в отношении механизма паровой конверсии высших углеводородов. Установлено лишь, что в процессе паровой конверсии гомологов метана происходит преобразование их в метан, т. е. протекает процесс частичной конверсии. Цредпола-гается [44], что углеводород на поверхности катализатора диссоциирует с образованием радикалов СН , которые реагируют с водяным паром и водородом. В результате взаимодействия радикалов с молекулами воды, адсорбированными на поверхности катализатора,, образуются окись углерода и водород, а с водородом — метан и углерод. Последний реагирует с водяным паром с образованием СО и На-Таким образом, рассмотренный механизм конверсии включает крекинг углеводородов, гидрирование продуктов крекинга й газификацию, а образование углерода является неизбежной промежуточной - тадией конверсии. [c.87]

    Газ, полученный в процессе паровой конверсии и паро-кислородной газификации, содержит наряду с водородом метан, окись и двуокись углерода. Концентрация окиси углерода в газе, полученном при конверсии различного углеводородного сырья, колеблется от 6—15%, а в газе, цолученном газификацией мазута, достигает 45%. [c.88]

    Схема двухстадийной паровой каталитической конверсии углеводородов. Замечено, что в начальном участке реактора паровой каталитической конверсии углеводородов протекает паровая конверсия гомологов метана в метан. В отличие от паровой конверсии метана конверсия его гомологов может быть осуществлена в авто-термичпых условиях, без подвода тепла извне. При использовании в качестве сырья бензина или нефтезаводских газов с углеродным эквивалентом выше 1, на некоторых установках для производства водорвда вводится дополнительно автотермичный реактор [1]. Содержание гомологов метана в газе после такого реактора незначительно. [c.134]

    Как и прн паровой конверсии, реаадия (1.13) с метаном обратима, остальные углеводороды конвертируются полностью [c.16]

    Высказано предположение /36/, что имеет место полное разложение углеводорода на углерод и водород, и затем следует окисление углерода до СО. Но образование углерода как промежуточного продукта при паровой конверсии мы считаем мало вероятным, так как скорость разложения углеводородов до углерода и водорода при отсутствии воды намного ниже, чем реакщя любого углеводорода (включая метан) с водой. [c.53]

    В алмиачном производстве широко применяется. двухступенчатая конверсия. Вначале проводится паровая конверсия в трубчатых, печах при которой метан конвертируется на 65-705 , и остаточное содержание его в конвертированном газе составляет 7-9/2. Оставшееся количество метана подвергается паровоздушой конверсии и образуется газ с отношением СО ) л 3 1, из которого затем получают азотно-водородную смесь заданного оостава для синтеза аммиака. Разработаны процессы двухступенчатой (паровой и парокислородной) конверсии для производств метанола и водорода, но промышленного развития они не получили. [c.138]

    В этой же работе описан одностадийный процесс паровой конверсии жидких углеводородов при 500—550 °С и 2—ЗМПа (СбНи+ -f2,5H20—)-4,75 СН4+1,25 СОг) с тепловым эффектом, практически равным нулю. Важно выдерживать температуру в пределах 500—550°С, так как ниже 500 °С происходит полимеризация углеводородных радикалов (закупорка пор катализатора), а выше 550 °С усиливается коксообразование. Катализатор должен быть чрезвычайно активным (70—75% Ni). Изучается также двухстадийный процесс газификации углеводородов, например гексана в метан. Каталитический риформинг можно использо1вать при подборе соответствующих сырья и режима для получения сжиженных газов (Сз—С4). [c.202]

    Наиболее подробные термодинамические данные относятся к реакции паровой [451 и пароуглекислотной [46] конверсий метана. Учитывая, что при конверсии нефтезаводских газов высшие гомологи метана полностью вступают в реакцию с водяным паром, образуя углекислоту и метан, процесс конверсии нефтезаводских газов с термодинамической точки зрения можно рассматривать как процесс пароуглекислотной конверсии метана, но с иными соотношениями НаО СН, и СОа СН,. Для последующих расчетов величины п- и В удобно заменить через метановый эквивалент п исходя из уравнения [c.255]

    Рассмотренная схема может быть дополнена включением теплообмена между газом, выходящим с одной ступени конверсии, и газом, направляемым на следующую ступень конверсип, или включением реактора метанирования для превращения остаточных с.тедов кислородных соединений углерода в метан. Давление и температуру процесса можно изменять в широких пределах. При процессах паровой конверсии углеводородов под низким и высоким давлением и процессе частичного окисления углеводородов в секции конверсии СО обычно поддерживают давление соответственно 2,1, 8,7 и 24,5 ат. Температура конверсии СО лежит в пределах 316—482° С. [c.333]

    За рубежом известно несколько схем переработки синтез газа, отходящего из производства ацетилена, для получени метанола, аммиака и других веществ. Это — парокислородна или паровоздушная конверсия остаточного метана в шахтны реакторах [17], паровая конверсия в трубчатых печах с дозиро ванием диоксида углерода [18—20]. Широко применяется раз деление компонентов методом глубокого охлаждения [21—23] при этом выделяется этилен, метан и фракция (Нг+СО). Ре комендуют также проводить очистку синтез-газа гидрирование непредельных соединений и кислорода на катализаторах, со держащих серебро [24]. Все схемы, как отечественные, так 1 зарубежные в аппаратурном оформлении громоздки и, соот ветственно, имеют большие капитальные затраты. [c.32]

    Фактически эту реакцию обычно проводят в две ступени на первой протекает взаимодействие метана с водяным паром при высокой темпера-тлфе с образованием СО и Hg. Затем, при более низкой температуре, проводят конверсию СО с дополнительным количеством водяного нара в СО2, получая также водород. Следы СО удаляют иа ступени метанирования, после которой часть водорода снова превращается в исходный углеводород — метан. Процесс требует затраты энергии. Для получения ) водорода паровой конверсией расходуется такое количество сырья и топлива, простое сжигание которого сопровождалось бы выделением 4230 ккал. Разность между этой величиной и теплотой сгорания 1 водорода, равная 1780 ккал, и составляет расход энергии на собственно конверсию. [c.51]

    При частичном окислении тяжелого топлива на 1 моль водорода в конечном продукте необходимо удалить 0,ЪЪмоль двуокиси углерода по сравнению с 0,33 моль при паровой конверсии природного газа. Это частично объясняется более высоким отношением углерод водород в тяжелом топливе по сравнению с метаном, а частично и принципиальными различиями между обоими процессами (см. раздел Теоретические основы ). [c.110]

    Наибольшую чувствительность к повышению углеродного эквивалента и содержания примесей серы проявляют катализаторы эндотермического ри-форминга. Селективность обычного катализатора эндотермической паровой конверсии углеводородов (типа ГИАП-16) вполне достаточна для переработки газообразного сырья различных месторождений с содержанием метана более 85% (об.) и гомологов — не более 14% (об.) (углеродный эквивалент не более 1,28). Считается, что современный катализатор должен обладать такой селективностью, которая обес- печила бы длительную эксплуатацию (3 года) без заметных выделений углерода и потери ак- 3 тивности, если риформинг 100%-ного метана о осуществляется прл критическом мoJ дам от- ношении пара к атому углерода в метане Н2О/СН4, равном 3.5. При этом срок службы [c.63]

    Осуществление под повышенны.м давлением паровой конверсии смесей углеводородов, содержащих высшие алканы и особенно алке ны, иногда сопровождается выделением свободного углерода, которое осложняет ведение процесса. В других случаях это выпадение твердой фазы лимитирует температуру предварительного нагрева углеводородов при авто-термических методах их онверсии, а также термоокислительного пиролиза до ацетилена, что снижает экономичность указанных процессов. Поэтому при использоваиии углеводородного сырья сложного состава целесообразно предварительно превратить высшие углеводороды в метан. Это достигается, в частности, их взаимо1действием с водяным паром под повы-10 [c.10]


Смотреть страницы где упоминается термин Метан паровая конверсия: [c.157]    [c.203]    [c.229]    [c.196]    [c.125]    [c.58]   
Технология связанного азота Издание 2 (1974) -- [ c.19 , c.20 , c.24 , c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Конверсия бескислородная паровая метана

Конверсия метана

Метан паровая

Механизм и кинетика паровой конверсии метана

Паровая каталитическая двухступенчатая конверсия метана и окиси углерода

Паровая конверсия углеводородов гомологов метана

Равновесный паровой конверсии метан



© 2025 chem21.info Реклама на сайте